[1]
|
桂卫华, 阳春华, 陈晓方, 王雅琳.有色冶金过程建模与优化的若干问题及挑战.自动化学报, 2013, 39(3): 197-207 http://www.aas.net.cn/CN/abstract/abstract17799.shtmlGui Wei-Hua, Yang Chun-Hua, Chen Xiao-Fang, Wang Ya-Lin. Modeling and optimization problems and challenges arising in nonferrous metallurgical processes. Acta Automatica Sinica, 2013, 39(3): 197-207 http://www.aas.net.cn/CN/abstract/abstract17799.shtml
|
[2]
|
周晓君, 阳春华, 桂卫华.全局优化视角下的有色冶金过程建模与控制.控制理论与应用, 2015, 32(9): 1158-1169 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201509004.htmZhou Xiao-Jun, Yang Chun-Hua, Gui Wei-Hua. Modeling and control of nonferrous metallurgical processes on the perspective of global optimization. Control Theory & Applications, 2015, 32(9): 1158-1169 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201509004.htm
|
[3]
|
Sun B, Gui W H, Wu T B, Wang Y L, Yang C H. An integrated prediction model of cobalt ion concentration based on oxidation-reduction potential. Hydrometallurgy, 2013, 140: 102-110 doi: 10.1016/j.hydromet.2013.09.015
|
[4]
|
Hodaifa G, Ochando-Pulido J M, Rodriguez-Vives S, Martinez-Ferez A. Optimization of continuous reactor at pilot scale for olive-oil mill wastewater treatment by Fenton-like process. Chemical Engineering Journal, 2013, 220: 117-124 doi: 10.1016/j.cej.2013.01.065
|
[5]
|
Komulainen T, Doyle Ⅲ F J, Rantala A, Jämsä-Jounela S L. Control of an industrial copper solvent extraction process. Journal of Process Control, 2009, 19(1): 2-15 doi: 10.1016/j.jprocont.2008.04.019
|
[6]
|
Yuan Q Y, Wang F L, He D K, Jia R D, Wang C. Study on the plant-wide modeling of gold hydrometallurgical process. In: Proceedings of the 26th Chinese Control and Decision Conference (2014 CCDC). Changsha, China: IEEE, 2014. 4013-4018
|
[7]
|
Liotta F, Chatellier P, Esposito G, Fabbricino M, Van Hullebusch E D, Lens P N L. Hydrodynamic mathematical modelling of aerobic plug flow and nonideal flow reactors: a critical and historical review. Critical Reviews in Environmental Science and Technology, 2014, 44(23): 2642-2673 doi: 10.1080/10643389.2013.829768
|
[8]
|
Jones P N, Özcan-Taşkin N G, Yianneskis M. The use of momentum ratio to evaluate the performance of CSTRs. Chemical Engineering Research and Design, 2009, 87(4): 485-491 doi: 10.1016/j.cherd.2008.12.005
|
[9]
|
Wang L Y, Gui W H, Teo K L, Loxton R, Yang C H. Optimal control problems arising in the zinc sulphate electrolyte purification process. Journal of Global Optimization, 2012, 54(2): 307-323 doi: 10.1007/s10898-012-9863-x
|
[10]
|
Li Y G, Gui W H, Teo K L, Zhu H Q, Chai Q Q. Optimal control for zinc solution purification based on interacting CSTR models. Journal of Process Control, 2012, 22(10): 1878-1889 doi: 10.1016/j.jprocont.2012.09.008
|
[11]
|
Saeed T, Sun G Z. Kinetic modelling of nitrogen and organics removal in vertical and horizontal flow wetlands. Water Research, 2011, 45(10): 3137-3152 doi: 10.1016/j.watres.2011.03.031
|
[12]
|
Roudsari S F, Ein-Mozaffari F, Dhib R. Use of CFD in modeling MMA solution polymerization in a CSTR. Chemical Engineering Journal, 2013, 219: 429-442 doi: 10.1016/j.cej.2012.12.049
|
[13]
|
Stark A K, Altantzis C, Bates R B, Ghoniem A F. Towards an advanced reactor network modeling framework for fluidized bed biomass gasification: incorporating information from detailed CFD simulations. Chemical Engineering Journal, 2016, 303: 409-424 doi: 10.1016/j.cej.2016.06.026
|
[14]
|
Zhang B, Yang C H, Zhu H Q, Li Y G, Gui W H. Kinetic modeling and parameter estimation for competing reactions in copper removal process from zinc sulfate solution. Industrial & Engineering Chemistry Research, 2013, 52(48): 17074-17086
|
[15]
|
Fugleberg S, Järvinen A, Yllö E. Recent development in solution purification at Outokumpu zinc plant, Kokkola. In: Proceedings of the 1993 International Symposium on World Zinc'93. Victoria, Australia: Australasian Institute of Mining and Metallurgy, 1993. 241-247
|
[16]
|
Tozawa K, Nishimura T, Akahori M, Malaga M A. Comparison between purification processes for zinc leach solutions with arsenic and antimony trioxides. Hydrometallurgy, 1992, 30(1-3): 445-461 doi: 10.1016/0304-386X(92)90099-L
|
[17]
|
Nelson A, Demopoulos G P, Houlachi G. The effect of solution constituents and novel activators on cobalt cementation. Canadian Metallurgical Quarterly, 2000, 39(2): 175-186 doi: 10.1179/cmq.2000.39.2.175
|
[18]
|
Nelson A, Wang W, Demopoulos G P, Houlachi G. The removal of cobalt from zinc electrolyte by cementation: a critical review. Mineral Processing and Extractive Metallurgy Review, 2000, 20(4-6): 325-356 doi: 10.1080/08827500008547436
|
[19]
|
Boyanov B, Konareva V, Kolev N. Removal of cobalt and nickel from zinc sulphate solutions using activated cementation. Journal of Mining and Metallurgy, Section B: Metallurgy, 2004, 40(1): 41-55 doi: 10.2298/JMMB0401041B
|
[20]
|
Näsi J. Statistical analysis of cobalt removal from zinc electrolyte using the arsenic-activated process. Hydrometallurgy, 2004, 73(1-2): 123-132 doi: 10.1016/j.hydromet.2003.09.005
|
[21]
|
赵光明, 李向阳, 张广积, 杨超.铜离子在硫酸锌电解液深度净化除钴中的作用.过程工程学报, 2010, 10(3): 482-487 http://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ201003012.htmZhao Guang-Ming, Li Xiang-Yang, Zhang Guang-Ji, Yang Chao. Effect of copper ions on deep removal of cobalt from zinc sulfate solution. The Chinese Journal of Process Engineering, 2010, 10(3): 482-487 http://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ201003012.htm
|
[22]
|
Zeng G S, Xie G, Yang D J, Wang J K, Li X, Li R X. The effect of cadmium ion on cobalt removal from zinc sulfate solution. Minerals Engineering, 2006, 19(2): 197-200 doi: 10.1016/j.mineng.2005.05.010
|
[23]
|
Buzzi-Ferraris G, Manenti F. Kinetic models analysis. Chemical Engineering Science, 2009, 64(5): 1061-1074 doi: 10.1016/j.ces.2008.10.062
|
[24]
|
Pantelides C C, Renfro J G. The online use of first-principles models in process operations: review, current status and future needs. Computers & Chemical Engineering, 2013, 51: 136-148
|
[25]
|
Deng J, Huang B. Identification of nonlinear parameter varying systems with missing output data. AIChE Journal, 2012, 58(11): 3454-3467 doi: 10.1002/aic.13735
|
[26]
|
Jin X, Huang B, Shook D S. Multiple model LPV approach to nonlinear process identification with EM algorithm. Journal of Process Control, 2011, 21(1): 182-193 doi: 10.1016/j.jprocont.2010.11.008
|
[27]
|
Wang X F, Chen J D, Liu C B, Pan F. Hybrid modeling of penicillin fermentation process based on least square support vector machine. Chemical Engineering Research and Design, 2010, 88(4): 415-420 doi: 10.1016/j.cherd.2009.08.010
|
[28]
|
于亮, 毛志忠, 贾润达.基于ICA-LSSVM的铜萃取混合模型.东北大学学报(自然科学版), 2014, 35(10): 1369-1372 doi: 10.3969/j.issn.1005-3026.2014.10.001Yu Liang, Mao Zhi-Zhong, Jia Run-Da. Hybrid model based on ICA-LSSVM for copper extraction. Journal of Northeastern University (Natural Science), 2014, 35(10): 1369-1372 doi: 10.3969/j.issn.1005-3026.2014.10.001
|
[29]
|
Grbić R, Slišković D, Kadlec P. Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models. Computers & Chemical Engineering, 2013, 58: 84-97
|
[30]
|
He K X, Cheng H, Du W L, Qian F. Online updating of NIR model and its industrial application via adaptive wavelength selection and local regression strategy. Chemometrics and Intelligent Laboratory Systems, 2014, 134: 79-88 doi: 10.1016/j.chemolab.2014.03.007
|
[31]
|
Xie Y F, Xie S W, Chen X F, Gui W H, Yang C H, Caccetta L. An integrated predictive model with an on-line updating strategy for iron precipitation in zinc hydrometallurgy. Hydrometallurgy, 2015, 151: 62-72 doi: 10.1016/j.hydromet.2014.11.004
|
[32]
|
Zhang B, Yang C H, Li Y G, Wang X L, Zhu H Q, Gui W H. Additive requirement ratio prediction using trend distribution features for hydrometallurgical purification processes. Control Engineering Practice, 2016, 46: 10-25 doi: 10.1016/j.conengprac.2015.09.006
|
[33]
|
Sun B, Gui W H, Wang Y L, Yang C H, He M F. A gradient optimization scheme for solution purification process. Control Engineering Practice, 2015, 44: 89-103 doi: 10.1016/j.conengprac.2015.07.008
|
[34]
|
谢世文, 谢永芳, 阳春华, 蒋朝辉, 桂卫华.针铁矿法沉铁过程亚铁离子浓度预测.自动化学报, 2014, 40(5): 830-837 http://www.aas.net.cn/CN/abstract/abstract18351.shtmlXie Shi-Wen, Xie Yong-Fang, Yang Chun-Hua, Jiang Zhao-Hui, Gui Wei-Hua. A ferrous iron concentration prediction model for the process of iron precipitation by goethite. Acta Automatica Sinica, 2014, 40(5): 830-837 http://www.aas.net.cn/CN/abstract/abstract18351.shtml
|
[35]
|
谢世文, 谢永芳, 李勇刚, 阳春华, 桂卫华.湿法炼锌沉铁过程氧化速率优化控制.自动化学报, 2015, 41(12): 2036-2046 http://www.aas.net.cn/CN/abstract/abstract18777.shtmlXie Shi-Wen, Xie Yong-Fang, Li Yong-Gang, Yang Chun-Hua, Gui Wei-Hua. Optimal control of oxidizing rate for iron precipitation process in zinc hydrometallurgy. Acta Automatica Sinica, 2015, 41(12): 2036-2046 http://www.aas.net.cn/CN/abstract/abstract18777.shtml
|
[36]
|
Zhang B, Yang C H, Zhu H Q, Li Y G, Gui W H. Evaluation strategy for the control of the copper removal process based on oxidation-reduction potential. Chemical Engineering Journal, 2016, 284: 294-304 doi: 10.1016/j.cej.2015.07.094
|
[37]
|
Sun B, Gui W H, Wang Y L, Yang C H. Intelligent optimal setting control of a cobalt removal process. Journal of Process Control, 2014, 24(5): 586-599 doi: 10.1016/j.jprocont.2014.03.002
|
[38]
|
Sun B, Yang C H, Gui W H. A discussion of the control of nonferrous metallurgical processes. IFAC-PapersOnLine, 2015, 48(17): 80-85 doi: 10.1016/j.ifacol.2015.10.082
|
[39]
|
Børve K, Østvold T. Norzink removal of cobalt from zinc sulphate electrolytes. In: Proceedings of the 1994 International Symposium "Hydrometallurgy'94". Cambridge, England: Springer, 1994. 563-577
|
[40]
|
Antonelli R, Astolfi A. Continuous stirred tank reactors: easy to stabilise? Automatica, 2003, 39(10): 1817-1827
|
[41]
|
Wu F. LMI-based robust model predictive control and its application to an industrial CSTR problem. Journal of Process Control, 2001, 11(6): 649-659 doi: 10.1016/S0959-1524(00)00052-4
|
[42]
|
Knapp T D, Budman H M, Broderick G. Adaptive control of a CSTR with a neural network model. Journal of Process Control, 2001, 11(1): 53-68 doi: 10.1016/S0959-1524(99)00065-7
|
[43]
|
Yu D L, Chang K T, Yu D W. A stable self-learning PID control for multivariable time varying systems. Control Engineering Practice, 2007, 15(12): 1577-1587 doi: 10.1016/j.conengprac.2007.02.004
|
[44]
|
Di Ciccio M P, Bottini M, Pepe P, Foscolo P U. Observer-based nonlinear control law for a continuous stirred tank reactor with recycle. Chemical Engineering Science, 2011, 66(20): 4780-4797 doi: 10.1016/j.ces.2011.06.038
|
[45]
|
Hoang H, Couenne F, Jallut C, Le Gorrec Y. Lyapunov-based control of non isothermal continuous stirred tank reactors using irreversible thermodynamics. Journal of Process Control, 2012, 22(2): 412-422 doi: 10.1016/j.jprocont.2011.12.007
|
[46]
|
Chai T Y, Qin S J, Wang H. Optimal operational control for complex industrial processes. Annual Reviews in Control, 2014, 38(1): 81-92 doi: 10.1016/j.arcontrol.2014.03.005
|
[47]
|
伍铁斌, 阳春华, 李勇刚, 朱红求, 桂卫华.基于模糊操作模式的砷盐除钴过程操作参数协同优化.自动化学报, 2014, 40(8): 1690-1698 http://www.aas.net.cn/CN/abstract/abstract18436.shtmlWu Tie-Bin, Yang Chun-Hua, Li Yong-Gang, Zhu Hong-Qiu, Gui Wei-Hua. Fuzzy operational-pattern based operating parameters collaborative optimization of cobalt removal process with arsenic salt. Acta Automatica Sinica, 2014, 40(8): 1690-1698 http://www.aas.net.cn/CN/abstract/abstract18436.shtml
|
[48]
|
Kim S I, Kim K E, Park E K, Song S W, Jung S. Estimation methods for efficiency of additive in removing impurity in hydrometallurgical purification process. Hydrometallurgy, 2007, 89(3-4): 242-252 doi: 10.1016/j.hydromet.2007.07.009
|
[49]
|
Xie Y F, Xie S W, Li Y G, Yang C H, Gui W H. Dynamic modeling and optimal control of goethite process based on the rate-controlling step. Control Engineering Practice, 2017, 58: 54-65 doi: 10.1016/j.conengprac.2016.10.001
|
[50]
|
Zhang B, Yang C H, Gui W H. Control strategy for hydrometallurgical removal process based on modelling and evaluation. IFAC-PapersOnLine, 2016, 49(20): 161-166 doi: 10.1016/j.ifacol.2016.10.114
|
[51]
|
柴天佑, 李少远, 王宏.网络信息模式下复杂工业过程建模与控制.自动化学报, 2013, 39(5): 469-470 http://www.aas.net.cn/CN/abstract/abstract17922.shtmlChai Tian-You, Li Shao-Yuan, Wang Hong. Modeling and control for complex industrial processes in networked information. Acta Automatica Sinica, 2013, 39(5): 469-470 http://www.aas.net.cn/CN/abstract/abstract17922.shtml
|
[52]
|
刘强, 秦泗钊.过程工业大数据建模研究展望.自动化学报, 2016, 42(2): 161-171 http://www.aas.net.cn/CN/abstract/abstract18807.shtmlLiu Qiang, Qin S. Joe. Perspectives on big data modeling of process industries. Acta Automatica Sinica, 2016, 42(2): 161-171 http://www.aas.net.cn/CN/abstract/abstract18807.shtml
|
[53]
|
桂卫华, 陈晓方, 阳春华, 谢永芳.知识自动化及工业应用.中国科学:信息科学, 2016, 46(8): 1016-1034 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201608006.htmGui Wei-Hua, Chen Xiao-Fang, Yang Chun-Hua, Xie Yong-Fang. Knowledge automation and its industrial application. Scientia Sinica: Informationis, 2016, 46(8): 1016-1034 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201608006.htm
|