-
摘要: 概念漂移探测是数据流挖掘具有挑战意义的研究难点,属性约简是粗糙集理论的研究核心.从概念漂移的角度研究了粗糙集理论的属性约简,从粗糙集属性约简的角度研究了概念漂移,将概念漂移和属性约简进行分析比较,指出了它们之间的区别和联系.提出了基于属性依赖度和条件熵的概念漂移探测准则,并将两种常用的概念漂移探测准则与属性依赖度、条件熵探测准则进行了比较.属性依赖度和条件熵兼具分类准确率的可实验检验和联合概率分布可进行理论分析的优点,还可以进行属性约简(或特征选择).实验结果显示,属性依赖度、条件熵和分类准确率都能有效地探测概念漂移,但是,与分类准确率相比,属性依赖度和条件熵在探测概念漂移时可以增加可重用性,减少工作量.属性约简和概念漂移之间关系的研究为属性约简、概念漂移的研究提供了新方法,为粗糙集、粒计算进一步融入大数据时代潮流提供了新思路.Abstract: Concept drift detection is a challenge to data stream mining, and attribute reduction is a focus of rough set theory. In this paper the phenomenon of concept drift is analyzed from the viewpoint of attribute reduction, and on the other hand, attribute reduction is analyzed deeply from the viewpoint of concept drift. The difference and the relation between concept drift and attribute reduction are investigated. Two criteria of concept drift detection, which rely on dependence of conditional attributes and conditional entropy, are presented. Analysis and comparison are conducted between two classical criteria of concept drift detection and two criteria of attribute reduction. Dependence of conditional attributes and conditional entropy possess the advantages of both testability of classification accuracy and theoretic analyzability of joint probability. Experimental results show that classification accuracy, dependence of conditional attributes and conditional entropy are valid and efficient for detecting concept drift. Moreover, compared with classification accuracy, the results can be reused and the workload can be reduced when dependence of conditional attributes and conditional entropy are employed to detect concept drift. The study on the relation between concept drift and attribute reduction provides a new method for attribute reduction and concept drift detection, as well as a new idea for rough set theory and granular computing to blend in the era of big data.
-
Key words:
- F-rough sets /
- data streams /
- concept drift /
- attribute reduction /
- conditional information entropy
-
子空间辨识算法由于能对多输入多输出系统采用统一框架建立状态空间模型,在系统辨识和控制工程领域受到广泛关注 [1]. 有一些子空间算法被提出用于开环辨识工业过程,得到一致估计结果 [2]. 但是,由于过程操作安全性和稳定性的需要,许多工业过程限制在闭环条件下进行辨识实验,由于反馈控制作用的影响,使得过程噪声和输入存在相关性,使得传统开环子空间方法产生辨识偏差 [3]. 闭环系统辨识因此在近年来受到很多关注和探讨 [4],一些闭环子空间辨识算法被相继提出 [5]. 这些算法可被归纳为三类,第一类方法 [6-7]采用辅助变量策略消除噪声影响,保证估计结果的一致性;第二类方法 [8]采用最小二乘法对高阶VARX模型(Vector autoregressive with exogenous inputs model)进行计算得到马尔科夫估计参数,由于VARX模型只包括当前时刻的不可测噪声,该噪声和VARX模型的过去时刻输入无关,从而可保证所得参数的一致性;第三类算法 [9]用噪声预估值代替真实值进行计算保证得到一致估计结果.
基于奇偶空间的闭环子空间辨识算法SIMPCAwc [6]采用过去时刻输入输出数据作为辅助变量来消除噪声,以得到无噪声的输入输出数据,然后从无噪声影响的输入输出数据奇偶空间中提取得到扩展可观测矩阵和下三角形Toeplitz矩阵,从而求得系统矩阵,该方法取得较好辨识精度.然而,文献[7]指出当闭环系统设定点输入激励为不相关白噪声序列时,虽然引入辅助变量与噪声不相关,可以有效地消除噪声,但由于该辅助变量和系统设定点输入激励也不相关,导致从无噪声输入输出数据奇偶空间中提取参数可能同时含有过程模型参数信息和控制器参数信息,因而无法对它们进行区分,从而致使过程模型估计出现偏差.针对SIMPCAwc [6]辨识方法存在的问题,本文通过将输入输出数据正交投影到新息数据的正交补空间来消除噪声,以得到新的无噪声数据矩阵,进而从其对应的奇偶空间中提取得到扩展可观测矩阵和下三角形Toeplitz矩阵. 由于新息数据的正交补空间数据和噪声无关,且同时与系统设定输入激励相关,确保本文方法从新的无噪声奇偶空间中提取的参数只包含过程模型参数,有效地保证估计结果的一致无偏性.由于新息数据为不可测量数据,本文通过模型推导,得到和待辨识状态空间模型等价的VARX模型. 在此基础上,采用最小二乘法对VARX模型进行计算以得到新息的一致估计值. 采用新息一致估计值代替真实值,以完成模型参数估计.为了论证说明本文方法的有效性,严格分析和给出了本文算法保证一致估计的条件.
1. 问题描述
本文研究如下线性离散状态空间过程模型:
$S:\left\{ \begin{align} & x(t+1)=Ax(t)+Bu(t)+w(t) \\ & y(t)=Cx(t)+Du(t)+v(t) \\ \end{align} \right.$
(1) 其中,$x(t)\in {{R}^{{{n}_{x}}}}$,$u(t)\in {{R}^{{{n}_{u}}}}$,$y(t)\in {{R}^{{{n}_{y}}}}$分别为系统状态和过程输入和输出. $v(t)\in {{R}^{{{n}_{y}}}}$和$w(t)\in {{R}^{{{n}_{x}}}}$分别为过程测量噪声. A,B,C,D 分别为相应维数的系统矩阵.本文研究系统在闭环工作条件下,利用系统输入和输出观测数据,辨识对象状态空间(亦称子空间)模型.
由于闭环反馈控制作用的影响,使得过程测量噪声和输入存在相关性,若直接通过模型(1)来辨识系统矩阵,很难消除噪声对辨识结果的不利影响.因此,采用卡尔曼滤波原理 [10],将系统模型(1)等价表示为新息形式
${{S}_{I}}:\left\{ \begin{array}{*{35}{l}} \begin{align} & x(t+1)=Ax(t)+Bu(t)+Ke(t) \\ & y(t)=Cx(t)+Du(t)+e(t) \\ \end{align} \\ \end{array} \right.$
(2) 其中,K为卡尔曼滤波增益,新息$e(t)$为零均值白噪声,当$i<j$时,新息$e(j)$和输入输出$\{u(i),y(i)\}$不相关.
进一步定义$\bar{A}=A-KC$和$\bar{B}=B-KD$,模型(2)可被等价描述为如下预测形式:
${{S}_{P}}:\left\{ \begin{array}{*{35}{l}} \begin{align} & x(t+1)=\bar{A}x(t)+\bar{B}u(t)+Ky(t) \\ & y(t)=Cx(t)+Du(t)+e(t) \\ \end{align} \\ \end{array} \right.$
(3) 其中,假设$\bar{A}$的特征值严格位于单位圆内.
定义过去和将来水平数分别为p和f,过去和将来输入向量分别为$u_p(t)=[u(t-p)^{\textrm T}$ $\cdots$ $u(t-2)^{\textrm T}$ $u(t-1)^{\textrm T}]^{\textrm T}$和$u_f(t)=[u(t)^{\textrm T}$ $\cdots$ $u(t+f-2)^{\textrm T}$ $u(t+f-1)^{\textrm T}]^{\textrm T}$,定义过去和将来输入Hankel 矩阵Up $=$ $[u_p(t)^{\textrm T}$ $\cdots$ $u_p(N)^{\textrm T}]^{\textrm T}$和$U_f=[u_f(t)^{\textrm T}$ $\cdots$ $u_f(N)^{\textrm T}]^{\textrm T}$,输出和新息数据做类似定义.
对式(3)进行迭代可得:
$x(t)={{\bar{A}}^{p}}x(t-p)+{{\bar{L}}_{1}}{{u}_{p}}(t)+{{\bar{L}}_{2}}{{y}_{p}}(t)$
(4) 其中,扩展可观性矩阵分别表示为 $\bar{L}_1=[\bar{A}^{p-1}\bar{B}$ $\cdots$ $\bar{A}\bar{B}$ $\bar{B}]$,$\bar{L}_2=[\bar{A}^{p-1}K$ $\cdots$ $\bar{A}K$ $K]$.初始状态为$x(t$ $-$ $p)$.当p充分大时,$x(t-p)$可被忽略,将式(4)带入式(3})得到等价VARX模型
${{S}_{V}}:y(t)=C{{\bar{L}}_{1}}{{u}_{p}}(t)+C{{\bar{L}}_{2}}{{y}_{p}}(t)+e(t)$
(5) 本文将采用模型(2)和(5)对系统矩阵进行辨识.定义$X_p=[x(t-p)$ $\cdots$ $x(t-p+N-1)]$ 和Xf $=$ $[x(t)$ $\cdots$ $x(t+N-1)]$.通过对式(2)进行迭代可得:
$Y(t)={{\Gamma }_{f}}{{X}_{f}}+{{H}_{f}}{{U}_{f}}+{{G}_{f}}{{E}_{f}}$
(6) 其中,扩展可观测矩阵为$\Gamma_f=[C^{\textrm T}$ $\cdots$ $(CA^{f-1})^{\textrm T}]^{\textrm T}$.下三角形Toeplitz矩阵分别为
$\begin{align} & {{H}_{f}}=\left[ \begin{matrix} D & \cdots & \cdots & 0 \\ CB & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ C{{A}^{f-2}} & \cdots & CB & D \\ \end{matrix} \right] \\ & {{G}_{f}}=\left[ \begin{matrix} 0 & \cdots & \cdots & 0 \\ C & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ C{{A}^{f-2}} & \cdots & C & 0 \\ \end{matrix} \right] \\ \end{align}$
2. 闭环子空间辨识算法和一致性分析
2.1 闭环子空间辨识算法
在式(6)的基础上,通过同时计算扩展可观测矩阵$\Gamma_f$和下三角形Toeplitz矩阵Hf实现对系统矩阵的辨识.首先将输入数据移至式(6)的左侧,得到:
$[I-{{H}_{f}}]{{W}_{f}}={{\Gamma }_{f}}{{X}_{f}}+{{G}_{f}}{{E}_{f}}$
(7) 其中,$W_f=[Y_f^{\textrm T}U_f^{\textrm T}]^{\textrm T}$,对Wp做同样定义.
为求解式(7)得到$\Gamma_f$和Hf的估计值,需要消除未知状态和新息的影响.通过在式(7)的左右侧同时引入$\Gamma_f$的正交补向量$\Gamma_f^{\bot}$,由于$(\Gamma_f^{\bot})^{\textrm T}\Gamma_f=0$
$\left[ {{(\Gamma _{f}^{\bot })}^{\text{T}}}-{{(\Gamma _{f}^{\bot })}^{\text{T}}}{{H}_{f}} \right]{{W}_{f}}={{(\Gamma _{f}^{\bot })}^{\text{T}}}{{G}_{f}}{{E}_{f}}$
(8) 通过将式(8)正交投影到Ef的正交补空间来消除新息噪声,
$\left[ {{(\Gamma _{f}^{\bot })}^{\text{T}}}-{{(\Gamma _{f}^{\bot })}^{\text{T}}}{{H}_{f}} \right]{{W}_{f}}\Pi _{{{E}_{f}}}^{\bot }=0$
(9) 其中,$\Pi_{E_f}^{\bot}=I_N-E_f^{\textrm T}(E_fE_f^{\textrm T})^{-1}E_f$是Ef的正交补.由于$\lim_{N \to \infty }E_f\Pi_{{E}_f}^{\bot}=0$和$\lim_{N \to \infty }R_f\Pi_{{E}_f}^{\bot}=R_f$ $\neq$ $0$.根据文献[7]结论可知,无噪声数据块$W_f\Pi_{E_f}^{\bot}$的奇偶空间只包含过程模型参数信息,不会包括控制器模型参数信息.因此,通过$W_f\Pi_{E_f}^{\bot}$的奇偶空间可得到过程模型参数的一致估计值.
由于新息Ef未知,不能进行模型参数估计.这里利用等价辅助模型(5)计算Ef的估计值$\hat{E}_f$,再采用估计值代替真实值进行后续计算.定义新的过去输入输出Hankel 矩阵$U_p(t,N+f)=[u_p(t)$ $\cdots$ $u_p(N+f)]$,$Y_p(t,N+f)=[y_p(t)$ $\cdots$ $y_p(N+f)]$,新息数据做同样定义.定义$W_p(t,N+f)=$ $[U_p^{\textrm T}(t,$ $N+f)$ $Y_p^{\textrm T}(t,N+f)]^{\textrm T}$ 和$Y(t,N+f)=$ $[y(t)$ $\cdots$ $y(N+f)]$.同时定义 $\theta= [C\bar{L}_1$ $C\bar{L}_2]$.采用最小二乘法对式(5)进行计算,可得:
$\hat{\theta }=Y(t,N+f)W_{p}^{\dagger }(t,N+f)$
(10) 其中,
$\begin{align} & W_{p}^{\dagger }(t,N+f)= \\ & W_{p}^{\text{T}}(t,N+f){{[{{W}_{p}}(t,N+f)W_{p}^{\text{T}}(t,N+f)]}^{-1}} \\ \end{align}$
由于估计值$\hat{\theta}$和真实值的误差为
$\Delta \theta =\hat{\theta }-\theta =E(t,N+f)W_{p}^{\dagger }(t,N+f)$
(11) 其中,
$E(t,N+f)=[e(t)\cdots (N+f)]$
由于$\lim_{N \to \infty }E(t,N+f)W_p^{\textrm T}(t,N+f)=0$,若$\lim_{N \to \infty }W_p(t,N+f)W_p^{\textrm T}(t,N+f)>0$ (可作为默认成立条件),则$\hat{\theta}$是一致估计值.
将一致估计值$\hat{\theta}$带入估计值$\hat{Y}(t,N+f)$,可以得到一致估计值$\hat{E}(t,N+f)$ (证明见 第2.2节).
$\begin{align} & \hat{E}(t,N+f)=Y(t,N+f)-\hat{Y}(t,N+f)= \\ & Y(t,N+f)-\hat{\theta }{{W}_{p}}(t,N+f)= \\ & Y(t,N+f)[{{I}_{N+f}}-W_{p}^{\dagger }(t,N+f){{W}_{p}}(t,N+f)]= \\ & Y(t,N+f)\Pi _{{{W}_{p}}(t,N+f)}^{\bot } \\ \end{align}$
(12) 其中,
$\begin{align} & \Pi _{{{W}_{p}}(t,N+f)}^{\bot }={{I}_{N+f}}-W_{p}^{\text{T}}(t,N+f)\times \\ & {{\left[ {{W}_{p}}(t,N+f)W_{p}^{\text{T}}(t,N+f) \right]}^{-1}}{{W}_{p}}(t,N+f) \\ \end{align}$
定义
$\Pi _{{{W}_{p}}(t,N+f)}^{\bot }=[{{\beta }_{1}}\cdots {{\beta }_{N+f}}]$
(13) 则未来噪声Hankel矩阵的一致估计值可通过以下方式重构得到:
${{{\hat{E}}}_{f}}=Y(t,N+f)\left[ \begin{matrix} {{\beta }_{1}} & \cdots & {{\beta }_{N}} \\ {{\beta }_{2}} & \cdots & {{\beta }_{N+1}} \\ \vdots & \ddots & \vdots \\ {{\beta }_{f}} & \cdots & {{\beta }_{f+N}} \\ \end{matrix} \right]$
(14) 进一步将Ef用其一致估计值代替,可得一致估计值$W_f\Pi_{\hat{E}_f}^{\bot}$.通过SVD分解得到:
$\begin{align} & {{W}_{f}}\Pi _{{{{\hat{E}}}_{f}}}^{\bot }= \\ & \left[ {{{\hat{U}}}_{1}}\hat{U}_{1}^{\bot } \right]\left[ \begin{matrix} {{{\hat{\Sigma }}}_{1}} & 0 \\ {{{\hat{\Sigma }}}_{2}} & 0 \\ \end{matrix} \right]\left[ \begin{matrix} \begin{matrix} \hat{V}_{1}^{\text{T}} \\ {{(\hat{V}_{1}^{\bot })}^{\text{T}}} \\ \end{matrix} \\ \end{matrix} \right]={{{\hat{U}}}_{1}}{{{\hat{\Sigma }}}_{1}}\hat{V}_{1}^{\text{T}} \\ \end{align}$
(15) 其中,$\hat{U}_1$是$W_f\Pi_{\hat{E}_f}^{\bot}$的前$n_x+fn_u$个特征向量,则$[(\Gamma_f^{\bot})^{\textrm T}-(\Gamma_f^{\bot})^{\textrm T}H_f]$的一致估计值如下(证明见第2.2节):
$\left[ {{(\hat{\Gamma }_{f}^{\bot })}^{\text{T}}}-{{(\hat{\Gamma }_{f}^{\bot })}^{\text{T}}}{{{\hat{H}}}_{f}} \right]={{(\hat{U}_{1}^{\bot })}^{\text{T}}}$
(16) 定义$\hat{U}_1^{\bot}=[P_1^{\textrm T}P_2^{\textrm T}]^{\textrm T}$,其中,$P_1=\hat{U}_1^{\bot}(1:fn_y$,$:)$,$P_2=\hat{U}_1^{\bot}(1+fn_y:end,:)$ (Matlab表示).可得:
$\hat{\Gamma }_{f}^{\bot }={{P}_{1}}$
(17) $-{{(\hat{\Gamma }_{f}^{\bot })}^{\text{T}}}{{{\hat{H}}}_{f}}=P_{2}^{\text{T}}$
(18) 由于$(\Gamma_f^{\bot})^{\bot}=\Gamma_f$,根据式(17),可得:
${{{\hat{\Gamma }}}_{f}}={{(\hat{\Gamma }_{f}^{\bot })}^{\bot }}={{I}_{f{{n}_{y}}}}-{{P}_{1}}{{(P_{1}^{\text{T}}{{P}_{1}})}^{-1}}P_{1}^{\text{T}}$
(19) 为了得到Hf的估计值,做如下定义:
$-P_{1}^{\text{T}}=[{{\phi }_{1}}\cdots {{\phi }_{f}}]$
(20) $P_{2}^{\text{T}}=[{{\varphi }_{1}}\cdots {{\varphi }_{f}}]$
(21) 其中,${{\phi }_{i}}\in {{R}^{(i{{n}_{y}}-{{n}_{x}})\times {{n}_{y}}}},{{\varphi }_{i}}\in {{R}^{(i{{n}_{y}}-{{n}_{x}})\times {{n}_{u}}}}$.
将式(20)和式(21)带入式(18),可得:
$\left[ \begin{matrix} {{\phi }_{1}} & \cdots & {{\phi }_{f-1}} & {{\phi }_{f}} \\ {{\phi }_{2}} & \cdots & {{\phi }_{f}} & 0 \\ \vdots & \vdots & \ddots & \vdots \\ {{\phi }_{f}} & 0 & \cdots & 0 \\ \end{matrix} \right]{{H}_{f1}}=\left[ \begin{matrix} {{\varphi }_{1}} \\ \phi {{i}_{2}} \\ \vdots \\ {{\phi }_{f}} \\ \end{matrix} \right]$
(22) 其中,$H_{f1}=[D^{\textrm T}(CB)^{\textrm T}\cdots(CA^{f-2}B)^{\textrm T}]$.
采用最小二乘法可得$H_{f1}$的一致估计如下:
${{{\hat{H}}}_{f1}}={{\left[ \begin{matrix} {{\phi }_{1}} & \cdots & {{\phi }_{f-1}} & {{\phi }_{f}} \\ {{\phi }_{2}} & \cdots & {{\phi }_{f}} & 0 \\ \vdots & \vdots & \ddots & \vdots \\ {{\phi }_{f}} & 0 & \cdots & 0 \\ \end{matrix} \right]}^{\dagger }}\left[ \begin{matrix} {{\varphi }_{1}} \\ \phi {{i}_{2}} \\ \vdots \\ {{\phi }_{f}} \\ \end{matrix} \right]$
(23) 系统矩阵估计值$\hat{A}$和$\hat{C}$可直接从$\hat{\Gamma}$中提取,即
$\hat{C}=\hat{\Gamma }(1:{{n}_{y}},1:{{n}_{x}})$
(24) $\hat{A}={{{\hat{\Gamma }}}^{\dagger }}(1+{{n}_{y}}:f{{n}_{y}},1:{{n}_{x}})\hat{\Gamma }(1:(f-1){{n}_{y}},1:{{n}_{x}})$
(25) 由于
${{H}_{f1}}=\left[ \begin{matrix} {{I}_{{{n}_{y}}}} & 0 \\ 0 & \Gamma (1:(f-1){{n}_{y}},1:{{n}_{x}}) \\ \end{matrix} \right]\left[ \begin{matrix} \begin{matrix} D \\ B \\ \end{matrix} \\ \end{matrix} \right]$
(26) 系统矩阵估计值$\hat{B}$和$\hat{D}$可采用最小二乘法从$\hat{H}_{f1}$中计算得到:
$\left[ \begin{matrix} \begin{matrix} {\hat{D}} \\ {\hat{B}} \\ \end{matrix} \\ \end{matrix} \right]={{\left[ \begin{matrix} {{I}_{{{n}_{y}}}} & 0 \\ 0 & \hat{\Gamma }(1:(f-1){{n}_{y}},1:{{n}_{x}}) \\ \end{matrix} \right]}^{\dagger }}{{{\hat{H}}}_{f1}}$
(27) 本文基于新息估计和正交投影的闭环子空间辨识方法(Closed-loop subspace identification method using innovation estimation and orthogonal projection,CSIMIEOP)可总结如下:
步骤 1. 由式(10)求解$\hat{\theta}$,再由式(12)计算$\hat{E}(t,N+f)$,采用式(14)构造$\hat{E}_f$.
步骤 2. 通过SVD分解对式(15)进行计算.
步骤 3. 通过式(19})和式(23)计算估计值$\hat{\Gamma}$和$\hat{H}_{f1}$.
步骤 4. 通过式(24),式(25)和式(27)求解系统矩阵$\hat{A}$,$\hat{B}$,$\hat{C}$ 和 $\hat{D}$.
2.2 闭环一致条件分析
由第2.1节闭环子空间辨识算法可知,本文采用新息估计和正交投影消除噪声,得到一致估计结果. 辨识结果是否一致取决于$\hat{E}(t,N+f)$ 和$[(\hat{\Gamma}_f^{\bot})^{\textrm T}$ $-$ $(\hat{\Gamma}_f^{\bot})^{\textrm T}\hat{H}_f]$是否一致,本文对它们的一致估计条件进行分析和说明,给出如下定理.
定理 1. 若$$\lim_{N \to \infty }W_p(t,N+f)W_p^{\textrm T}(t,N+f)>0$$ 则$\hat{E}(t,N+f)$ 为一致估计值.
证明. 由式(12)可知,估计值$\hat{E}(t,N+f)$和真实值的误差为
$\begin{align} & \Delta E(t,N+f)=\hat{E}(t,N+f)-E(t,N+f)= \\ & Y(t,N+f)\Pi _{{{W}_{p}}(t,N+f)}^{\bot }-E(t,N+f)= \\ & [Y(t,N+f)-\hat{Y}(t,N+f)]-E(t,N+f)= \\ & [\theta -\hat{\theta }]{{W}_{p}}(t,N+f)= \\ & \Delta \theta {{W}_{p}}(t,N+f)= \\ & E(t,N+f){{W}_{p}}{{(t,N+f)}^{\dagger }}{{W}_{p}}(t,N+f) \\ \end{align}$
(28) 由于
$\underset{N\to \infty }{\mathop{\lim }}\,E(t,N+f)W_{p}^{\text{T}}(t,N+f)=0$
若
$\underset{N\to \infty }{\mathop{\lim }}\,{{W}_{p}}(t,N+f)W_{p}^{\text{T}}(t,N+f)>0$
则
$\underset{N\to \infty }{\mathop{\lim }}\,\Delta E(t,N+f)=0$
从而可知$\hat{E}(t,N+f)$为一致估计值.
定理 2. 若系统可控可观,且$E_fE_f^{\textrm T}>0$ 和
$\bar{E}\left\{ \left[ \begin{matrix} {{u}_{p}}(t) \\ {{u}_{f}}(t) \\ {{e}_{p}}(t) \\ {{e}_{f}}(t) \\ \end{matrix} \right]{{\left[ \begin{matrix} {{u}_{p}}(t) \\ {{u}_{f}}(t) \\ {{e}_{p}}(t) \\ {{e}_{f}}(t) \\ \end{matrix} \right]}^{\text{T}}} \right\}>0$
则$[(\hat{\Gamma}_f^{\bot})^{\textrm T} -(\hat{\Gamma}_f^{\bot})^{\textrm T}\hat{H}_f]$为一致估计值.
证明. 令$\Omega =\left[ \begin{matrix} {{\Gamma }_{f}} & {{H}_{f}} \\ 0 & I \\ \end{matrix} \right]$,由式(9)可知:
$\Omega \left[ \begin{matrix} \begin{matrix} {{U}_{f}} \\ {{X}_{f}} \\ \end{matrix} \\ \end{matrix} \right]\left[ \begin{matrix} {{I}_{N}}-E_{f}^{\text{T}}{{({{E}_{f}}E_{f}^{\text{T}})}^{-1}}{{E}_{f}} \\ \end{matrix} \right]$
(29) 由式(29)可得:
$\begin{array}{l} \mathop {\lim }\limits_{N \to 0} {W_f}\Pi _{{{\hat E}_f}}^ \bot W_f^{\rm{T}} = \\ \Omega \left[ {\begin{array}{*{20}{c}} \begin{array}{l} {U_f}\\ {X_f} \end{array} \end{array}} \right]\left[ {{I_N} - E_f^{\rm{T}}{{({E_f}E_f^{\rm{T}})}^{ - 1}}{E_f}} \right]{\left[ {\begin{array}{*{20}{c}} \begin{array}{l} {U_f}\\ {X_f} \end{array} \end{array}} \right]^{\rm{T}}}{\Omega ^{\rm{T}}} = \\ \Omega \left\{ {{R_1} - {R_2}{{({E_f}E_f^{\rm{T}})}^{ - 1}}R_2^{\rm{T}}} \right\}{\Omega ^{\rm{T}}} \end{array}$
(30) 其中,
$\begin{array}{l} {R_1} = \left[ {\begin{array}{*{20}{c}} {{U_f}{X_f}} \end{array}} \right]{\left[ {\begin{array}{*{20}{c}} {{U_f}{X_f}} \end{array}} \right]^{\rm{T}}}\\ = \bar E\left\{ {\left[ {\begin{array}{*{20}{c}} {{u_f}(t)}\\ {x(t)} \end{array}} \right]{{\left[ {\begin{array}{*{20}{c}} {{u_f}(t)}\\ {x(t)} \end{array}} \right]}^{\rm{T}}}} \right\}\\ {R_2} = \left[ {\begin{array}{*{20}{c}} \begin{array}{l} {U_f}\\ {X_f} \end{array} \end{array}} \right]E_f^{\rm{T}} = \bar E\left\{ {\left[ {\begin{array}{*{20}{c}} {{u_f}(t)}\\ {x(t)} \end{array}} \right]e_f^{\rm{T}}(t)} \right\} \end{array}$
若系统为可控可观系统,则$\Omega$为满秩矩阵
${\rm{rank}}(\Omega ) = {n_x} + f{n_u}$
(31) 由于新息为平稳零均值白噪声系列,可知$E_fE_f^{\rm T}$ $>$ $0$,据文献[11]定理2可知,式(31)中第2项的秩可通过如下计算得到:
$\text{rank}\left\{ \bar{E}\left\{ \left[ \begin{matrix} {{u}_{f}}(t) \\ x(t) \\ {{e}_{f}}(t) \\ \end{matrix} \right]{{\left[ \begin{matrix} {{u}_{f}}(t) \\ x(t) \\ {{e}_{f}}(t) \\ \end{matrix} \right]}^{\text{T}}} \right\} \right\}-f{{n}_{y}}$
(32) 进一步将式(4)带入式(32),可得:
$\begin{align} & \bar{E}\left\{ \left[ \begin{matrix} {{u}_{f}}(t) \\ x(t) \\ {{e}_{f}}(t) \\ \end{matrix} \right]{{\left[ \begin{matrix} {{u}_{f}}(t) \\ x(t) \\ {{e}_{f}}(t) \\ \end{matrix} \right]}^{\text{T}}} \right\}= \\ & \Upsilon \bar{E}\left\{ \left[ \begin{matrix} {{u}_{p}}(t) \\ {{u}_{f}}(t) \\ {{e}_{p}}(t) \\ {{e}_{f}}(t) \\ \end{matrix} \right]{{\left[ \begin{matrix} {{u}_{p}}(t) \\ {{u}_{f}}(t) \\ {{e}_{p}}(t) \\ {{e}_{f}}(t) \\ \end{matrix} \right]}^{\text{T}}} \right\}{{\Upsilon }^{\text{T}}} \\ \end{align}$
(33) 其中,$\Upsilon =\left[ \begin{matrix} 0 & {{I}_{p{{n}_{u}}}} & 0 & 0 \\ {{L}_{1}} & 0 & {{L}_{1}} & 0 \\ 0 & 0 & 0 & {{I}_{p{{n}_{y}}}} \\ \end{matrix} \right]$.
由于系统为可控可观测系统,采用文献[11]定理2可知$\Upsilon$为满秩矩阵.同时如果 式(33)第2项为正定满秩矩阵,根据文献[12]给定的秩条件可得:
$\begin{align} & \text{rank}\left\{ \overline{\text{E}}\left\{ \left[ \begin{matrix} {{u}_{f}}(t) \\ x(t) \\ {{e}_{f}}(t) \\ \end{matrix} \right]{{\left[ \begin{matrix} {{u}_{f}}(t) \\ x(t) \\ {{e}_{f}}(t) \\ \end{matrix} \right]}^{\text{T}}} \right\} \right\}= \\ & f({{n}_{u}}+{{n}_{y}})+{{n}_{x}} \\ \end{align}$
(34) 因此,矩阵(32)为满秩矩阵.
$\text{rank}\left( \left[ {{R}_{1}}-{{R}_{2}}{{({{E}_{f}}E_{f}^{\text{T}})}^{-1}}R_{2}^{\text{T}} \right] \right)=f{{n}_{u}}+{{n}_{x}}$
(35) 由式(30)、式(32)和式(35)可知\vskip0.1mm\noindent
$\text{rank}\left( \underset{N\to 0}{\mathop{\lim }}\,{{W}_{f}}\Pi _{{{{\hat{E}}}_{f}}}^{\bot }W_{f}^{\text{T}} \right)=f{{n}_{u}}+{{n}_{x}}$
(36) 则
$\begin{align} & \text{rank}\left( \underset{N\to 0}{\mathop{\lim }}\,{{W}_{f}}\Pi _{{{{\hat{E}}}_{f}}}^{\bot } \right)= \\ & \text{rank}\left( \underset{N\to 0}{\mathop{\lim }}\,{{W}_{f}}\Pi _{{{{\hat{E}}}_{f}}}^{\bot }W_{f}^{\text{T}} \right)=f{{n}_{u}}+{{n}_{x}} \\ \end{align}$
(37) 由以上秩条件可知,$\lim_{N \to \infty }W_f\Pi_{\hat{E}_f}^{\bot}$的非零特征向量个数为$f(n_u+n_y)-n_x-fn_u=fn_y-n_x$.因此$\lim_{N \to \infty }\hat{U}_1^{\bot}$ 是$\lim_{N \to \infty }W_f\Pi_{\hat{E}_f}^{\bot}$的零特征向量.则
$\underset{N\to 0}{\mathop{\lim }}\,\hat{U}_{1}^{\bot }{{W}_{f}}\Pi _{{{{\hat{E}}}_{f}}}^{\bot }=0$
(38) 由于${\rm rank}(\Gamma_f^{\bot})=fn_y-n_x$ [13],因此
$\text{rank}\left( [{{(\Gamma _{f}^{\bot })}^{\text{T}}}-{{(\Gamma _{f}^{\bot })}^{\text{T}}}{{H}_{f}}] \right)=f{{n}_{y}}-{{n}_{x}}$
(39) 同时,由于
$\underset{N\to 0}{\mathop{\lim }}\,\left[ {{(\Gamma _{f}^{\bot })}^{\text{T}}}-{{(\Gamma _{f}^{\bot })}^{\text{T}}}{{H}_{f}} \right]{{W}_{f}}\Pi _{{{{\hat{E}}}_{f}}}^{\bot }=0$
(40) 所以$[(\Gamma_f^{\bot})^{\textrm T}-(\Gamma_f^{\bot})^{\textrm T}H_f]$和$\lim_{N \to \infty }\hat{U}_1^{\bot}$满足
$\begin{align} & rowspace\left( [{{(\Gamma _{f}^{\bot })}^{\text{T}}}-{{(\Gamma _{f}^{\bot })}^{\text{T}}}{{H}_{f}}] \right)= \\ & rowspace\left( \underset{N\to 0}{\mathop{\lim }}\,\hat{U}_{1}^{\bot } \right) \\ \end{align}$
(41) 因此,$[(\hat{\Gamma}_f^{\bot})^{\textrm T} -(\hat{\Gamma}_f^{\bot})^{\textrm T}\hat{H}_f]=(\hat{U}_1^{\bot})^{\textrm T}$,由于$\hat{E}_f$是一致估计值,可知$(\hat{U}_1^{\bot})^{\textrm T}$为一致估计值,则$[(\hat{\Gamma}_f^{\bot})^{\textrm T}$ $-$ $(\hat{\Gamma}_f^{\bot})^{\textrm T}\hat{H}_f]$为一致估计值.
由于$[(\hat{\Gamma}_f^{\bot})^{\textrm T} -(\hat{\Gamma}_f^{\bot})^{\textrm T}\hat{H}_f]$为一致估计值,根据平移变换法求取系统矩阵的一致不变性,可知系统矩阵估计值也为一致估计值.
2.3 闭环一致条件合理性分析
第2.2节定理2的两个假设条件涉及未知新息信息,以上假设是否合理,将直接决定本文方法能否取得一致估计结果.
由于模型(1)可表示为模型(2),则新息的协方差可表示为$\bar{E}[e(t)e^{\textrm T}(t)]=CP^{\textrm T}C+R_3$ (具体表述可参考文献[10]第5章),其中P为半正定矩阵,对于系统噪声有$R_3=\bar{E}[v(t)v^{\textrm T}(t)]>0$,则$\bar{E}[e(t)e^{\textrm T}(t)]$ $>$ $0$,可知$E_fE_f^{\textrm T}>0$.
对于假设2,由于
$\begin{align} & \underset{N\to 0}{\mathop{\lim }}\,{{W}_{p}}(t,N+f)W_{p}^{\text{T}}(t,N+f)= \\ & \bar{E}\left\{ \left[ \begin{matrix} {{u}_{p}}(t) \\ {{y}_{p}}(t) \\ \end{matrix} \right]{{\left[ \begin{matrix} {{u}_{p}}(t) \\ {{y}_{p}}(t) \\ \end{matrix} \right]}^{\text{T}}} \right\} \\ \end{align}$
(42) 进一步,由式(2)可知
$\begin{align} & {{y}_{p}}(t)={{\Gamma }_{p}}[{{L}_{1}}u_{p}^{\text{T}}(t-p)+{{L}_{2}}e_{p}^{\text{T}}(t-p)]+ \\ & {{H}_{p}}{{u}_{p}}(t)+{{{\bar{G}}}_{p}}{{e}_{p}}(t) \\ \end{align}$
(43) 其中,扩展可观性矩阵分别表示为 ${L}_1=[{A}^{p-1}{B}$ $\cdots$ ${A}{B}$ ${B}]$,${L}_2=[{A}^{p-1}K$ $\cdots$ ${A}K$ $K]$,下三角形Toeplitz矩阵为
${{H}_{f}}=\left[ \begin{matrix} I & \cdots & \cdots & 0 \\ C & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ C{{A}^{f-2}} & \cdots & C & I \\ \end{matrix} \right]$
将式(43)带入式(42),可得:
$\begin{align} & \bar{E}\left[ \begin{matrix} {{u}_{p}}(t) \\ {{y}_{p}}(t) \\ \end{matrix} \right]{{\left[ \begin{matrix} {{u}_{p}}(t) \\ {{y}_{p}}(t) \\ \end{matrix} \right]}^{\text{T}}}= \\ & \Xi \bar{E}\left[ \begin{matrix} {{u}_{p}}(t-p) \\ {{u}_{p}}(t) \\ {{e}_{p}}(t-p) \\ {{e}_{f}}(t) \\ \end{matrix} \right]{{\left[ \begin{matrix} {{u}_{p}}(t-p) \\ {{u}_{p}}(t) \\ {{e}_{p}}(t-p) \\ {{e}_{f}}(t) \\ \end{matrix} \right]}^{\text{T}}}{{\Xi }^{\text{T}}} \\ \end{align}$
(44) 其中,$\Xi=\left[\begin{array}{cccc} 0&I_{pn_u}&0&0\\Gamma_{P}L_1&H_p&\Gamma_{P}L_2&\bar{G}_p \end{array}\right]$.
若系统可控可观,由文献[11]定理2可知,${\rm rank}\left(\Xi\right) =p(n_u+n_y)$,$\Xi$是满秩矩阵,则式(42)正定的充分必要条件为式(44)中第2项正定,由于变量p和f可取任何值,则假设2成立的充分必要条件为$\lim_{N \to \infty }W_{p+f}W_{p+f}^{\textrm T}>0$.可通过验证$\lim_{N \to \infty }W_{p+f}W_{p+f}^{\textrm T}>0$来确定假设2是否成立.即若$\lim_{N \to \infty }W_{p+f}W_{p+f}^{\textrm T}>0$,则假设2成立.
3. 仿真研究
考虑文献[6]中研究的闭环系统
$y(t)-0.9y(t-1)=u(t-1)+e(t)+0.9e(t-1)$
(45) 其中,反馈控制结构为$u(t)=- 0.6y(t)+r(t)$.过程噪声设置为方差为0.2的白噪声序列.
对系统设定输入激励$r(k)$为单位方差白噪声序列和相关序列两种情况进行研究. 其中相关序列设为$r(t)=(1+0.8q^{-1}+0.6q^{-2})r_0(t)$,$r_0(t)$为单位方差白噪声序列. 过去和未来水平数均设置为10.在不同数据长度$N\in[200,8 000]$的情况下进行1 000次Monte Carlo仿真. 本文方法的辨识结果与SIMPCAwc算法 [6]进行比较,当$r(t)$为单位方差白噪声系列时,系统极点(真实值为0.9)的估计平均值如图 1所示,系统极点的估计标准方差如图 2 所示.当系统设定输入$r(t)$为相关系列时,系统极点的平均值如图 3所示,系统极点的估计标准方差如图 4所示.
从以上结果可以看出,当系统设定输入为单位方差白噪声系列时,SIMPCAwc算法得出有偏估计结果;只有当系统设定输入激励为相关序列时,SIMPCAwc算法才能保证无偏估计结果.本文CSIMIEOP算法对系统设定输入激励为无关序列和相关序列时均可得到一致无偏结果,并且估计精度优于SIMPCAwc算法.
4. 结论
本文提出一种基于新息估计和正交投影的闭环子空间辨识算法,对系统设定点输入激励为白噪声无关序列和相关序列的情况均可得到一致无偏估计结果,并且相对于近期有关文献给出的方法如SIMPCAwc算法 [6],能进一步提高辨识精度.同时,严格分析和证明了本文算法保证一致估计的条件.最后通过仿真实例验证了本文方法的有效性和优越性.
-
表 1 决策子系统DT1
Table 1 A decision subsystem DT1
U1 a b c d x1 0 0 1 1 x2 1 1 0 1 x3 0 1 0 0 x4 1 1 0 1 表 2 决策子系统DT2
Table 2 A decision subsystem DT2
U2 a b c d y1 0 1 0 0 y2 1 1 0 1 y3 1 1 0 1 y4 0 1 0 0 y5 1 2 0 0 y6 1 2 0 1 -
[1] Babcock B, Babu S, Datar M, Motwani R, Widom J. Models and issues in data stream systems. In:Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. Madison, Wisconsin, USA:ACM, 2002. 1-16 [2] 王涛, 李舟军, 颜跃进, 陈火旺.数据流挖掘分类技术综述.计算机研究与发展, 2007, 44(11):1809-1815 http://d.old.wanfangdata.com.cn/Periodical/jsjyjyfz200711001Wang Tao, Li Zhou-Jun, Yan Yue-Jin, Chen Huo-Wang. A survey of classification of data streams. Journal of Computer Research and Development, 2007, 44(11):1809-1815 http://d.old.wanfangdata.com.cn/Periodical/jsjyjyfz200711001 [3] 徐文华, 覃征, 常扬.基于半监督学习的数据流集成分类算法.模式识别与人工智能, 2012, 25(2):292-299 doi: 10.3969/j.issn.1003-6059.2012.02.016Xu Wen-Hua, Qin Zheng, Chang Yang. Semi-supervised learning based ensemble classifier for stream data. Pattern Recognition and Artificial Intelligence, 2012, 25(2):292-299 doi: 10.3969/j.issn.1003-6059.2012.02.016 [4] Lu N, Zhang G Q, Lu J. Concept drift detection via competence models. Artificial Intelligence, 2014, 209:11-28 doi: 10.1016/j.artint.2014.01.001 [5] Domingos P, Hulten G. Mining high-speed data streams. In:Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Boston, Massachusetts, USA:ACM, 2002. 71-80 [6] Hulten G, Spencer L, Domingos P. Mining time-changing data streams. In:Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA:ACM, 2001. 97-106 [7] 孙岳, 毛国君, 刘旭, 刘椿年.基于多分类器的数据流中的概念漂移挖掘.自动化学报, 2008, 34(1):93-97 http://www.aas.net.cn/CN/abstract/abstract16029.shtmlSun Yue, Mao Guo-Jun, Liu Xu, Liu Chun-Nian. Mining concept drifts from data streams based on multi-classifiers. Acta Automatica Sinica, 2008, 34(1):93-97 http://www.aas.net.cn/CN/abstract/abstract16029.shtml [8] Wang H X, Fan W, Yu P S, Han J W. Mining concept-drifting data streams using ensemble classifiers. In:Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, D.C., USA:ACM, 2003. 226-235 [9] Li P P, Wu X D, Hu X G, Wang H. Learning concept-drifting data streams with random ensemble decision trees. Neurocomputing, 2015, 166:68-83 doi: 10.1016/j.neucom.2015.04.024 [10] 张明卫, 朱志良, 刘莹, 张斌.一种大数据环境中分布式辅助关联分类算法.软件学报, 2015, 26(11):2795-2810 http://d.old.wanfangdata.com.cn/Periodical/rjxb201511005Zhang Ming-Wei, Zhu Zhi-Liang, Liu Ying, Zhang Bin. Distributed assistant associative classification algorithm in big data environment. Journal of Software, 2015, 26(11):2795-2810 http://d.old.wanfangdata.com.cn/Periodical/rjxb201511005 [11] Bifet A, Holmes G, Pfahringer B, Kirkby R, Gavaldá R. New ensemble methods for evolving data streams. In:Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France:ACM, 2009. 139-148 [12] Gao J, Fan W, Han J W, Yu P S. A general framework for mining concept-drifting data streams with skewed distributions. In:Proceedings of the 2007 SIAM International Conference on Data Mining. Minnesota, USA:SIAM, 2007. [13] Widmer G, Kubat M. Effective learning in dynamic environments by explicit context tracking. In:Proceedings of the 1993 European Conference on Machine Learning. Vienna, Austria:Springer, 1993. 227-243 [14] 柴玉梅, 周驰, 王黎明.数据流上概念漂移的检测和分类.小型微型计算机系统, 2011, 32(3):421-425 http://d.old.wanfangdata.com.cn/Periodical/xxwxjsjxt201103008Chai Yu-Mei, Zhou Chi, Wang Li-Ming. Detecting concept drift and classifying data streams. Journal of Chinese Computer Systems, 2011, 32(3):421-425 http://d.old.wanfangdata.com.cn/Periodical/xxwxjsjxt201103008 [15] Pawlak Z. Rough sets. International Journal of Computer and Information Sciences, 1982, 11(5):341-356 doi: 10.1007/BF01001956 [16] 张清华, 薛玉斌, 王国胤.粗糙集的最优近似集.软件学报, 2016, 27(2):295-308 http://d.old.wanfangdata.com.cn/Periodical/rjxb201602008Zhang Qing-Hua, Xue Yu-Bin, Wang Guo-Yin. Optimal approximation sets of rough sets. Journal of Software, 2016, 27(2):295-308 http://d.old.wanfangdata.com.cn/Periodical/rjxb201602008 [17] 王国胤. Rough集理论与知识获取.西安:西安交通大学出版社, 2001.Wang Guo-Yin. Rough Set Theory and Knowledge Acquisition. Xi'an:Xi'an Jiaotong University Press, 2001. [18] 邓大勇, 陈林.并行约简与F-粗糙集.云模型与粒计算.北京:科学出版社, 2012. 210-228Deng Da-Yong, Chen Lin. Parallel reducts and F-rough sets. Cloud Model and Granular Computing. Beijing:Science Press, 2012. 210-228 [19] 陈林. 粗糙集中不同粒度层次下的并行约简及决策[硕士学位论文], 浙江师范大学, 中国, 2013.Chen Lin. Parallel Reducts and Decision in Various Levels of Granularity [Master thesis], Zhejiang Normal University, China, 2013. [20] Cao F Y, Huang J Z. A concept-drifting detection algorithm for categorical evolving data. In:Proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Gold Coast, Australia:Springer, 2013. 485-496 [21] 邓大勇, 裴明华, 黄厚宽. F-粗糙集方法对概念漂移的度量.浙江师范大学学报(自然科学版), 2013, 36(3):303-308 doi: 10.3969/j.issn.1001-5051.2013.03.012Deng Da-Yong, Pei Ming-Hua, Huang Hou-Kuan. The F-rough sets approaches to the measures of concept drift. Journal of Zhejiang Normal University (Natural Sciences), 2013, 36(3):303-308 doi: 10.3969/j.issn.1001-5051.2013.03.012 [22] 邓大勇, 徐小玉, 黄厚宽.基于并行约简的概念漂移探测.计算机研究与发展, 2015, 52(5):1071-1079 http://d.old.wanfangdata.com.cn/Periodical/jsjyjyfz201505009Deng Da-Yong, Xu Xiao-Yu, Huang Hou-Kuan. Concept drifting detection for categorical evolving data based on parallel reducts. Journal of Computer Research and Development, 2015, 52(5):1071-1079 http://d.old.wanfangdata.com.cn/Periodical/jsjyjyfz201505009 [23] 苗夺谦, 胡桂荣.知识约简的一种启发式算法.计算机研究与发展, 1999, 36(6):681-684 http://d.old.wanfangdata.com.cn/Periodical/jsjyjyfz199906006Miao Duo-Qian, Hu Gui-Rong. A heuristic algorithm for reduction of knowledge. Journal of Computer Research and Development, 1999, 36(6):681-684 http://d.old.wanfangdata.com.cn/Periodical/jsjyjyfz199906006 [24] 王国胤, 于洪, 杨大春.基于条件信息熵的决策表约简.计算机学报, 2002, 25(7):759-766 doi: 10.3321/j.issn:0254-4164.2002.07.013Wang Guo-Yin, Yu Hong, Yang Da-Chun. Decision table reduction based on conditional information entropy. Chinese Journal of Computers, 2002, 25(7):759-766 doi: 10.3321/j.issn:0254-4164.2002.07.013 [25] 杨明.决策表中基于条件信息熵的近似约简.电子学报, 2007, 35(11):2156-2160 doi: 10.3321/j.issn:0372-2112.2007.11.023Yang Ming. Approximate reduction based on conditional information entropy in decision tables. Acta Electronica Sinica, 2007, 35(11):2156-2160 doi: 10.3321/j.issn:0372-2112.2007.11.023 [26] 邓大勇, 薛欢欢, 苗夺谦, 卢克文.属性约简准则与约简信息损失的研究.电子学报, 2017, 45(2):401-407 doi: 10.3969/j.issn.0372-2112.2017.02.019Deng Da-Yong, Xue Huan-Huan, Miao Duo-Qian, Lu Ke-Wen. Study on criteria of attribute reduction and information loss of attribute reduction. Acta Electronica Sinica, 2017, 45(2):401-407 doi: 10.3969/j.issn.0372-2112.2017.02.019 期刊类型引用(12)
1. 王亚军,白翱,张博,郭超. 基于TOGAF的工艺知识全生命周期管理架构研究. 知识管理论坛. 2024(06): 519-532 . 百度学术
2. 刘拥民,罗皓懿,谢铁强. 基于XGBoost-ARIMA方法的PM_(2.5)质量浓度预测模型的研究及应用. 安全与环境学报. 2023(01): 211-221 . 百度学术
3. 张旭,张亮,金博,张红哲. 基于不确定性的多元时间序列分类算法研究. 自动化学报. 2023(04): 790-804 . 本站查看
4. 缪燕子,王志铭,李守军,代伟. 基于背景值和结构相容性改进的多维灰色预测模型. 自动化学报. 2022(04): 1079-1090 . 本站查看
5. 徐任超,阎威武,王国良,杨健程,张曦. 基于周期性建模的时间序列预测方法及电价预测研究. 自动化学报. 2020(06): 1136-1144 . 本站查看
6. 李晓理,张博,杨旭. 基于图像混合核的列生成PM_(2.5)预测. 工程科学学报. 2020(07): 922-929 . 百度学术
7. 杨博帆,张琳,张搏,宋亚飞,丁尔启. 动态多模型指数平滑法融合的在线预测方法. 系统工程与电子技术. 2020(09): 2013-2021 . 百度学术
8. 乔俊飞,丁海旭,李文静. 基于WTFMC算法的递归模糊神经网络结构设计. 自动化学报. 2020(11): 2367-2378 . 本站查看
9. 郝广涛,林清华,李晓梅. 超短期负荷预测中指数平滑法平滑系数的确定方法. 莆田学院学报. 2020(05): 80-86 . 百度学术
10. 杨亚莉,李智伟,钟卫军. 基于二向注意力循环神经网络的PM_(2.5)浓度预测. 空军工程大学学报(自然科学版). 2020(06): 101-106 . 百度学术
11. 慕凯,张祥,余士龙,李俊,李宇,戴笑俊. 滑动加权马尔科夫模型在降水量预测中的应用. 气象水文海洋仪器. 2019(04): 34-36 . 百度学术
12. 周强,肖强宏,王浩然,高乐乐. 基于BEADS-ESMC组合算法的三相光伏并网逆变柜触点红外温度预测方法. 变频器世界. 2018(11): 72-78 . 百度学术
其他类型引用(16)
-