2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于推广流形学习的高分辨遥感影像目标分类

郭亚宁 林伟 潘泉 赵春晖 胡劲文 马娟娟

郭亚宁, 林伟, 潘泉, 赵春晖, 胡劲文, 马娟娟. 基于推广流形学习的高分辨遥感影像目标分类. 自动化学报, 2019, 45(4): 720-729. doi: 10.16383/j.aas.2017.c170318
引用本文: 郭亚宁, 林伟, 潘泉, 赵春晖, 胡劲文, 马娟娟. 基于推广流形学习的高分辨遥感影像目标分类. 自动化学报, 2019, 45(4): 720-729. doi: 10.16383/j.aas.2017.c170318
GUO Ya-Ning, LIN Wei, PAN Quan, ZHAO Chun-Hui, HU Jin-Wen, MA Juan-Juan. Generalized Manifold Learning for High Resolution Remote Sensing Image Object Classification. ACTA AUTOMATICA SINICA, 2019, 45(4): 720-729. doi: 10.16383/j.aas.2017.c170318
Citation: GUO Ya-Ning, LIN Wei, PAN Quan, ZHAO Chun-Hui, HU Jin-Wen, MA Juan-Juan. Generalized Manifold Learning for High Resolution Remote Sensing Image Object Classification. ACTA AUTOMATICA SINICA, 2019, 45(4): 720-729. doi: 10.16383/j.aas.2017.c170318

基于推广流形学习的高分辨遥感影像目标分类

doi: 10.16383/j.aas.2017.c170318
基金项目: 

陕西省自然科学基金 2017JQ6005

航空科学基金 2014ZC53030

中央大学基础研究基金 3102017jg02011

中国博士后科学基金 2017M610650

陕西省自然科学基金 2017JM6027

国家自然科学基金 61603303

国家自然科学基金 61473230

详细信息
    作者简介:

    郭亚宁  西北工业大学自动化学院博士研究生.主要研究方向为遥感图像处理, 无人机自主防撞感知规避.E-mail:yaningg0924@mail.nwpu.edu.cn

    潘泉  西北工业大自动化学院教授.1997年获得西北工业大学博士学位.主要研究方向为信息融合理论及应用, 目标跟踪与识别技术, 光谱成像及图像处理.E-mail:quanpan@nwpu.edu.cn

    赵春晖  西北工业大自动化学院副教授.2008年获得西北工业大学博士学位.主要研究方向为视频图像处理, 目标跟踪识别, 无人机视觉导航.E-mail:zhaochunhui@nwpu.edu.cn

    胡劲文  西北工业大自动化学院副教授.2013年获得新加坡南洋理工大学博士学位.主要研究方向为网络控制与滤波.E-mail:hujinwen@nwpu.edu.cn

    马娟娟  西北工业大学自动化学院博士研究生.主要研究方向为目标跟踪与识别技术.E-mail:majuanjuan903@163.com

    通讯作者:

    林伟  西北工业大学理学院副教授.2007年获得西北工业大学博士学位.主要研究方向为统计建模与遥感图像处理.本文通信作者.E-mail:linwei@nwpu.edu.cn

Generalized Manifold Learning for High Resolution Remote Sensing Image Object Classification

Funds: 

Natural Science Foundation of Shaanxi Province 2017JQ6005

Aviation Science Foundation 2014ZC53030

Fundamental Research Funds for the Central Universities 3102017jg02011

China Postdoctoral Science Foundation 2017M610650

Natural Science Foundation of Shaanxi Province 2017JM6027

National Natural Science Foundation of China 61603303

National Natural Science Foundation of China 61473230

More Information
    Author Bio:

     Ph. D. candidate at the School of Automation, Northwestern Polytechnical University. Her research interest covers remote sensing image processing and autonomous collision avoidance, sense and avoid technologies for unmanned aerial vehicles (UAVs)

     Professor at the School of Automation, Northwestern Polytechnical University. He received his Ph. D. degree from Northwestern Polytechnical University in 1997. His research interest covers information fusion theory and application, target tracking and recognition technology, and spectral imaging and image processing

     Associate professor at the School of Automation, Northwestern Polytechnical University. He received his Ph. D. degree from Northwestern Polytechnical University in 2008. His research interest covers video image processing, target tracking recognition, and unmanned aerial vehicle visual navigation

     Associate professor at the School of Automation, Northwestern Polytechnical University. He received his Ph. D. degree from Singapore Nanyang Technological University (NTU) in 2013. His research interest covers network control and flltering

     Ph. D. candidate at the School of Automation, Northwestern Polytechnical University. Her research interest covers target tracking and recognition technology

    Corresponding author: LIN Wei  Associate professor at the School of Natural and Applied Sciences, Northwestern Polytechnical University. She received her Ph. D. degree from Northwestern Polytechnical University in 2007. Her research interest covers statistical modeling and remote sensing image processing. Corresponding author of this paper
  • 摘要: 针对传统的流形学习算法不能对位于黎曼流形上的协方差描述子进行有效降维这一问题,本文提出一种推广的流形学习算法,即基于Log-Euclidean黎曼核的自适应半监督正交局部保持投影(Log-Euclidean Riemannian kernel-based adaptive semi-supervised orthogonal locality preserving projection,LRK-ASOLPP),并将其成功用于高分辨率遥感影像目标分类问题.首先,提取图像每个像素点处的几何结构特征,计算图像特征的协方差描述子;其次,通过采用Log-Euclidean黎曼核将协方差描述子投影到再生核Hilbert空间;然后,基于流形学习理论,建立黎曼流形上半监督正交局部保持投影算法模型,利用交替迭代更新算法对目标函数进行优化求解,同时获得相似性权矩阵和低维投影矩阵;最后,利用求得的低维投影矩阵计算测试样本的低维投影,并用K—近邻、支持向量机(Support victor machine,SVM)等分类器对其进行分类.三个高分辨率遥感影像数据集上的实验结果说明了该算法的有效性与可行性.
    1)  本文责任编委 胡清华
  • 图  1  不同近邻数k对应的分类精度

    Fig.  1  Classiflcation accuracy for difierent values of k

    图  2  三维特征可视化图

    Fig.  2  3D feature visualization

    图  3  最佳分类精度随特征维数变化曲线图

    Fig.  3  The varying curves of the optimal classiflcation accuracy with feature dimension

    图  4  三个数据集上不同训练样本数算法最佳平均分类精度

    Fig.  4  The average classification accuracy of different training sample number on three datasets

    表  1  最佳分类精度(Ac)及对应特征维数($r$)

    Table  1  The classification accuracy (Ac) and the corresponding feature dimension ($r$)

    数据集UCMercedWHU-RSQuick bird
    算法Ac (%) $r$Ac (%) $r$Ac (%) $r$
    LRK-SOLPP92.324592.682591.8745
    KLPP93.152093.645092.8425
    LRK-ASOLPP 94.89 35 96.43 25 95.6920
    下载: 导出CSV

    表  2  UCMerced LandUse dataset上的最佳分类精度(Ac)及对应特征维数(r)

    Table  2  The classiflcation accuracy (Ac) and the feature dimension (r) on UCMerced LandUse dataset

    算法LRK-SOLPPKLPPLRK-ASOLPP
    分类器Ac(%) $r$Ac(%) $r$Ac(%) $r$
    K-NN84.452084.382090.1835
    K-means85.652089.062591.1625
    SVM87.251590.761594.2720
    BP-ANN 89.82 20 91.64 20 95.3425
    下载: 导出CSV

    表  3  WHU-RS dataset上的最佳分类精度(Ac)及对应特征维数(r)

    Table  3  The classiflcation accuracy (Ac) and the feature dimension (r) on WHU-RS dataset

    算法LRK-SOLPPKLPPLRK-ASOLPP
    分类器Ac(%) $r$Ac(%) $r$Ac(%) $r$
    K-NN85.323088.042090.2520
    K-means88.582089.645090.8725
    SVM87.6835 91.76 1595.7920
    BP-ANN 90.47 2090.4320 96.1825
    下载: 导出CSV

    表  4  Quick bird dataset上的最佳分类精度(Ac)及对应特征维数(r)

    Table  4  The classiflcation accuracy (Ac) and the feature dimension (r) on Quick bird dataset

    算法LRK-SOLPPKLPPLRK-ASOLPP
    分类器Ac(%) $r$Ac(%) $r$Ac(%) $r$
    K-NN84.982593.652094.1835
    K-means86.622092.065096.2825
    SVM88.762590.3825 93.6920
    BP-ANN 89.45 20 92.56 3095.8925
    下载: 导出CSV
  • [1] 明冬萍, 骆剑承, 沈占锋, 汪闽, 盛昊.高分辨率遥感影像信息提取与目标识别技术研究.测绘科学, 2005, 30(3):18-20 doi: 10.3771/j.issn.1009-2307.2005.03.004

    Ming Dong-Ping, Luo Jian-Cheng, Shen Zhan-Feng, Wang Min, Sheng Hao. Research on information extraction and target recognition from high resolution remote sensing image. Science of Surveying and Mapping, 2005, 30(3):18-20 doi: 10.3771/j.issn.1009-2307.2005.03.004
    [2] 刘扬, 付征叶, 郑逢斌.高分辨率遥感影像目标分类与识别研究进展.地球信息科学学报, 2015, 17(9):1080-1091 http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201509010

    Liu Yang, Fu Zheng-Ye, Zheng Feng-Bin. Review on high resolution remote sensing image classification and recognition. Journal of Geo-Information Science, 2015, 17(9):1080-1091 http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201509010
    [3] 汤玉奇. 面向对象的高分辨率影像城市多特征变化检测研究[博士学位论文], 武汉大学, 中国, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10486-1013209584.htm

    Tang Yu-Qi. Object-Oriented Change Detection with Multi-Feature in Urban High-Resolution Remote Sensing Imagery[Ph. D. dissertation], Wuhan University, China, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10486-1013209584.htm
    [4] Dai D X, Yang W. Satellite image classification via two-layer sparse coding with biased image representation. IEEE Geoscience and Remote Sensing Letters, 2011, 8(1):173-176 doi: 10.1109/LGRS.2010.2055033
    [5] 郭迎春, 袁浩杰, 吴鹏.基于Local特征和Regional特征的图像显著性检测.自动化学报, 2013, 39(8):1214-1224 http://www.aas.net.cn/CN/abstract/abstract18152.shtml

    Guo Ying-Chun, Yuan Hao-Jie, Wu Peng. Image saliency detection based on local and regional features. Acta Automatica Sinica, 2013, 39(8):1214-1224 http://www.aas.net.cn/CN/abstract/abstract18152.shtml
    [6] 李擎, 唐欢, 迟健男, 邢永跃, 李华通.基于改进最大类间方差法的手势分割方法研究.自动化学报, 2017, 43(4):528-537 http://www.aas.net.cn/CN/abstract/abstract19031.shtml

    Li Qing, Tang Huan, Chi Jian-Nan, Xing Yong-Yue, Li Hua-Tong. Gesture segmentation with improved maximum between-cluster variance algorithm. Acta Automatica Sinica, 2017, 43(4):528-537 http://www.aas.net.cn/CN/abstract/abstract19031.shtml
    [7] Tuzel O, Porikl F, Meer P. Human detection via classification on Riemannian manifolds. In:Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN, USA:IEEE, 2007.
    [8] Jayasumana S, Hartley R, Salzmann M. Kernels on Riemannian manifolds. Turaga P, Srivastava A (eds). Riemannian Computing in Computer Vision. Cham:Springer, 2016. 45-67
    [9] Lunga D, Prasad S, Crawfrd M M, Ersoy O. Manifold-learning-based feature extraction for classification of hyperspectral data:a review of advances in manifold learning. IEEE Signal Processing Magazine, 2014, 31(1):55-66 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6678226
    [10] Zhou Y J, Bao L, Lin Y Q. Fast second-order orthogonal tensor subspace analysis for face recognition. Journal of Applied Mathematics, 2014, 2014:Article No. 871565 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000002867627
    [11] Huang H B, Huo H, Fang T. Hierarchical manifold learning with applications to supervised classification for high-resolution remotely sensed images. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3):1677-1692 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3b9bc444d224062d81838c870471f256
    [12] 宗薇.一种新的视频流动态目标跟踪算法.计算机应用研究, 2015, 32(3):954-956 doi: 10.3969/j.issn.1001-3695.2015.03.073

    Zong Wei. New video stream dynamic target tracking algorithm. Application Research of Computers, 2015, 32(3):954-956 doi: 10.3969/j.issn.1001-3695.2015.03.073
    [13] Ertan C H, Wright M J, Thompson P M, Vidal R. Segmentation of high angular resolution diffusion MRI using sparse Riemannian manifold clustering. IEEE Transactions on Medical Imaging, 2014, 33(2):301-317 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=91770beb1865261b51d252a5d2c423d4
    [14] Zhang Y Y, Wang Z P, Lv X D. Saliency detection via sparse reconstruction errors of covariance descriptors on Riemannian manifolds. Circuits, Systems, and Signal Processing, 2016, 35(12):4372-4389 doi: 10.1007/s00034-016-0267-x
    [15] Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science, 2002, 290(5500):2319-2323 doi: 10.1126-science.290.5500.2319/
    [16] Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500):2323-2326 doi: 10.1126/science.290.5500.2323
    [17] Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, 15(6):1373-1396 doi: 10.1162/089976603321780317
    [18] Zhang Z Y, Zha H Y. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM Journal on Scientific Computing, 2005, 26(1):313-338 http://d.old.wanfangdata.com.cn/Periodical/shdxxb-e200404005
    [19] Weiberger K Q, Sha F, Saul K L. Learning a kernel matrix for nonlinear dimensionality reduction. In:Proceedings of the 21st International Conference on Machine Learning. Banff, Alberta, Canada:ACM, 2004.
    [20] Donoho D L, Grimes C E. Hessian eigenmaps:locally linear embedding techniques for high-dimensional data. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10):5591-5596 doi: 10.1073/pnas.1031596100
    [21] Zhang T H, Li X L, Tao D C, Yang J. Local coordinates alignment and its linearization. Neural Information Processing. Berlin, Heidelberg:Springer-Verlag, 2008. 643-652
    [22] He X F, Niyogi P. Locality preserving projections. In:Proceedings of the 2003 Conference on Advances in Neural Information Processing Systems. Chicago, IL, USA:MIT Press, 2003. 186-197
    [23] Kokiopoulou E, Saad Y. Orthogonal neighborhood preserving projections:a projection-based dimensionality reduction technique. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(12):2143-2156 doi: 10.1109/TPAMI.2007.1131
    [24] He X F, Cai D, Yan S C, Zhan H J. Neighborhood preserving embedding. In:Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China:IEEE, 2005. 1208-1213
    [25] Lu G, Zuo J. Two-dimensional neighborhood preserving discriminant analysis for face recognition. Pattern Recognition Letters, 2010, 30(10):902-907
    [26] Shen J F, Zuo X, Liu H, Wang H R, Yang W K, Qian C S. Supervised local high-order differential channel feature learning for pedestrian detection. Neural Processing Letters, 2017, 45(3):1025-1037 doi: 10.1007/s11063-016-9561-7
    [27] Tuzel O, Porikli F, Meer P. Region covariance:a fast descriptor for detection and classification. In:Proceedings of the 2006 European Conference on Computer Vision. Berlin, Heidelberg, Germany:Springer, 2006. 589-600
    [28] 王瑞霞, 彭国华.基于黎曼流形稀疏编码的图像检索算法.自动化学报, 2017, 43(5):778-788 http://www.aas.net.cn/CN/abstract/abstract19055.shtml

    Wang Rui-Xia, Peng Guo-Hua. An image retrieval method with sparse coding based on Riemannian manifold. Acta Automatica Sinica, 2017, 43(5):778-788 http://www.aas.net.cn/CN/abstract/abstract19055.shtml
    [29] Yang Y, Newsam S. Bag-of-visual-words and spatial extensions for land-use classification. In:Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. San Jose, California, USA:ACM, 2010. 270-279
    [30] Xia G S, Yang W, Delon J, Gousseau Y, Sun H, Maître H. Structural high-resolution satellite image indexing. In:Proceedings of the 2010 Symposium:100 Years-International Society for Photogrammetry and Remote Sensing-Advancing Remote Sensing Science. Vienna, Austria:ISPRS, 2010. 298-303
    [31] Li P H, Wang Q L, Zuo W M, Zhang L. Log-Euclidean kernels for sparse representation and dictionary learning. In:Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV). Sydney, NSW, Australia:IEEE, 2013. 1601-1608
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  2129
  • HTML全文浏览量:  299
  • PDF下载量:  514
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-14
  • 录用日期:  2017-11-24
  • 刊出日期:  2019-04-20

目录

    /

    返回文章
    返回