2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

德拜媒质微波加热过程的H保性能温度跟踪控制

钟佳岐 梁山 熊庆宇

钟佳岐, 梁山, 熊庆宇. 德拜媒质微波加热过程的H∞保性能温度跟踪控制. 自动化学报, 2018, 44(8): 1518-1527. doi: 10.16383/j.aas.2017.c170188
引用本文: 钟佳岐, 梁山, 熊庆宇. 德拜媒质微波加热过程的H保性能温度跟踪控制. 自动化学报, 2018, 44(8): 1518-1527. doi: 10.16383/j.aas.2017.c170188
ZHONG Jia-Qi, LIANG Shan, XIONG Qing-Yu. H∞ Guaranteed Cost Temperature Tracking Control for Microwave Heating Debye Media Process. ACTA AUTOMATICA SINICA, 2018, 44(8): 1518-1527. doi: 10.16383/j.aas.2017.c170188
Citation: ZHONG Jia-Qi, LIANG Shan, XIONG Qing-Yu. H Guaranteed Cost Temperature Tracking Control for Microwave Heating Debye Media Process. ACTA AUTOMATICA SINICA, 2018, 44(8): 1518-1527. doi: 10.16383/j.aas.2017.c170188

德拜媒质微波加热过程的H保性能温度跟踪控制

doi: 10.16383/j.aas.2017.c170188
基金项目: 

国家自然科学基金 61771077

国家重点基础研究发展计划(973计划) 2013CB328903

详细信息
    作者简介:

    钟佳岐  重庆邮电大学自动化学院讲师.2017年获得重庆大学博士学位.主要研究方向为数值建模, 非线性控制以及电磁理论.E-mail:plusingzhong@gmail.com

    熊庆宇  重庆大学软件学院教授.2002年获得日本九州大学博士学位.主要研究方向为人工智能与控制, 传感器网络以及信息系统.E-mail:xiong03@cqu.edu.cn

    通讯作者:

    梁山  重庆大学自动化学院教授.2004年获得日本熊本大学博士学位.主要研究方向为采样控制理论, 非线性控制以及智能控制.本文通信作者.E-mail:lightsun@cqu.edu.cn

H Guaranteed Cost Temperature Tracking Control for Microwave Heating Debye Media Process

Funds: 

National Natural Science Foundations of China 61771077

National Basic Research Program of China (973 Program) 2013CB328903

More Information
    Author Bio:

     Lecturer at the College of Automation, Chongqing University of Posts and Telecommunications. He received his Ph. D. degree from Chongqing University in 2017. His research interest covers numerical modelling, nonlinear control, and electromagnetic theory

     Professor at the School of Software Engineering, Chongqing University. He received his Ph. D. degree from the Kyushu University, Fukuoka, Japan, in 2002. His research interest covers artiflcial intelligence and control, sensor networks, and information

    Corresponding author: LIANG Shan   Professor at the College of Automation, Chongqing University. He received his Ph. D. degree from the Kumamoto University, Kumamoto, Japan, in 2004. His research interest covers digital control theory, nonlinear control theory, and intelligent control. Corresponding author of this paper
  • 摘要: 德拜媒质微波加热过程中,由于介电常数具有随温度变化的特性,导致电磁场的空间分布将会产生巨大的变化.若缺乏合理的功率调控策略,将导致燃烧、爆炸等一系列热失控现象.针对上述问题,本文提出一种滚动时域H保性能温度跟踪控制策略,以实现对监测位置的最高温度进行控制.基于微波加热德拜媒质的机理模型,同时考虑跟踪系统稳定性、动态性能和输入约束,以H增益和保性能函数作为性能指标,本文将温度跟踪问题转化为线性矩阵不等式(Linear matrix inequality,LMI)多目标优化问题,使得系统动态性能达到最优.最后以德拜媒质微波加热短波导模型为例,对所提出方法的有效性进行仿真验证.
    1)  本文责任编委 张化光
  • 图  1  微波加热德拜媒质的详细原理图

    Fig.  1  Detailed schematic diagram for microwave heating Debye medium

    图  2  相对介电常数$\epsilon '( T )$和相对介电损耗$\epsilon ''( T )$

    Fig.  2  Relative dielectric constant $\epsilon '( T )$ and relative dielectric loss $\epsilon ''( T )$

    图  3  监测点最高温度与期望温升曲线

    Fig.  3  Maximum temperature rise curve in monitoring positions and reference temperature rise curve

    图  4  入射电场强度

    Fig.  4  Incident electric fleld intensity

    图  5  全局温度分布

    Fig.  5  Global temperature distribution

    图  6  保性能函数J的实际轨迹

    Fig.  6  Actual trajectory for guaranteed cost function J

    表  1  热力学参数和非齐次Neumann边界条件

    Table  1  Thermodynamic parameters and nonhomogeneous Neumann boundary condition

    $\rho C_p$ $\kappa $ $ a $ $ b $
    $ \rm{ J / \left( cm^3 \cdot {}^\circ C \right)}$ $ \rm{ W / \left( cm \cdot {}^\circ C \right)}$ $ \rm{W / cm} $ $ \rm{W / cm} $
    4.1560.00681 $-1$
    下载: 导出CSV
  • [1] Chandrasekaran S, Ramanathan S, Basak T. Microwave food processing-a review. Food Research International, 2013, 52(1):243-261 doi: 10.1016/j.foodres.2013.02.033
    [2] Wali W A, Al-Shamma'a A I, Hassan K, Cullen J D. Online genetic-ANFIS temperature control for advanced microwave biodiesel reactor. Journal of Process Control, 2012, 22(7):1256-1272 doi: 10.1016/j.jprocont.2012.05.013
    [3] Rattanadecho P, Makul N. Microwave-assisted drying:a review of the state-of-the-art. Drying Technology, 2016, 34(1):1-38 doi: 10.1080/07373937.2014.957764
    [4] Beale G O, Li M L. Robust temperature control for microwave heating of ceramics. IEEE Transactions on Industrial Electronics, 1997, 44(1):124-131 doi: 10.1109/41.557507
    [5] Wu X, Thomas J R Jr, Davis W A. Control of thermal runaway in microwave resonant cavities. Journal of Applied Physics, 2002, 92(6):3374-3380 doi: 10.1063/1.1501744
    [6] 刘长军, 申东雨.微波加热陶瓷中热失控现象的分析与控制.中国科学E辑:技术科学, 2008, 38(7):1097-1105 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200802108332

    Liu Chang-Jun, Shen Dong-Yu. Analysis and control of the thermal runaway of ceramic slab under microwave heating. Science in China Series E:Technological Sciences, 2008, 51(12):2233-2241 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200802108332
    [7] Kappe C O. How to measure reaction temperature in microwave-heated transformations. Chemical Society Reviews, 2013, 42(12):4977-4990 doi: 10.1039/c3cs00010a
    [8] Akkari E, Chevallier S, Boillereaux L. Global linearizing control of MIMO microwave-assisted thawing. Control Engineering Practice, 2009, 17(1):39-47 doi: 10.1016/j.conengprac.2008.05.006
    [9] Chandrasekaran S, Ramanathan S, Basak T. Microwave material processing-a review. AIChE Journal, 2012, 58(2):330-363 doi: 10.1002/aic.v58.2
    [10] Huang K M, Liao Y H. Transient power loss density of electromagnetic pulse in Debye media. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(1):135-140 doi: 10.1109/TMTT.2014.2374158
    [11] Damour C, Hamdi M, Josset C, Auvity B, Boillereaux L. Energy analysis and optimization of a food defrosting system. Energy, 2012, 37(1):562-570 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0225691512
    [12] Yin H M, Wei W. Regularity of weak solution for a coupled system arising from a microwave heating model. European Journal of Applied Mathematics, 2014, 25(1):117-131 doi: 10.1017/S0956792513000326
    [13] Zhong J Q, Liang S, Zeng C, Yuan Y P, Xiong Q Y. Approximate finite-dimensional ODE temperature model for microwave heating. Nonlinear Analysis:Modelling and Control, 2016, 21(4):498-514 https://www.researchgate.net/publication/316883263_Approximate_finite-dimensional_ODE_temperature_model_for_microwave_heating
    [14] Zhong J Q, Liang S, Yuan Y P, Xiong Q Y. Coupled electromagnetic and heat transfer ODE model for microwave heating with temperature-dependent permittivity. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(8):2467-2477 doi: 10.1109/TMTT.2016.2584613
    [15] Li Z J, Xiao H Z, Yang C G, Zhao Y W. Model predictive control of nonholonomic chained systems using general projection neural networks optimization. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2015, 45(10):1313-1321 doi: 10.1109/TSMC.2015.2398833
    [16] 何德峰.约束非线性系统稳定经济模型预测控制.自动化学报, 2016, 42(11):1680-1690 http://www.aas.net.cn/CN/Y2016/V42/I11/1680

    He De-Feng. Stabilizing economic model predictive control of constrained nonlinear systems. Acta Automatica Sinica, 2016, 42(11):1680-1690 http://www.aas.net.cn/CN/Y2016/V42/I11/1680
    [17] Ma J J, Ge S S, Zheng Z Q, Hu D W. Adaptive NN control of a class of nonlinear systems with asymmetric saturation actuators. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(7):1532-1538 doi: 10.1109/TNNLS.2014.2344019
    [18] 彭秀艳, 贾书丽, 张彪.一类具有执行器饱和的非线性系统抗饱和方法研究.自动化学报, 2016, 42(5):798-804 http://www.aas.net.cn/CN/abstract/abstract18869.shtml

    Peng Xiu-Yan, Jia Shu-Li, Zhang Biao. An anti-saturation method for a class of nonlinear systems with actuator saturation. Acta Automatica Sinica, 2016, 42(5):798-804 http://www.aas.net.cn/CN/abstract/abstract18869.shtml
    [19] Chen H, Scherer C W. Moving horizon H control with performance adaptation for constrained linear systems. Automatica, 2006, 42(6):1033-1040 doi: 10.1016/j.automatica.2006.03.001
    [20] Zhang D, Su H, Chu J, Wang Z. Satisfactory reliable H guaranteed cost control with D-stability and control input constraints. IET Control Theory and Applications, 2008, 2(8):643-653 doi: 10.1049/iet-cta:20070332
    [21] Zhao H Y, Chen Q W, Xu S Y. H guaranteed cost control for uncertain Markovian jump systems with mode-dependent distributed delays and input delays. Journal of the Franklin Institute, 2009, 346(10):945-957 doi: 10.1016/j.jfranklin.2009.05.007
    [22] Ding S B, Wang Z S, Wang J D, Zhang H G. H state estimation for memristive neural networks with time-varying delays:the discrete-time case. Neural Networks, 2016, 84:47-56 doi: 10.1016/j.neunet.2016.08.002
    [23] Zhang H G, Luo Y H, Liu D R. Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints. IEEE Transactions on Neural Networks, 2009, 20(9):1490-1503 doi: 10.1109/TNN.2009.2027233
    [24] Torres F, Jecko B. Complete FDTD analysis of microwave heating processes in frequency-dependent and temperature-dependent media. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(1):108-117 doi: 10.1109/22.552039
    [25] 陈虹, 韩光信, 刘志远.基于LMI的约束系统H控制及其滚动优化实现.控制理论与应用, 2005, 22(2):189-195 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy200502005

    Chen Hong, Han Guang-Xin, Liu Zhi-Yuan. LMI-based H control scheme for constrained systems and its moving horizon implementation. Control Theory and Applications, 2005, 22(2):189-195 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy200502005
    [26] Yu L, Chu J. An LMI approach to guaranteed cost control of linear uncertain time-delay systems. Automatica, 1999, 35(6):1155-1159 doi: 10.1016/S0005-1098(99)00007-2
    [27] Khargonekar P P, Petersen I R, Zhou K. Robust stabilization of uncertain linear systems:quadratic stabilizability and H control theory. IEEE Transactions on Automatic Control, 1990, 35(3):356-361 doi: 10.1109/9.50357
    [28] 陈宁, 张小峰, 桂卫华, 李金洲.一类多通道不确定时滞大系统分散鲁棒H控制:LMI方法.控制理论与应用, 2008, 25(2):247-252 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy200802013

    Chen Ning, Zhang Xiao-Feng, Gui Wei-Hua, Li Jin-Zhou. Robust decentralized H control of multi-channel uncertain time-delay systems:an LMI approach. Control Theory and Applications, 2008, 25(2):247-252 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy200802013
    [29] 罗毅平, 周笔锋.时滞扩散性复杂网络同步保性能控制.自动化学报, 2015, 41(1):147-156 http://www.aas.net.cn/CN/abstract/abstract18592.shtml

    Luo Yi-Ping, Zhou Bi-Feng. Guaranteed cost synchronization control of diffusible complex network systems with time delay. Acta Automatica Sinica, 2015, 41(1):147-156 http://www.aas.net.cn/CN/abstract/abstract18592.shtml
    [30] Kothare M V, Balakrishnan V, Morari M. Robust constrained model predictive control using linear matrix inequalities. Automatica, 1996, 32(10):1361-1379 doi: 10.1016/0005-1098(96)00063-5
    [31] Michalski K A, Jabs H S. One-dimensional analysis of microwave batch sterilization of water with continuous impedance matching. Microwave and Optical Technology Letters, 2000, 26(2):83-89 doi: 10.1002/(ISSN)1098-2760
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  2259
  • HTML全文浏览量:  216
  • PDF下载量:  554
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-15
  • 录用日期:  2017-08-08
  • 刊出日期:  2018-08-20

目录

    /

    返回文章
    返回