[1]
|
N. Laskin, "Fractional quantum mechanics, "Phys. Rev. E, vol. 62, no. 3, pp. 3135-3145, Sep. 2000. http://www.ncbi.nlm.nih.gov/pubmed/11088808
|
[2]
|
R. C. Koeller, "Applications of fractional calculus to the theory of viscoelasticity, "J. Appl. Mech. , vol. 51, no. 2, pp. 299-307, Jun. 1984. https://academic.oup.com/ptp
|
[3]
|
I. S. Jesus, J. A. T. Machado, and J. B. Cunha, "Fractional electrical impedances in botanical elements, "J. Vib. Control, vol. 14, no. 9-10, pp. 1389-1402, Sep. 2008. https://www.researchgate.net/publication/237464575_Fractional_Electrical_Impedances_in_Botanical_Elements
|
[4]
|
K. Oldham, "Fractional differential equations in electrochemistry, "Adv. Eng. Softw. , vol. 41, no. 1, pp. 9-12, Jan. 2010. http://dl.acm.org/citation.cfm?id=1645639
|
[5]
|
R. L. Magin, "Fractional calculus models of complex dynamics in biological tissues, "Comput. Math. Appl. , vol. 59, no. 5, pp. 1586-1593, Mar. 2010. http://www.sciencedirect.com/science/article/pii/S0898122109005343
|
[6]
|
R. L. Magin, Fractional Calculus in Bioengineering. Ridgefield, Conn, USA: Begell House Press, 2006.
|
[7]
|
B. Mathieu, P. Melchior, A. Oustaloup, and C. Ceyral, "Fractional differentiation for edge detection, "Signal Process. , vol. 83, no. 11, pp. 2421-2432, Nov. 2003. http://dl.acm.org/citation.cfm?id=958047
|
[8]
|
D. Y. Xue and Y. Q. Chen. "Fractional order calculus and its applications in mechatronic system controls organizers, "in Proc. 2006 IEEE Int. Conf. Mechatronics and Automation, Luoyang, Henan, China, 2006, pp. nil33-nil33. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4026037
|
[9]
|
C. Li and G. Chen, "Chaos in the fractional order Chen system and its control, "Chaos, Solitons Fractals, vol. 22, no. 3, pp. 549-554, Nov. 2004. http://www.sciencedirect.com/science/article/pii/S0960077904001250
|
[10]
|
M. Benchohra, J. Henderson, S. K. Ntouyas, and A. Ouahab, "Existence results for fractional functional differential inclusions with infinite delay and applications to control theory, "Fract. Calc. Appl. Anal. , vol. 11, no. 1, pp. 35-56, 2008. http://www.sciencedirect.com/science/article/pii/S0003448708001546
|
[11]
|
B. M. Vinagre, I. Podlubny, A. Hernndez, and V. Feliu, "Some approximations of fractional order operators used in control theory and applications, "Fract. Calc. Appl. Anal. , vol. 3, no. 3, pp. 231-248, Jan. 2000. http://www.ams.org/mathscinet-getitem?mr=1788163
|
[12]
|
K. Diethelm, The Analysis of Fractional Differential Equations. Berlin Heidelberg, Germany: Springer, 2010. http://adsabs.harvard.edu/abs/2013OPhy...11..824X
|
[13]
|
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Amsterdam, Netherlands: Elsevier, 2006. http://www.ams.org/mathscinet-getitem?mr=2218073
|
[14]
|
I. Podlubny, Fractional Differential Equations. San Diego, USA: Academic Press, 1999.
|
[15]
|
Y. F. Xu and Z. M. He, "Synchronization of variable-order fractional financial system via active control method, "Cent. Eur. J. Phys. , vol. 11, no. 6, pp. 824-835, Jun. 2013. http://adsabs.harvard.edu/abs/2013OPhy...11..824X
|
[16]
|
M. Asheghan, S. Delshad, B. Hamidi, and M. Tavazoei, "Non-fragile control and synchronization of a new fractional order chaotic system, "Appl. Math. Comput. , vol. 222, pp. 712-721, Oct. 2013. http://dl.acm.org/citation.cfm?id=2621316
|
[17]
|
D. Y. Chen, R. F. Zhang, J. C. Sprott, and X. Y. Ma, "Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control, "Nonlinear Dyn. , vol. 70, no. 2, pp. 1549-1561, Oct. 2012. doi: 10.1007/s11071-012-0555-3
|
[18]
|
H. Q. Li, X. F. Liao, and M. W. Luo, "A novel non-equilibrium fractional-order chaotic system and its complete synchronization by circuit implementation, "Nonlinear Dyn. , vol. 68, no. 1, pp. 137-149, Apr. 2012. doi: 10.1007/s11071-011-0210-4
|
[19]
|
D. Cafagna and G. Grassi, "Observer-based projective synchronization of fractional systems via a scalar signal: Application to hyperchaotic Rössler systems, "Nonlinear Dyn. , vol. 68, no. 1, pp. 117-128, Apr. 2012. http://www.ams.org/mathscinet-getitem?mr=2904161
|
[20]
|
V. S. Kiryakova, Generalized Fractional Calculus and Applications. Harlow, Essex, England, New York, USA: CRC Press, 1993.
|
[21]
|
O. P. Agrawal, "Generalized variational problems and Euler-Lagrange equations, "Comput. Math. Appl. , vol. 59, no. 5, pp. 1852-1864, Mar. 2010. http://dl.acm.org/citation.cfm?id=1746947
|
[22]
|
O. P. Agrawal, "Some generalized fractional calculus operators and their applications in integral equations, "Fract. Calc. Appl. Anal. , vol. 15, no. 4, pp. 700-711, Dec. 2012. doi: 10.2478/s13540-012-0047-7
|
[23]
|
Y. F. Xu, Z. M. He, and Q. W. Xu, "Numerical solutions of fractional advection-diffusion equations with a kind of new generalized fractional derivative, "Int. J. Comput. Math. , vol. 91, no. 3, pp. 588-600, Mar. 2014. doi: 10.1080/00207160.2013.799277
|
[24]
|
Y. F. Xu and O. P. Agrawal, "Numerical solutions and analysis of diffusion for new generalized fractional Burgers equation, "Fract. Calc. Appl. Anal. , vol. 16, no. 3, pp. 709-736, Sep. 2013. doi: 10.2478/s13540-013-0045-4
|
[25]
|
Xu Y, He Z, and Agrawal O, "Numerical and analytical solutions of new generalized fractional diffusion equation, "Comput. Math. Appl. , vol. 66, no. 10, pp. 2019-2029, Dec. 2013. http://dl.acm.org/citation.cfm?id=2542944
|
[26]
|
Y. F. Xu and O. P. Agrawal, "Numerical solutions and analysis of diffusion for new generalized fractional advection-diffusion equations, "Cent. Eur. J. Phys. , vol. 11, no. 10, pp. 1178-1193, Oct. 2013. https://www.researchgate.net/publication/257910110_Numerical_solutions_and_analysis_of_diffusion_for_new_generalized_fractional_Burgers_equation
|
[27]
|
S. Das and P. K. Gupta, "A mathematical model on fractional Lotka-Volterra equations, "J. Theor. Biol. , vol. 277, no. 1, pp. 1-6, May2011. http://www.sciencedirect.com/science/article/pii/S0022519311000609
|
[28]
|
I. Grigorenko and E. Grigorenko, "Chaotic dynamics of the fractional Lorenz system, "Phys. Rev. Lett. , vol. 91, no. 3, pp. 034101, Jul. 2003. doi: 10.1103/PhysRevLett.91.034101
|