2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于结构先验与协同优化的城市场景分段平面重建

王伟 任国恒 陈立勇 张效尉

王伟, 任国恒, 陈立勇, 张效尉. 基于结构先验与协同优化的城市场景分段平面重建. 自动化学报, 2019, 45(11): 2187-2198. doi: 10.16383/j.aas.2017.c170458
引用本文: 王伟, 任国恒, 陈立勇, 张效尉. 基于结构先验与协同优化的城市场景分段平面重建. 自动化学报, 2019, 45(11): 2187-2198. doi: 10.16383/j.aas.2017.c170458
WANG Wei, REN Guo-Heng, CHEN Li-Yong, ZHANG Xiao-Wei. Piecewise Planar Urban Scene Reconstruction Using Structure Priors and Cooperative Optimization. ACTA AUTOMATICA SINICA, 2019, 45(11): 2187-2198. doi: 10.16383/j.aas.2017.c170458
Citation: WANG Wei, REN Guo-Heng, CHEN Li-Yong, ZHANG Xiao-Wei. Piecewise Planar Urban Scene Reconstruction Using Structure Priors and Cooperative Optimization. ACTA AUTOMATICA SINICA, 2019, 45(11): 2187-2198. doi: 10.16383/j.aas.2017.c170458

基于结构先验与协同优化的城市场景分段平面重建

doi: 10.16383/j.aas.2017.c170458
基金项目: 

模式识别国家重点实验室开放课题基金 201700004

河南省高校重点科研项目 16A5201 05

河南省高校重点科研项目 17A520019

河南省自然科学基金 162300410347

河南省高校重点科研项目 17A520018

河南省科技攻关项目 172102310727

周口师范学院校本项目 zknuC2015103

周口师范学院校本项目 zknuB2201604

详细信息
    作者简介:

    任国恒   周口师范学院讲师.2011年获得西安工业大学硕士学位.主要研究方向为大数据分析.E-mail:rengguoheng@126.com

    陈立勇  周口师范学院讲师.2010年获辽宁科技大学硕士学位.主要研究方向为大数据分析.E-mail:chenliyongup@163.com

    张效尉  周口师范学院讲师.2009年获得郑州轻工业学院硕士学位.主要研究方向为大数据分析.E-mail:xwzhang286@163.com

    通讯作者:

    王伟  周口师范学院副教授.2015年获得中国科学院自动化研究所博士学位.主要研究方向为计算机视觉与模式识别.本文通信作者.E-mail:wangwei@zknu.cn

Piecewise Planar Urban Scene Reconstruction Using Structure Priors and Cooperative Optimization

Funds: 

Open Projects Program of National Laboratory of Pattern Recognition 201700004

College Key Research Project of Henan Province 16A5201 05

College Key Research Project of Henan Province 17A520019

Natural Science Foundation of Henan Province 162300410347

College Key Research Project of Henan Province 17A520018

Key Technology Research and Development Project of Henan Province 172102310727

School-based Project of Zhoukou Normal University zknuC2015103

School-based Project of Zhoukou Normal University zknuB2201604

More Information
    Author Bio:

      Lecturer at Zhou- kou Normal University. He received his master degree from Xi'an Technological University in 2011. His main research interest is big data analysis

      Lecturer at Zhou- kou Normal University. He received his master degree from University of Science and Technology Liaoning. His main research interest is big data analysis

      Lecturer at Zhoukou Normal University. He received his master degree from Zhengzhou University of Light Industry in 2009. His main research interest is big data analysis

    Corresponding author: WANG Wei   Associate professor at Zhoukou Normal University. He received his Ph. D. degree from the Institute of Automation, Chinese Academy of Sciences in 2015. His research interest covers computer vision and pattern recognition. Corresponding author of this paper
  • 摘要: 在基于图像的城市场景三维重建中,场景分段平面重建算法可以克服场景中的弱纹理、光照变化等因素的影响而快速恢复场景完整的近似结构.然而,在初始空间点较为稀疏、候选平面集不完备、图像过分割质量较低等问题存在时,可靠性往往较低.为了解决此问题,本文根据城市场景的结构特征构造了一种新颖的融合场景结构先验、空间点可见性与颜色相似性的平面可靠性度量,然后采用图像区域与相应平面协同优化的方式对场景结构进行了推断.实验结果表明,本文算法利用稀疏空间点即可有效重建出完整的场景结构,整体上具有较高的精度与效率.
    Recommended by Associate Editor WANG Liang
    1)  本文责任编委 王亮
  • 图  1  本文算法流程图

    Fig.  1  Flowchart of our proposed method

    图  2  超像素优化

    Fig.  2  Superpixel optimization

    图  3  初始可靠平面与候选平面

    Fig.  3  Initial reliable planes and candidate planes

    图  4  融合平面夹角先验的平面推断

    Fig.  4  Plane inference based on angle priors

    图  5  图像区域与相应平面的协同优化(不同颜色表示不同的可靠平面)

    Fig.  5  Cooperative optimization of image regions and their related planes (different colors denote different reliable planes)

    图  6  示例图像及初始空间点的投影

    Fig.  6  Sample images and initial 3D points

    图  7  标准数据集重建结果

    Fig.  7  Results on standard data sets

    图  8  标准数据集算法对比(不同等级灰度标记的区域表示不同平面)

    Fig.  8  Results produced by different methods (different regions labeled with different gray levels denote different planes)

    图  9  实拍数据集重建结果

    Fig.  9  Results on real-world datasets

    图  10  实拍数据集算法对比(不同颜色表示不同平面)

    Fig.  10  Results produced by different methods (different colors denote different planes)

    图  11  图 10 (b)~10 (d)中矩形区域内平面结构的放大显示

    Fig.  11  Close-ups of the plane structures in the rectangles in Fig. 10 (b)~10 (d)

    表  1  参数设置

    Table  1  Parameters setting

    参数 默认值 功能描述
    $\gamma$ 0.6 相关性度量
    ${\lambda_{\rm occ}}$ 2 遮挡惩罚量
    ${\lambda_{\rm err}}$ 4 空间可见性冲突惩罚量
    ${\lambda_{\rm dis}}$ 4 空间平面间断惩罚量
    $\mu$ 0.6 场景结构先验松驰量
    $\delta$ 0.5 颜色特征差异截断阈值
    $\vartheta$ 0.9 天空区域语义阈值
    下载: 导出CSV

    表  2  初始化

    Table  2  Initialization

    数据集 空间点 超像素 线段 平面
    Valbonne 561 360 362 17
    Wadham 2 120 1 243 838 38
    City#1 2 234 2 793 1 588 11
    City#2 1 503 2 643 1 297 7
    下载: 导出CSV

    表  3  不同算法获取的结果

    Table  3  Results produced by different methods

    数据集 PSP SP CP 本文算法 文献[8]算法 文献[9]算法
    $M_{\rm 1(Fir)}$ $M_{\rm 1(Fin)}$ $M_2$ $M_1$ $M_2$ $M_1$ $M_2$
    Valbonne 21 1 478 147 0.5259 0.7748 9 0.5145 7 0.6631 7
    Wadham 53 5 889 421 0.6643 0.8046 11 0.3879 7 0.6492 11
    City#1 23 7 110 3 109 0.4608 0.6927 7 0.3390 7 0.4465 6
    City#2 28 6 831 2 612 0.5355 0.7081 6 0.3217 5 0.5977 6
    注: PSP表示已分配初始可靠平面超像素数量, SP与CP分别表示协同优化后超像素与相应平面数量
    下载: 导出CSV

    表  4  不同算法的计算时间(s)

    Table  4  Computation time of different methods (s)

    数据集 本文算法 文献[8]算法 文献[9]算法
    超像素 初始平面 线段检测 结构推断 合计
    Valbonne 1.1 4.9 2.5 21.0 29.5 38.1 221.9
    Wadham 2.4 7.6 4.1 34.8 48.9 73.7 360.3
    City#1 3.7 8.7 10.7 58.5 81.6 92.5 554.9
    City#2 4.2 5.5 9.7 66.4 85.8 97.8 469.4
    下载: 导出CSV
  • [1] Çiğla C, Alatan A A. Region-based dense depth extraction from multi-view video. In: Proceedings of IEEE 15th Signal Processing and Communications Applications. Eskisehir, Turkey: IEEE, 2007. 213-216 http://www.researchgate.net/publication/4289275_Region-Based_Dense_Depth_Extraction_from_Multi-View_Video
    [2] Furukawa Y, Curless B, Seitz S M, Szeliski R. Manhattan-world stereo. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 1422-1429
    [3] Furukawa Y, Ponce J. Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8):1362-1376 doi: 10.1109/TPAMI.2009.161
    [4] Gallup D, Frahm J M, Mordohai P, Yang Q X, Pollefeys M. Real-time plane-sweeping stereo with multiple sweeping directions. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-8
    [5] Mičučík B, Košecká J. Multi-view superpixel stereo in urban environments. International Journal of Computer Vision, 2010, 89(1):106-119 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fe96239fdb830da6de10f12dc00568f9
    [6] Sinha S N, Steedly D, Szeliski R. Piecewise planar stereo for image-based rendering. In: Proceedings of 2009 IEEE 12th International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 1881-1888
    [7] Chauve A L, Labatut P, Pons J P. Robust piecewise-planar 3D reconstruction and completion from large-scale unstructured point data. In: Proceedings of 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA, USA: IEEE, 2010. 1261-1268 http://www.researchgate.net/publication/221364112_Robust_piecewise-planar_3D_reconstruction_and_completion_from_large-scale_unstructured_point_data
    [8] Bódis-Szomorú A, Riemenschneider H, Van Gool L. Fast, approximate piecewise-planar modeling based on sparse structure-from-motion and superpixels. In: Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH, USA: IEEE, 2014. http://www.researchgate.net/publication/286683959_Fast_Approximate_Piecewise-Planar_Modeling_Based_on_Sparse_Structure-from-Motion_and_Superpixels
    [9] Verleysen C, De Vleeschouwer C. Piecewise-planar 3D approximation from wide-baseline stereo. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 3327-3336 http://www.researchgate.net/publication/311610322_Piecewise-Planar_3D_Approximation_from_Wide-Baseline_Stereo
    [10] Tola E, Strecha C, Fua P. Efficient large-scale multi-view stereo for ultra high-resolution image sets. Machine Vision and Applications, 2012, 23(5):903-920 doi: 10.1007/s00138-011-0346-8
    [11] Antunes M, Barreto J P, Nunes U. Piecewise-planar reconstruction using two views. Image and Vision Computing, 2016, 46:47-63 doi: 10.1016/j.imavis.2015.11.008
    [12] Raposo C, Antunes M, Barreto J P. Piecewise-planar StereoScan:sequential structure and motion using plane primitives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(8):1918-1931 doi: 10.1109/TPAMI.2017.2737425
    [13] Comaniciu D, Meer P. Mean shift:a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5):603-619 doi: 10.1109/34.1000236
    [14] Pham T T, Chin T J, Yu J, Suter D. The random cluster model for robust geometric fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8):1658-1671 doi: 10.1109/TPAMI.2013.2296310
    [15] Hartley R, Zisserman A. Multiple View Geometry in Computer Vision (Second Edition). Cambridge:Cambridge University Press, 2004. 1-672
    [16] Wang Z F, Zheng Z G. A region based stereo matching algorithm using cooperative optimization. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8 http://en.cnki.com.cn/Article_en/CJFDTotal-MOTO200905003.htm
    [17] Huang X F. Cooperative optimization for energy minimization: a case study of stereo matching[Online], available: http://arxiv.org/pdf/cs.CV/0701057, January 9, 2007.
    [18] Zhao H S, Shi J P, Qi X J, Wang X G, Jia J Y. Pyramid scene parsing network. In: Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii, USA: IEEE, 2017. 6230-6239
    [19] Zisserman A, Vedaldi A. VGG Multi-view Data[Online], available: http://www.robots.ox.ac.uk/~vgg/data/mview/, November 7, 2019
    [20] Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2):91-110 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025429678/
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  1913
  • HTML全文浏览量:  345
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-17
  • 录用日期:  2017-12-23
  • 刊出日期:  2019-11-20

目录

    /

    返回文章
    返回