2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量化依赖Lyapunov函数的有界丢包网络控制系统的保成本控制

唐晓铭 杨爽 虞继敏 屈洪春

唐晓铭, 杨爽, 虞继敏, 屈洪春. 基于量化依赖Lyapunov函数的有界丢包网络控制系统的保成本控制. 自动化学报, 2018, 44(8): 1381-1390. doi: 10.16383/j.aas.2017.c170140
引用本文: 唐晓铭, 杨爽, 虞继敏, 屈洪春. 基于量化依赖Lyapunov函数的有界丢包网络控制系统的保成本控制. 自动化学报, 2018, 44(8): 1381-1390. doi: 10.16383/j.aas.2017.c170140
TANG Xiao-Ming, YANG Shuang, YU Ji-Min, QU Hong-Chun. Guaranteed Cost Control of Networked Control Systems With Bounded Packet Loss Based on Quantization Dependent Lyapunov Function. ACTA AUTOMATICA SINICA, 2018, 44(8): 1381-1390. doi: 10.16383/j.aas.2017.c170140
Citation: TANG Xiao-Ming, YANG Shuang, YU Ji-Min, QU Hong-Chun. Guaranteed Cost Control of Networked Control Systems With Bounded Packet Loss Based on Quantization Dependent Lyapunov Function. ACTA AUTOMATICA SINICA, 2018, 44(8): 1381-1390. doi: 10.16383/j.aas.2017.c170140

基于量化依赖Lyapunov函数的有界丢包网络控制系统的保成本控制

doi: 10.16383/j.aas.2017.c170140
基金项目: 

国家自然科学基金 61374093

国家自然科学基金 61403055

重庆市基础与前沿研究项目 cstc2018jcyjAX0691

重庆市基础与前沿研究项目 cstc2017jcyjAX0453

详细信息
    作者简介:

    杨爽  重庆邮电大学自动化学院硕士研究生. 2016年获得重庆邮电大学学士学位.主要研究方向为网络控制, 预测控制. E-mail: yangshnn@163.com

    虞继敏  重庆邮电大学自动化学院教授.2003年获得郑州大学博士学位.主要研究方向为非线性控制理论, 智能算法.E-mail:yujm@cqupt.edu.cn

    屈洪春  重庆邮电大学自动化学院教授.2009年获得重庆大学博士学位.主要研究方向为仿真计算模型, 模式识别.E-mail:quhc@cqupt.edu.cn

    通讯作者:

    唐晓铭  重庆邮电大学自动化学院副教授.美国德克萨斯大学阿灵顿分校博士后. 2013年获得重庆大学博士学位.主要研究方向为网络控制, 预测控制.本文通信作者. E-mail: txmmyeye@126.com

Guaranteed Cost Control of Networked Control Systems With Bounded Packet Loss Based on Quantization Dependent Lyapunov Function

Funds: 

National Natural Science Foundation of China 61374093

National Natural Science Foundation of China 61403055

the Research Project of Chongqing Science and Technology Commission cstc2018jcyjAX0691

the Research Project of Chongqing Science and Technology Commission cstc2017jcyjAX0453

More Information
    Author Bio:

     Master student at the College of Automation, Chongqing University of Posts and Telecommunications. She received her bachelor degree from Chongqing University of Posts and Telecommunications in 2016. Her research interest covers networked control systems and model predictive control

     Professor at the College of Automation, Chongqing University of Posts and Telecommunications. He received his Ph. D. degree from Zhengzhou University in 2003. His research interest covers nonlinear control theory and intelligent algorithms

     Professor at the College of Automation, Chongqing University of Posts and Telecommunications. He received his Ph. D. degree from Chongqing University in 2009. His research interest covers simulation calculation model and pattern recognition

    Corresponding author: TANG Xiao-Ming  Associate professor at the College of Automation, Chongqing University of Posts and Telecommunications, and postdoctor at the University of Texas at Arlington, USA. He received his Ph. D. degree from Chongqing University in 2013. His research interest covers networked control systems and model predictive control. Corresponding author of this paper
  • 摘要: 研究了一类具有有界丢包的网络控制系统(Networked control systems,NCSs)的保成本控制问题,提出了一种包含量化反馈的网络控制系统数学模型,该模型将系统的镇定问题转化为镇定一系列子系统的鲁棒控制问题.在对网络控制系统的分析中,区别于常用的二次型Lyapunov函数,本文采用了一种新的且能够降低保守性的量化依赖Lyapunov函数方法.基于本文的Lyapunov函数,得到了充分考虑丢包过程的保成本控制器的设计方法.仿真算例验证了所给出方法的有效性.
    1)  本文责任编委 吴立刚
  • 图  1  NCS结构图

    Fig.  1  The structure of NCS

    图  2  网络环节的数据传输状态

    Fig.  2  The status of data transmission

    图  3  单输入系统状态响应及控制输入

    Fig.  3  The state responses and control input of the single-input system

    图  4  多输入系统状态响应及控制输入

    Fig.  4  The state responses and control input of the multiple-input system

    表  1  两种Lyapunov函数方法下的反馈增益$K$及性能指标$J$对比

    Table  1  Comparison of feedback gain $K$ and performance index $J$ values using two Lyapunov function methods

    系统量化密度$\rho$值方法反馈增益$K$值性能指标$J$值
    单输入$\rho=0.1754$量化依赖Lyapunov方法$\left[\begin{array}{ccc} -0.5888 & -1.6344 \end{array}\right]$$0.0022$
    [25]中二次型Lyapunov方法不可行不可行
    $\rho=0.3404$量化依赖Lyapunov方法$\left[\begin{array}{ccc}-0.6563 & -1.5303\end{array}\right]$$0.0020$
    [25]中二次型Lyapunov方法$\left[\begin{array}{ccc}-0.4870 & -1.0089\end{array}\right]$$0.0022$
    $\rho=0.3918$量化依赖Lyapunov方法$\left[\begin{array}{ccc}-0.6691 & -1.5135\end{array}\right]$$0.0018$
    [25]中二次型Lyapunov方法$\left[\begin{array}{ccc}-0.5079 & -1.0487\end{array}\right]$$0.0020$
    $\rho=0.4286$量化依赖Lyapunov方法$\left[\begin{array}{ccc}-0.6764 & -1.5042\end{array}\right]$$0.0019$
    [25]中二次型Lyapunov方法$\left[\begin{array}{ccc}-0.5214 & -1.0764\end{array}\right]$$0.0020$
    $\rho=0.6015$量化依赖Lyapunov方法$\left[\begin{array}{ccc}-0.7054 & -1.4931\end{array}\right]$$0.0034$
    [25]中二次型Lyapunov方法$\left[\begin{array}{ccc}-0.5835 & -1.2062\end{array}\right]$$0.0035$
    多输入$\rho=0.1754$量化依赖Lyapunov方法$\left[\begin{array}{ccc} -0.0642 & -0.0508\\ 0.0173 & -0.0746 \end{array}\right]$$0.0016$
    [25]中二次型Lyapunov方法不可行不可行
    $\rho=0.4286$量化依赖Lyapunov方法$\left[\begin{array}{ccc} -0.1380 & -0.0674\\ 0.0035 & -0.1285\end{array}\right]$$0.0007$
    [25]中二次型Lyapunov方法$\left[\begin{array}{ccc}-0.0717 & -0.0274\\0.0122 & -0.1371\end{array}\right]$$0.0012$
    $\rho=0.6794$量化依赖Lyapunov方法$\left[\begin{array}{ccc} -0.1286 & -0.0582\\ 0.1125 & -0.0763\end{array}\right]$$0.0005$
    [25]中二次型Lyapunov方法$\left[\begin{array}{ccc}-0.1085 & -0.0579\\0.0833 & -0.0777\end{array}\right]$$0.0007$
    $\rho=0.9625$量化依赖Lyapunov方法$\left[\begin{array}{ccc} -0.2041 & -0.0577\\ 0.1914 & -0.1517\end{array}\right]$$0.0003$
    [25]中二次型Lyapunov方法$\left[\begin{array}{ccc}-0.1455 & -0.0601\\0.1445 & -0.0785\end{array}\right]$$0.0004$
    下载: 导出CSV
  • [1] Hespanha J P, Naghshtabrizi P, Xu Y G. A survey of recent results in networked control systems. Proceedings of the IEEE, 2007, 95(1):138-162 doi: 10.1109/JPROC.2006.887288
    [2] Walsh G C, Ye H, Bushnell L G. Stability analysis of networked control systems. IEEE Transactions on Control Systems Technology, 2002, 10(3):438-446 doi: 10.1109/87.998034
    [3] 孙业国, 秦世引.有界丢包网络控制系统的稳定性与能稳性.自动化学报, 2011, 37(1):113-117 http://www.aas.net.cn/CN/abstract/abstract17413.shtml

    Sun Ye-Guo, Qin Shi-Yin. Stability and stabilization of networked control systems with bounded packet dropout. Acta Automatica Sinica, 2011, 37(1):113-117 http://www.aas.net.cn/CN/abstract/abstract17413.shtml
    [4] Tang X M, Ding B C. Model predictive control of linear systems over networks with data quantizations and packet losses. Automatica, 2013, 49(5):1333-1339 doi: 10.1016/j.automatica.2013.02.033
    [5] 游科友, 谢立华.网络控制系统的最新研究综述.自动化学报, 2013, 39(2):101-118 http://www.aas.net.cn/CN/abstract/abstract17806.shtml

    You Ke-You, Xie Li-Hua. Survey of recent progress in networked control systems. Acta Automatica Sinica, 2013, 39(2):101-118 http://www.aas.net.cn/CN/abstract/abstract17806.shtml
    [6] Shi P, Zhang Y Q, Chadli M, Agarwal R K. Mixed H-infinity and passive filtering for discrete fuzzy neural networks with stochastic jumps and time delays. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(4):903-909 doi: 10.1109/TNNLS.2015.2425962
    [7] Seiler P, Sengupta R. An H approach to networked control. IEEE Transactions on Automatic Control, 2005, 50(3):356-364 doi: 10.1109/TAC.2005.844177
    [8] Zou Y Y, Lam J, Niu Y G, Li D W. Constrained predictive control synthesis for quantized systems with Markovian data loss. Automatica, 2015, 55:217-225 doi: 10.1016/j.automatica.2015.03.016
    [9] Zhang W, Branicky M S, Phillips S M. Stability of networked control systems. IEEE Control Systems Magazine, 2001, 21(1):84-99 doi: 10.1109/37.898794
    [10] 魏善碧, 丁宝苍, 柴毅.有界丢包网络环境下不确定系统的预测控制.控制与决策, 2009, 24(9):1326-1330 doi: 10.3321/j.issn:1001-0920.2009.09.009

    Wei Shan-Bi, Ding Bao-Cang, Chai Yi. Predictive control of uncertain systems under networked environment with bounded packet loss. Control and Decision, 2009, 24(9):1326-1330 doi: 10.3321/j.issn:1001-0920.2009.09.009
    [11] Ding B C. A synthesis approach of model predictive control for linear systems over networks with bounded packet loss. In: Proceedings of the 8th IEEE International Conference on Control and Automation (ICCA). Xiamen, China: IEEE, 2010. 2258-2263
    [12] Xiong J L, Lam J. Stabilization of linear systems over networks with bounded packet loss. Automatica, 2007, 43(1):80-87 doi: 10.1016/j.automatica.2006.07.017
    [13] Ishii H, Francis B A. Quadratic stabilization of sampled-data systems with quantization. Automatica, 2003, 39(10):1793-1800 doi: 10.1016/S0005-1098(03)00179-1
    [14] Liberzon D. Hybrid feedback stabilization of systems with quantized signals. Automatica, 2003, 39(9):1543-1554 doi: 10.1016/S0005-1098(03)00151-1
    [15] Liu J L, Elia N. Quantized feedback stabilization of non-linear affine systems. International Journal of Control, 2004, 77(3):239-249 doi: 10.1080/00207170310001655336
    [16] Bicchi A, Marigo A, Piccoli B. On the reachability of quantized control systems. IEEE Transactions on Automatic Control, 2002, 47(4):546-563 doi: 10.1109/9.995034
    [17] 王隔霞.一类非线性系统的量化控制器的设计.自动化学报, 2016, 42(1):140-144 http://www.aas.net.cn/CN/abstract/abstract18803.shtml

    Wang Ge-Xia. Design of quantizer for a class of nonlinear systems. Acta Automatica Sinica, 2016, 42(1):140-144 http://www.aas.net.cn/CN/abstract/abstract18803.shtml
    [18] Brockett R W, Liberzon D. Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control, 2000, 45(7):1279-1289 doi: 10.1109/9.867021
    [19] Fagnani F, Zampieri S. Stability analysis and synthesis for scalar linear systems with a quantized feedback. IEEE Transactions on Automatic Control, 2003, 48(9):1569-1584 doi: 10.1109/TAC.2003.816982
    [20] Ji M M, Li Z J, Zhang W D. Quantized feedback stabilization of discrete-time linear system with Markovian jump packet losses. Neurocomputing, 2015, 158:307-314 doi: 10.1016/j.neucom.2014.08.058
    [21] Zanma T, Azegami M, Liu K Z. Optimal input and quantization interval for quantized feedback system with variable quantizer. IEEE Transactions on Industrial Electronics, 2017, 64(3):2246-2254 doi: 10.1109/TIE.2016.2625240
    [22] Wakaiki M, Yamamoto Y. Stabilisation of switched systems with sampled and quantised output feedback. IET Control Theory and Applications, 2017, 11(12):1913-1921 doi: 10.1049/iet-cta.2016.1299
    [23] Li F B, Shi P, Wu L G, Basin M V, Lim C C. Quantized control design for cognitive radio networks modeled as nonlinear semi-markovian jump systems. IEEE Transactions on Industrial Electronics, 2015, 62(4):2330-2340 doi: 10.1109/TIE.2014.2351379
    [24] Elia N, Mitter S K. Stabilization of linear systems with limited information. IEEE Transactions on Automatic Control, 2001, 46(9):1384-1400 doi: 10.1109/9.948466
    [25] Fu M Y, Xie L H. The sector bound approach to quantized feedback control. IEEE Transactions on Automatic Control, 2005, 50(11):1698-1711 doi: 10.1109/TAC.2005.858689
    [26] Gao H J, Chen T W. A new approach to quantized feedback control systems. Automatica, 2008, 44(2):534-542 doi: 10.1016/j.automatica.2007.06.015
    [27] Wang F, Chen B, Lin C, Zhang J, Meng X Z. Adaptive neural network finite-time output feedback control of quantized nonlinear systems. IEEE Transactions on Cybernetics, 2017, 48(6):1839-1848 http://dblp.uni-trier.de/db/journals/tcyb/tcyb48.html#WangCLZM18
    [28] Tatikonda S, Mitter S. Control under communication constraints. IEEE Transactions on Automatic Control, 2004, 49(7):1056-1068 doi: 10.1109/TAC.2004.831187
    [29] Che W W, Mei Z Y. Robustness guaranteed cost control for discrete-time systems with dynamic quantization. In: Proceedings of the 33rd Chinese Control Conference (CCC). Nanjing, China: IEEE, 2014. 5824-5829
    [30] Duan K, Cai Y Z, Zhang W D. Stabilization of dynamic quantized system with faults. In: Proceedings of the 34th Chinese Control Conference (CCC). Hangzhou, China: IEEE, 2015. 6541-6545
    [31] Okajima H, Sawada K, Matsunaga N. Dynamic quantizer design under communication rate constraints. IEEE Transactions on Automatic Control, 2016, 61(10):3190-3196 doi: 10.1109/TAC.2015.2509438
    [32] Takahashi R, Azuma S, Hikihara T. Power regulation with predictive dynamic quantizer in power packet dispatching system. IEEE Transactions on Industrial Electronics, 2016, 63(12):7653-7661 doi: 10.1109/TIE.2016.2591898
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  2131
  • HTML全文浏览量:  222
  • PDF下载量:  917
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-15
  • 录用日期:  2017-08-02
  • 刊出日期:  2018-08-20

目录

    /

    返回文章
    返回