2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垂直/短距起降飞机的轨迹跟踪控制器设计

朱斌 陈庆伟

朱斌, 陈庆伟. 垂直/短距起降飞机的轨迹跟踪控制器设计. 自动化学报, 2019, 45(6): 1166-1176. doi: 10.16383/j.aas.2017.c170467
引用本文: 朱斌, 陈庆伟. 垂直/短距起降飞机的轨迹跟踪控制器设计. 自动化学报, 2019, 45(6): 1166-1176. doi: 10.16383/j.aas.2017.c170467
ZHU Bin, CHEN Qing-Wei. Trajectory Tracking Controller Design of Vertical or Short Takeoff and Landing Aircraft. ACTA AUTOMATICA SINICA, 2019, 45(6): 1166-1176. doi: 10.16383/j.aas.2017.c170467
Citation: ZHU Bin, CHEN Qing-Wei. Trajectory Tracking Controller Design of Vertical or Short Takeoff and Landing Aircraft. ACTA AUTOMATICA SINICA, 2019, 45(6): 1166-1176. doi: 10.16383/j.aas.2017.c170467

垂直/短距起降飞机的轨迹跟踪控制器设计

doi: 10.16383/j.aas.2017.c170467
详细信息
    作者简介:

    朱斌  南京理工大学自动化学院博士研究生.主要研究方向为飞行控制技术与非最小相位控制.E-mail:carezyc@163.com

    通讯作者:

    陈庆伟  南京理工大学自动化学院教授.主要研究方向为智能控制与网络化控制系统, 运动体高精度跟踪控制系统.本文通信作者.E-mail:cqw1002@sina.com

Trajectory Tracking Controller Design of Vertical or Short Takeoff and Landing Aircraft

More Information
    Author Bio:

     Ph. D. candidate at the Institute of Automation, Nanjing University of Science and Technology. His research interest covers flight control and non-minimum phase system control

    Corresponding author: CHEN Qing-Wei  Professor at the Institute of Automation, Nanjing University of Science and Technology. His research interest covers intelligent control and networked control system, motion body high precision tracking control system. Corresponding author of this paper
  • 摘要: 针对垂直/短距起降飞行器在悬停状态下滚转力矩与横侧向推力存在强耦合、系统具有非最小相位特性的问题,本文设计了轨迹跟踪控制器.首先利用坐标变换和输入输出线性化将系统分解成最小相位子系统和非最小相位子系统.对非最小相位子系统,采用稳态系统中心的方法求解理想内部动态,并跟踪系统理想内模设计了LQR控制器,使得内部动态有界;对最小相位子系统设计了高增益控制器使得外部动态渐进稳定.仿真结果表明本文设计的控制器对给定轨迹和飞行器机动轨迹都有较好的跟踪效果,验证了控制器的有效性.
    1)  本文责任编委 倪茂林
  • 图  1  滚转状态下的V/STOL飞机模型

    Fig.  1  V/STOL aircraft model in rolling state

    图  2  引射喷口推力${F_1}$产生的力与力臂

    Fig.  2  Moment arm of jettube force ${F_1}$

    图  3  轨迹跟踪控制器结构框图

    Fig.  3  Trajectory tracking controller structure diagram

    图  4  理想内模${\eta _{1d}}$

    Fig.  4  Ideal internal dynamic ${\eta _{1d}}$

    图  5  理想内模${\eta _{2d}}$

    Fig.  5  Ideal internal dynamic ${\eta _{2d}}$

    图  6  ${\eta _d} = 0$的轨迹跟踪误差

    Fig.  6  Trajectory tracking error for ${\eta _d} = 0$

    图  7  ${\eta _d } = 0$时$Y$方向输出跟踪轨迹

    Fig.  7  $Y$ direction output tracking trajectory for ${\eta _d} = 0$

    图  8  ${\eta _d } = 0$时$Z$方向输出跟踪轨迹

    Fig.  8  $Z$ direction output tracking trajectory for ${\eta _d} = 0$

    图  9  ${\eta _d } = 0$时实际跟踪轨迹

    Fig.  9  Actual tracking trajectory for ${\eta _d} = 0$

    图  10  跟踪所求${\eta _d}$的轨迹跟踪误差

    Fig.  10  Tracking trajectory error for tracking required ${\eta _d}$

    图  11  跟踪所求${\eta _d}$的$Y$方向输出跟踪轨迹

    Fig.  11  $Y$ direction output trajectory for tracking required ${\eta _d}$

    图  12  跟踪所求${\eta _d}$的$Z$方向输出跟踪轨迹

    Fig.  12  $Z$ direction output trajectory for tracking required ${\eta _d}$

    图  13  跟踪所求${\eta _d }$时的实际跟踪轨迹

    Fig.  13  Actual trajectory for tracking required ${\eta _d}$

    图  14  $Y$方向轨迹跟踪误差

    Fig.  14  $Y$ direction trajectory tracking error

    图  15  $Z$方向轨迹跟踪误差

    Fig.  15  $Z$ direction trajectory tracking error

    图  16  $Y$方向两种情况跟踪曲线

    Fig.  16  $Y$ output tracking for two conditions

    图  17  两种情况下实际轨迹跟踪曲线

    Fig.  17  Actual trajectory tracking for two conditions

    图  18  仿真1中的$\phi$

    Fig.  18  $\phi $ in simulation 1

    图  19  仿真2中的$\phi $

    Fig.  19  $\phi $ in simulation 2

    图  20  $Y$方向误差镇定曲线

    Fig.  20  $Y$ direction error stabilization

    图  21  $Z$方向误差镇定曲线

    Fig.  21  $Z$ direction error stabilization

    图  22  $Y$方向轨迹跟踪曲线

    Fig.  22  $Y$ direction trajectory tracking

    图  23  实际轨迹跟踪曲线

    Fig.  23  Actual trajectory tracking

    图  24  $\varepsilon$不同取值下$Y$方向跟踪轨迹

    Fig.  24  $Y$ direction trajectory tracking under different $\varepsilon$

    图  25  $\varepsilon$不同取值下滚转角响应曲线

    Fig.  25  Roll response curve under different $\varepsilon$

  • [1] Nazrulla S, Khalil H K. Robust stabilization of non-minimum phase nonlinear systems using extended high-gain observers. IEEE Transactions on Automatic Control, 2011, 56(4):802-813 doi: 10.1109/TAC.2010.2069612
    [2] Boker A M M A, Khalil H K. Semi-global output feedback stabilization of a class of non-minimum phase nonlinear systems. In:Proceedings of the 2013 American Control Conference (ACC). Washington, DC, USA:IEEE, 2013. 5270-5275
    [3] Dačić D B, Nešić D, Kokotovic P V. Path-following for nonlinear systems with unstable zero dynamics. IEEE Transactions on Automatic Control, 2007, 52(3):481-487 doi: 10.1109/TAC.2006.890484
    [4] Dačić D B, Nešić D, Teel A R, Wang W. Path following for nonlinear systems with unstable zero dynamics:an averaging solution. IEEE Transactions on Automatic Control, 2011, 56(4):880-886 doi: 10.1109/TAC.2011.2105130
    [5] Gandolfo D, Rosales C, Patiño D, Scaglia G, Jordan M. Trajectory tracking control of a PVTOL aircraft based on linear algebra theory. Asian Journal of Control, 2014, 16(6):1849-1858 doi: 10.1002/asjc.v16.6
    [6] Huang C S, Yuan K. Output tracking of a non-linear non-minimum phase PVTOL aircraft based on non-linear state feedback control. International Journal of Control, 2002, 75(6):466-473 doi: 10.1080/00207170210121907
    [7] Gopalswamy S, Hedrick J K. Tracking nonlinear non-minimum phase systems using sliding control. International Journal of Control, 1993, 57(5):1141-1158 doi: 10.1080/00207179308934436
    [8] Al-Hiddabi S A, McClamroch N H. Tracking and maneuver regulation control for nonlinear nonminimum phase systems:application to flight control. IEEE Transactions on Control Systems Technology, 2002, 10(6):780-792 doi: 10.1109/TCST.2002.804120
    [9] Shkolnikov I A, Shtessel Y B. Tracking in a class of nonminimum-phase systems with nonlinear internal dynamics via sliding mode control using method of system center. Automatica, 2002, 38(5):837-842 doi: 10.1016/S0005-1098(01)00275-8
    [10] Su S W, Lin Y. Robust output tracking control of a class of non-minimum phase systems and application to VTOL aircraft. International Journal of Control, 2011, 84(11):1858-1872 doi: 10.1080/00207179.2011.627596
    [11] Su S W, Lin Y. Robust output tracking control for a velocity-sensorless vertical take-off and landing aircraft with input disturbances and unmatched uncertainties. International Journal of Robust and Nonlinear Control, 2013, 23(11):1198-1213 doi: 10.1002/rnc.v23.11
    [12] 苏善伟, 朱波, 向锦武, 林岩.非线性非最小相位系统的控制研究综述.自动化学报, 2015, 41(1):9-21 http://www.aas.net.cn/CN/abstract/abstract18579.shtml

    Su Shan-Wei, Zhu Bo, Xiang Jin-Wu, Lin Yan. A survey on the control of nonlinear non-minimum phase systems. Acta Automatica Sinica, 2015, 41(1):9-21 http://www.aas.net.cn/CN/abstract/abstract18579.shtml
    [13] 崔建伟, 李东海, 老大中.垂直起降飞行器悬停状态的自抗扰控制.见: 第三十二届中国控制会议论文集.西安, 中国: 中国自动化学会控制理论专业委员会, 2013. 5449-5454

    Cui Jian-Wei, Li Dong-Hai, Lao Da-Zhong. Active disturbance rejection control of a hovering PVTOL aircraft. In: Proceedings of the 32nd Chinese Control Conference. Xi'an, China: Technical Committee on Control Theory, Chinese Association of Automation, 2013. 5449-5454
  • 加载中
图(25)
计量
  • 文章访问数:  2424
  • HTML全文浏览量:  225
  • PDF下载量:  393
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-28
  • 录用日期:  2017-12-06
  • 刊出日期:  2019-06-20

目录

    /

    返回文章
    返回