Guaranteed Cost Control of Networked Control Systems With Bounded Packet Loss Based on Quantization Dependent Lyapunov Function
-
摘要: 研究了一类具有有界丢包的网络控制系统(Networked control systems,NCSs)的保成本控制问题,提出了一种包含量化反馈的网络控制系统数学模型,该模型将系统的镇定问题转化为镇定一系列子系统的鲁棒控制问题.在对网络控制系统的分析中,区别于常用的二次型Lyapunov函数,本文采用了一种新的且能够降低保守性的量化依赖Lyapunov函数方法.基于本文的Lyapunov函数,得到了充分考虑丢包过程的保成本控制器的设计方法.仿真算例验证了所给出方法的有效性.
-
关键词:
- 网络控制系统 /
- 保成本控制 /
- 量化反馈 /
- Lyapunov函数
Abstract: This paper investigates modeling and guaranteed cost control of quantized feedback systems over networks with bounded packet loss. The model of the networked control systems, which appropriately incorporates quantized feedback, is established in terms of robust control which transforms the problem of stabilization of networked control systems with packet loss into the problem of robust stabilization of a class of subsystems. Unlike the quadratic Lyapunov function which is normally used in analyzing networked control systems, this paper presents a new approach that can significantly reduce conservativeness by taking the quantization dependent Lyapunov function. Based on the provided Lyapunov function, a guaranteed cost state feedback controller is derived, which explicitly considers the packet loss process. A numerical example illustrates the effectiveness of the proposed method. -
-
表 1 两种Lyapunov函数方法下的反馈增益$K$及性能指标$J$对比
Table 1 Comparison of feedback gain $K$ and performance index $J$ values using two Lyapunov function methods
系统 量化密度$\rho$值 方法 反馈增益$K$值 性能指标$J$值 单输入 $\rho=0.1754$ 量化依赖Lyapunov方法 $\left[\begin{array}{ccc} -0.5888 & -1.6344 \end{array}\right]$ $0.0022$ [25]中二次型Lyapunov方法 不可行 不可行 $\rho=0.3404$ 量化依赖Lyapunov方法 $\left[\begin{array}{ccc}-0.6563 & -1.5303\end{array}\right]$ $0.0020$ [25]中二次型Lyapunov方法 $\left[\begin{array}{ccc}-0.4870 & -1.0089\end{array}\right]$ $0.0022$ $\rho=0.3918$ 量化依赖Lyapunov方法 $\left[\begin{array}{ccc}-0.6691 & -1.5135\end{array}\right]$ $0.0018$ [25]中二次型Lyapunov方法 $\left[\begin{array}{ccc}-0.5079 & -1.0487\end{array}\right]$ $0.0020$ $\rho=0.4286$ 量化依赖Lyapunov方法 $\left[\begin{array}{ccc}-0.6764 & -1.5042\end{array}\right]$ $0.0019$ [25]中二次型Lyapunov方法 $\left[\begin{array}{ccc}-0.5214 & -1.0764\end{array}\right]$ $0.0020$ $\rho=0.6015$ 量化依赖Lyapunov方法 $\left[\begin{array}{ccc}-0.7054 & -1.4931\end{array}\right]$ $0.0034$ [25]中二次型Lyapunov方法 $\left[\begin{array}{ccc}-0.5835 & -1.2062\end{array}\right]$ $0.0035$ 多输入 $\rho=0.1754$ 量化依赖Lyapunov方法 $\left[\begin{array}{ccc} -0.0642 & -0.0508\\ 0.0173 & -0.0746 \end{array}\right]$ $0.0016$ [25]中二次型Lyapunov方法 不可行 不可行 $\rho=0.4286$ 量化依赖Lyapunov方法 $\left[\begin{array}{ccc} -0.1380 & -0.0674\\ 0.0035 & -0.1285\end{array}\right]$ $0.0007$ [25]中二次型Lyapunov方法 $\left[\begin{array}{ccc}-0.0717 & -0.0274\\0.0122 & -0.1371\end{array}\right]$ $0.0012$ $\rho=0.6794$ 量化依赖Lyapunov方法 $\left[\begin{array}{ccc} -0.1286 & -0.0582\\ 0.1125 & -0.0763\end{array}\right]$ $0.0005$ [25]中二次型Lyapunov方法 $\left[\begin{array}{ccc}-0.1085 & -0.0579\\0.0833 & -0.0777\end{array}\right]$ $0.0007$ $\rho=0.9625$ 量化依赖Lyapunov方法 $\left[\begin{array}{ccc} -0.2041 & -0.0577\\ 0.1914 & -0.1517\end{array}\right]$ $0.0003$ [25]中二次型Lyapunov方法 $\left[\begin{array}{ccc}-0.1455 & -0.0601\\0.1445 & -0.0785\end{array}\right]$ $0.0004$ -
[1] Hespanha J P, Naghshtabrizi P, Xu Y G. A survey of recent results in networked control systems. Proceedings of the IEEE, 2007, 95(1):138-162 doi: 10.1109/JPROC.2006.887288 [2] Walsh G C, Ye H, Bushnell L G. Stability analysis of networked control systems. IEEE Transactions on Control Systems Technology, 2002, 10(3):438-446 doi: 10.1109/87.998034 [3] 孙业国, 秦世引.有界丢包网络控制系统的稳定性与能稳性.自动化学报, 2011, 37(1):113-117 http://www.aas.net.cn/CN/abstract/abstract17413.shtmlSun Ye-Guo, Qin Shi-Yin. Stability and stabilization of networked control systems with bounded packet dropout. Acta Automatica Sinica, 2011, 37(1):113-117 http://www.aas.net.cn/CN/abstract/abstract17413.shtml [4] Tang X M, Ding B C. Model predictive control of linear systems over networks with data quantizations and packet losses. Automatica, 2013, 49(5):1333-1339 doi: 10.1016/j.automatica.2013.02.033 [5] 游科友, 谢立华.网络控制系统的最新研究综述.自动化学报, 2013, 39(2):101-118 http://www.aas.net.cn/CN/abstract/abstract17806.shtmlYou Ke-You, Xie Li-Hua. Survey of recent progress in networked control systems. Acta Automatica Sinica, 2013, 39(2):101-118 http://www.aas.net.cn/CN/abstract/abstract17806.shtml [6] Shi P, Zhang Y Q, Chadli M, Agarwal R K. Mixed H-infinity and passive filtering for discrete fuzzy neural networks with stochastic jumps and time delays. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(4):903-909 doi: 10.1109/TNNLS.2015.2425962 [7] Seiler P, Sengupta R. An H∞ approach to networked control. IEEE Transactions on Automatic Control, 2005, 50(3):356-364 doi: 10.1109/TAC.2005.844177 [8] Zou Y Y, Lam J, Niu Y G, Li D W. Constrained predictive control synthesis for quantized systems with Markovian data loss. Automatica, 2015, 55:217-225 doi: 10.1016/j.automatica.2015.03.016 [9] Zhang W, Branicky M S, Phillips S M. Stability of networked control systems. IEEE Control Systems Magazine, 2001, 21(1):84-99 doi: 10.1109/37.898794 [10] 魏善碧, 丁宝苍, 柴毅.有界丢包网络环境下不确定系统的预测控制.控制与决策, 2009, 24(9):1326-1330 doi: 10.3321/j.issn:1001-0920.2009.09.009Wei Shan-Bi, Ding Bao-Cang, Chai Yi. Predictive control of uncertain systems under networked environment with bounded packet loss. Control and Decision, 2009, 24(9):1326-1330 doi: 10.3321/j.issn:1001-0920.2009.09.009 [11] Ding B C. A synthesis approach of model predictive control for linear systems over networks with bounded packet loss. In: Proceedings of the 8th IEEE International Conference on Control and Automation (ICCA). Xiamen, China: IEEE, 2010. 2258-2263 [12] Xiong J L, Lam J. Stabilization of linear systems over networks with bounded packet loss. Automatica, 2007, 43(1):80-87 doi: 10.1016/j.automatica.2006.07.017 [13] Ishii H, Francis B A. Quadratic stabilization of sampled-data systems with quantization. Automatica, 2003, 39(10):1793-1800 doi: 10.1016/S0005-1098(03)00179-1 [14] Liberzon D. Hybrid feedback stabilization of systems with quantized signals. Automatica, 2003, 39(9):1543-1554 doi: 10.1016/S0005-1098(03)00151-1 [15] Liu J L, Elia N. Quantized feedback stabilization of non-linear affine systems. International Journal of Control, 2004, 77(3):239-249 doi: 10.1080/00207170310001655336 [16] Bicchi A, Marigo A, Piccoli B. On the reachability of quantized control systems. IEEE Transactions on Automatic Control, 2002, 47(4):546-563 doi: 10.1109/9.995034 [17] 王隔霞.一类非线性系统的量化控制器的设计.自动化学报, 2016, 42(1):140-144 http://www.aas.net.cn/CN/abstract/abstract18803.shtmlWang Ge-Xia. Design of quantizer for a class of nonlinear systems. Acta Automatica Sinica, 2016, 42(1):140-144 http://www.aas.net.cn/CN/abstract/abstract18803.shtml [18] Brockett R W, Liberzon D. Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control, 2000, 45(7):1279-1289 doi: 10.1109/9.867021 [19] Fagnani F, Zampieri S. Stability analysis and synthesis for scalar linear systems with a quantized feedback. IEEE Transactions on Automatic Control, 2003, 48(9):1569-1584 doi: 10.1109/TAC.2003.816982 [20] Ji M M, Li Z J, Zhang W D. Quantized feedback stabilization of discrete-time linear system with Markovian jump packet losses. Neurocomputing, 2015, 158:307-314 doi: 10.1016/j.neucom.2014.08.058 [21] Zanma T, Azegami M, Liu K Z. Optimal input and quantization interval for quantized feedback system with variable quantizer. IEEE Transactions on Industrial Electronics, 2017, 64(3):2246-2254 doi: 10.1109/TIE.2016.2625240 [22] Wakaiki M, Yamamoto Y. Stabilisation of switched systems with sampled and quantised output feedback. IET Control Theory and Applications, 2017, 11(12):1913-1921 doi: 10.1049/iet-cta.2016.1299 [23] Li F B, Shi P, Wu L G, Basin M V, Lim C C. Quantized control design for cognitive radio networks modeled as nonlinear semi-markovian jump systems. IEEE Transactions on Industrial Electronics, 2015, 62(4):2330-2340 doi: 10.1109/TIE.2014.2351379 [24] Elia N, Mitter S K. Stabilization of linear systems with limited information. IEEE Transactions on Automatic Control, 2001, 46(9):1384-1400 doi: 10.1109/9.948466 [25] Fu M Y, Xie L H. The sector bound approach to quantized feedback control. IEEE Transactions on Automatic Control, 2005, 50(11):1698-1711 doi: 10.1109/TAC.2005.858689 [26] Gao H J, Chen T W. A new approach to quantized feedback control systems. Automatica, 2008, 44(2):534-542 doi: 10.1016/j.automatica.2007.06.015 [27] Wang F, Chen B, Lin C, Zhang J, Meng X Z. Adaptive neural network finite-time output feedback control of quantized nonlinear systems. IEEE Transactions on Cybernetics, 2017, 48(6):1839-1848 http://dblp.uni-trier.de/db/journals/tcyb/tcyb48.html#WangCLZM18 [28] Tatikonda S, Mitter S. Control under communication constraints. IEEE Transactions on Automatic Control, 2004, 49(7):1056-1068 doi: 10.1109/TAC.2004.831187 [29] Che W W, Mei Z Y. Robustness guaranteed cost control for discrete-time systems with dynamic quantization. In: Proceedings of the 33rd Chinese Control Conference (CCC). Nanjing, China: IEEE, 2014. 5824-5829 [30] Duan K, Cai Y Z, Zhang W D. Stabilization of dynamic quantized system with faults. In: Proceedings of the 34th Chinese Control Conference (CCC). Hangzhou, China: IEEE, 2015. 6541-6545 [31] Okajima H, Sawada K, Matsunaga N. Dynamic quantizer design under communication rate constraints. IEEE Transactions on Automatic Control, 2016, 61(10):3190-3196 doi: 10.1109/TAC.2015.2509438 [32] Takahashi R, Azuma S, Hikihara T. Power regulation with predictive dynamic quantizer in power packet dispatching system. IEEE Transactions on Industrial Electronics, 2016, 63(12):7653-7661 doi: 10.1109/TIE.2016.2591898 期刊类型引用(9)
1. 马金旭,陶庆,刘景轩,赵暮超,胡学政. 改进FBCSP和CNN的运动想象脑电信号分类. 科学技术与工程. 2024(27): 11726-11732 . 百度学术
2. 罗靖,王耀杰,刘光明,王晓帆,鲁晓锋,黑新宏. 面向运动想象脑电图识别的镜卷积神经网络. 中国图象图形学报. 2021(09): 2257-2269 . 百度学术
3. 燕桢,张立新. 脑机接口在康复治疗中的应用. 中国康复医学杂志. 2020(02): 228-232 . 百度学术
4. 张宪法,郝矿荣,陈磊. 免疫多域特征融合的多核学习SVM运动想象脑电信号分类. 自动化学报. 2020(11): 2417-2426 . 本站查看
5. 蒋贵虎,陈万忠,马迪,吴佳宝. 基于ITD和PLV的四类运动想象脑电分类方法研究. 仪器仪表学报. 2019(05): 195-202 . 百度学术
6. 李嘉伟,任立红,丁永生,陈磊. 基于免疫优化的脑电自适应集成分类方法研究. 机电工程. 2018(08): 873-879 . 百度学术
7. 柳建光,袁道任,冯少康. 运动相关脑电信号的运动意图预测方法研究. 计算机测量与控制. 2018(05): 37-41 . 百度学术
8. 孙小棋,李昕,蔡二娟,康健楠. 改进模糊熵算法及其在孤独症儿童脑电分析中的应用. 自动化学报. 2018(09): 1672-1678 . 本站查看
9. 何群,杜硕,张园园,江国乾,谢平. 融合单通道框架及多通道框架的运动想象分类. 仪器仪表学报. 2018(09): 20-29 . 百度学术
其他类型引用(22)
-