2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Second-order Sliding Mode Control of DFIG Based Variable Speed Wind Turbine for Maximum Power Point Tracking

Liu Xiangjie Wang Chengcheng Han Yaozhen

刘向杰, 王诚诚, 韩耀振. 基于二阶滑模控制的变速双馈风力发电系统最大功率点跟踪. 自动化学报, 2017, 43(8): 1434-1442. doi: 10.16383/j.aas.2017.e150252
引用本文: 刘向杰, 王诚诚, 韩耀振. 基于二阶滑模控制的变速双馈风力发电系统最大功率点跟踪. 自动化学报, 2017, 43(8): 1434-1442. doi: 10.16383/j.aas.2017.e150252
Liu Xiangjie, Wang Chengcheng, Han Yaozhen. Second-order Sliding Mode Control of DFIG Based Variable Speed Wind Turbine for Maximum Power Point Tracking. ACTA AUTOMATICA SINICA, 2017, 43(8): 1434-1442. doi: 10.16383/j.aas.2017.e150252
Citation: Liu Xiangjie, Wang Chengcheng, Han Yaozhen. Second-order Sliding Mode Control of DFIG Based Variable Speed Wind Turbine for Maximum Power Point Tracking. ACTA AUTOMATICA SINICA, 2017, 43(8): 1434-1442. doi: 10.16383/j.aas.2017.e150252

基于二阶滑模控制的变速双馈风力发电系统最大功率点跟踪

doi: 10.16383/j.aas.2017.e150252
基金项目: 

Natural Science Foundation of Beijing 4122071

the National Natural Science Foundation of China 61273144

Second-order Sliding Mode Control of DFIG Based Variable Speed Wind Turbine for Maximum Power Point Tracking

Funds: 

Natural Science Foundation of Beijing 4122071

the National Natural Science Foundation of China 61273144

More Information
    Author Bio:

    Xiangjie LIU received the Ph.D.degree in electrical and electronic engineering from the Research Center of Automation, Northeastern University, Shenyang, China, in 1997.He subsequently held a postdoctoral position with the China Electric Power Research Institute (CEPRI), Beijing, China, until 1999.He has been an Associate Professor in CEPRI since 1999.
    He was a Research Associate with the University of Hong Kong, and a Professor with National University of Mexico.He is now a Professor with the Department of Automation, North China Electric Power University, Beijing, China.His research interests include fuzzy control, neural networks, model predictive control with its application in industrial processes.
    Prof.Liu is a member of Technical Committee on Control Theory, a member of Technical Committee on Process Control, Chinese Association of Automation, an editor of Chinese Journal of Control Engineering and an editor of Chinese Journal of Electric Power Automation Equipment.He has been in Program for New Century Excellent Talents in University since 2006.E-mail:liuxj@ncepu.edu.cn

    Chengcheng Wang is a master student in the Department of Automation, North China Electric Power University (NCEPU).She received the B.S.degree in automation in 2008, from Department of Automation, NCEPU.Her main research interest is sliding mode control of wind turbine systems.E-mail:wangcc@ncepu.edu.cn

    Corresponding author: Yanzhen Han received the B.S.degree in automation in 2005 from Qingdao University of Science and Technology, Qingdao, China, and the M.S.degree in automatic control in 2008, from Shandong University, Jinan, China.He is currently working toward the Ph.D.degree in automatic control at North China Electric Power University, Beijing, China.Now he also works as an Associate Professor in Shandong Jiaotong University, Jinan, China.His research interests include modeling, optimization, and sliding mode control of power plants.Corresponding author of this paper.E-mail:hyz125@163.com
  • 摘要: 本文提出一种超螺旋二阶滑模控制方案同时实现双馈变速风力发电系统最大风能捕获和无功功率调节.通过设计两个二阶滑模控制器,实现控制目标,降低机械磨损,提高控制精度,通过调节发电机转子电压,跟踪风机最优转速和转子电流设定值,实现额定风速以下的最大风能捕获和无功功率调节.采用二次型李雅普诺夫函数确定控制参数范围、确保系统有限时间稳定性.1.5 MW风机系统仿真实验验证所提方案有效性.
    Recommended by Associate Editor Qinmin Yang
  • Fig.  1  WT operation regions.

    Fig.  2  Phase diagram of stator flux orientation.

    Fig.  3  $ C_p-\lambda $ characteristic of wind turbine.

    Fig.  4  The schematic diagram of the DFIG-based WT system.

    Fig.  5  Stepwise wind speed profile.

    Fig.  6  Regulation performances of $ \omega _w $ , $ I_{rd} $ and $ C_p . $

    Fig.  7  Comparison of the FOSM and the SOSM controller outputs.

    Fig.  8  Randomly varying wind speed profile.

    Fig.  9  Regulation performances of $ \omega _w $ , $ I_{rd} $ and $ C_p . $

    Fig.  10  SOSM controller outputs.

    $ \omega _w $ wind turbine rotor speed;
    $ I_{rd} $ the $d$ -axis component of rotor current;
    $ I_{rq} $ the $q$ -axis component of rotor current;
    $ U_{rd} $ the $d$ -axis component of the rotor voltage;
    $ U_{rq} $ the $q$ -axis component of the rotor voltage;
    $ J $ the inertia of the combined rotating parts;
    $ K $ turbine total external damping;
    $ n_g $ gearbox ratio;
    $ \phi _s $ stator flux;
    $ L_m $ mutual inductance;
    $ L_s $ stator leakage inductance;
    $ L_r $ rotor leakage inductance;
    $ R_r $ rotor resistance;
    $ \omega _1 $ synchronous speed;
    $ n_p $ pole pair number.
    下载: 导出CSV

    Table  Ⅰ  Characteristic of the Simulated Wind Turbine System

    Wind turbine parameters Value
    Number of blades 3
    Rotor radius 35 m
    Hub height 84.3 m
    Rated power 1.5 MW
    $ J$ $4.4532\times 10^5 {\rm kg\cdot m^2}$
    $K$ $200 {\rm N\cdot m\cdot s/rad}$
    $n_g$ $83.531$
    $\lambda_{\rm opt} $ 8
    $n_p$ $2$
    $\rho$ $1.2 {\rm g/m^3}$
    $U_s$ $690 {\rm V}$
    $R_r$ $0.0089 {\rm \Omega}$
    $\omega _1$ $1500 {\rm r/\min}$
    $L_m $ $0.016 {\rm mH}$
    $L_r$ $0.299 {\rm mH}$
    $L_s$ $0.407 {\rm mH}$
    $ \Delta K$ $40\sin (\pi / {300})t $
    $ \Delta R_r$ $0.00178\sin (\pi / {300})t $
    下载: 导出CSV
  • [1] C. Ming and Z. Ying, "The state of the art of wind energy conversion systems and technologies: A review, " Energy Convers. Manage. , vol. 88, pp. 332-347, Dec. 2014. http://www.sciencedirect.com/science/article/pii/S0196890414007614
    [2] M. L. Corradini, G. Ippoliti, and G. Orlando, "Fully sensorless robust control of variable-speed wind turbines for efficiency maximization, " Automatica, vol. 49, no. 10, pp. 3023 -3031, Oct. 2013. http://www.sciencedirect.com/science/article/pii/S0005109813003762
    [3] F. Poitiers, T. Bouaouiche, and M. Machmoum, "Advanced control of a doubly-fed induction generator for wind energy conversion, " Electric Power Syst. Res. , vol. 79, no. 7, pp. 1085-1096, Jul. 2009. http://www.sciencedirect.com/science/article/pii/S0378779609000352
    [4] J. S. Wang, N. Tse, and Z. W. Gao, "Synthesis on PI-based pitch controller of large wind turbines generator, " Energy Convers. Manage. , vol. 52, no. 2, pp. 1288-1294, Feb. 2011. http://www.sciencedirect.com/science/article/pii/S0196890410004280
    [5] I. Munteanu, N. A. Cutululis, A. I. Bratcu, and E. Ceangǎ, "Optimization of variable speed wind power systems based on a LQG approach, " Control Eng. Pract. , vol. 13, no. 7, pp. 903-912, Jul. 2005. http://www.sciencedirect.com/science/article/pii/S0967066104002254
    [6] H. Chitsaz, N. Amjady, and H. Zareipour, "Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm, " Energy Convers. Manage. , vol. 89, pp. 588-598, Jan. 2015. http://www.sciencedirect.com/science/article/pii/S0196890414008814
    [7] S. Abdeddaim, A. Betka, S. Drid, and M. Becherif, "Implementation of MRAC controller of a DFIG based variable speed grid connected wind turbine, " Energy Convers. Manage. , vol. 79, pp. 281-288, Mar. 2014. http://www.sciencedirect.com/science/article/pii/S0196890413007796
    [8] B. Boukhezzar and H. Siguerdidjane, "Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization, " Energy Convers. Manage. , vol. 50, no. 4, pp. 885-892, Apr. 2009. http://www.sciencedirect.com/science/article/pii/S0196890409000065
    [9] X. B. Kong and X. J. Liu, "Nonlinear model predictive control for DFIG-based wind power generation, " Acta Automat. Sin. , vol. 39, no. 5, pp. 636-643, May 2013. http://en.cnki.com.cn/Article_en/CJFDTOTAL-MOTO201305023.htm
    [10] Z. Y. Chen, M. H. Yin, C. X. Cai, B. Y. Zhang, and Y. Zou, "An accelerated optimal torque control of wind turbines for maximum power point tracking, " Acta Automat. Sin. , vol. 41, no. 12, pp. 2047-2057, Dec. 2015. http://www.aas.net.cn/EN/Y2015/V41/I12/2047
    [11] B. Beltran, T. Ahmed-Ali, and M. El Hachemi Benbouzid, "Sliding mode power control of variable-speed wind energy conversion systems, " IEEE Trans. Energy Convers. , vol. 23, no. 2, pp. 551-558, Jun. 2008. http://ieeexplore.ieee.org/document/4270775/
    [12] G. Bartolini, A. Ferrara, and E. Usai, "Chattering avoidance by second-order sliding mode control, " IEEE Trans. Automat. Control, vol. 43, no. 2, pp. 241-246, Feb. 1998. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=661074
    [13] F. Valenciaga and C. A. Evangelista, "2-Sliding active and reactive power control of a wind energy conversion system, " IET Control Theory Appl. , vol. 4, no. 11, pp. 2479-2490, Nov. 2010. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5645800
    [14] B Beltran, M El Hachemi Benbouzid, and T Ahmed-Ali, "Second-order sliding mode control of a doubly fed induction generator driven wind turbine, " IEEE Trans. Energy Convers. , vol. 27, no. 2, pp. 261-269, Jun. 2012. http://ieeexplore.ieee.org/document/6130597/
    [15] C. Evangelista, F. Valenciaga, and P. Puleston, "Active and reactive power control for wind turbine based on a MIMO 2-sliding mode algorithm with variable gains, " IEEE Trans. Energy Convers. , vol. 28, no. 3, 682-689, Sep. 2013. http://ieeexplore.ieee.org/document/6582571/
    [16] J. A. Moreno and M. Osorio, "Strict Lyapunov functions for the super-twisting algorithm, " IEEE Trans. Autom. Control, vol. 57, no. 4, pp. 1035-1040, Apr. 2012. http://ieeexplore.ieee.org/document/6144710
    [17] J. Zaragoza, J. Pou, A. Arias, C. Spiteri, E. Robles, and S. Ceballos, "Study and experimental verification of control tuning strategies in a variable speed wind energy conversion system, " Renew. Energy, vol. 36, no. 5, pp. 1421-1430, May 2011. http://www.sciencedirect.com/science/article/pii/S0960148110005045
    [18] W. B. Gao, Variable Structure Control Theory. Beijing, China:China Science and Technology Press, 1990.
    [19] A. Levant, "Sliding order and sliding accuracy in sliding mode control, " Int. J. Control, vol. 58, no. 6, pp. 1247-1263, Dec. 1993.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  2103
  • HTML全文浏览量:  279
  • PDF下载量:  803
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-15
  • 录用日期:  2016-02-28
  • 刊出日期:  2017-08-20

目录

    /

    返回文章
    返回