2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石油和化工行业智能优化制造若干问题及挑战

钱锋 杜文莉 钟伟民 唐漾

钱锋, 杜文莉, 钟伟民, 唐漾. 石油和化工行业智能优化制造若干问题及挑战. 自动化学报, 2017, 43(6): 893-901. doi: 10.16383/j.aas.2017.c170129
引用本文: 钱锋, 杜文莉, 钟伟民, 唐漾. 石油和化工行业智能优化制造若干问题及挑战. 自动化学报, 2017, 43(6): 893-901. doi: 10.16383/j.aas.2017.c170129
QIAN Feng, DU Wen-Li, ZHONG Wei-Min, TANG Yang. Problems and Challenges of Smart Optimization Manufacturing in Petrochemical Industries. ACTA AUTOMATICA SINICA, 2017, 43(6): 893-901. doi: 10.16383/j.aas.2017.c170129
Citation: QIAN Feng, DU Wen-Li, ZHONG Wei-Min, TANG Yang. Problems and Challenges of Smart Optimization Manufacturing in Petrochemical Industries. ACTA AUTOMATICA SINICA, 2017, 43(6): 893-901. doi: 10.16383/j.aas.2017.c170129

石油和化工行业智能优化制造若干问题及挑战

doi: 10.16383/j.aas.2017.c170129
基金项目: 

国家自然科学基金面上项目 21376077

国家科技支撑计划项目 2015BAF22B02

详细信息
    作者简介:

    钱锋 华东理工大学教授, 中国工程院院士.主要研究方向为复杂石化工业过程建模、控制与优化, 智能控制.E-mail:fqian@ecust.edu.cn

    杜文莉 华东理工大学教授.主要研究方向为控制理论与应用, 复杂工业过程建模, 控制与优化.E-mail:wldu@ecust.edu.cn

    钟伟民 华东理工大学教授.主要研究方向为工业过程建模与优化控制.E-mail:wmzhong@ecust.edu.cn

    通讯作者:

    唐漾  华东理工大学教授.主要研究方向为复杂网络和多智能体系统建模、控制与优化.E-mail:yangtang@ecust.edu.cn

Problems and Challenges of Smart Optimization Manufacturing in Petrochemical Industries

Funds: 

National Natural Science Foundation of China 21376077

National Key Scientific and Technical Project of China 2015BAF22B02

More Information
    Author Bio:

    Professor at East China University of Science and Technology, Academician of Chinese Academy of Engineering. His research interest covers modeling, control, and optimization of petrochemical complex industrial processes and intelligent control

    Professor at East China University of Science and Technology. Her research interest covers control theory and applications, modelling, control and optimization of complex industrial process

    Professor at East China University of Science and Technology. His research interest covers modeling, control and optimization of industrial process

    Corresponding author: TANG Yang Professor at East China University of Science and Technology. His research interest covers modelling, control and optimization of complex networks and multi-agent systems. Corresponding author of this paper
  • 摘要: 石油和化工行业是国家的基础性产业,目前面临转型升级的重大需求.本文首先回顾了石油和化工行业在生产全流程的信息检测、建模、优化控制,企业经营管理决策以及故障监测和安全环保等几个方面的进展.剖析了当前石油和化工行业存在的主要问题,提出了利用现代信息技术从生产、管理以及营销全流程优化出发,推进实现石化行业智能优化制造的智能化、绿色化、安全化的愿景目标,讨论了石油和化工行业智能优化制造所面临的新挑战.
    1)  本文责任编委 苏宏业
  • [1] 中国石油和化学工业联合会. 2016年中国石油和化工行业经济运行报告.中国石油和化工, 2017, 2017(3): 64-68 http://www.cnki.com.cn/Article/CJFDTOTAL-SYGD201702001.htm

    China Petroleum and Chemical Industry Federation. 2016 China petroleum and chemical industries economy and operation report. China Petroleum and Chemical Industry, 2017, 2017(3): 64-68 http://www.cnki.com.cn/Article/CJFDTOTAL-SYGD201702001.htm
    [2] Qian F, Zhong W M, Du W L. Fundamental theories and key technologies for smart and optimal manufacturing in the process industry. Engineering, 2017, 3(2): 154-160 doi: 10.1016/J.ENG.2017.02.011
    [3] 杨继刚. "智能制造+"石化行业, 打造中国石化行业升级版.中国工业评论, 2016, (6): 79 http://www.cnki.com.cn/Article/CJFDTOTAL-GYPL201606013.htm

    Yang Ji-Gang. Smart manufacturing plus petroleum and chemical industries, upgrading China petroleum and chemical industries. China Industry Review, 2016, (6): 79 http://www.cnki.com.cn/Article/CJFDTOTAL-GYPL201606013.htm
    [4] 覃伟中.积极推进智能制造是传统石化企业提质增效转型升级的有效途径.当代石油石化, 2016, 24(6): 1-4 http://www.cnki.com.cn/Article/CJFDTOTAL-SYGD201606001.htm

    Qin Wei-Zhong. Intelligent process manufacturing—an efficient way to upgrade traditional refineries. Petroleum & Petrochemical Today, 2016, 24(6): 1-4 http://www.cnki.com.cn/Article/CJFDTOTAL-SYGD201606001.htm
    [5] 曾天舒.九江石化:入选工信部智能制造试点.中国石油和化工, 2015, (8): 32 http://www.cnki.com.cn/Article/CJFDTOTAL-SYFG201508023.htm

    Zeng Tian-Shu. Jiujiang petrochemical: selected as ministry of industry and information technology smart manufacturing pilot project. China Petroleum and Chemical Industries, 2015, (8): 32 http://www.cnki.com.cn/Article/CJFDTOTAL-SYFG201508023.htm
    [6] 李德芳, 索寒生.加快智能工厂进程, 促进生态文明建设.化工学报, 2014, 65(2): 374-380 http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201402002.htm

    Li De-Fang, Suo Han-Sheng. Accelerate the process of smart plant, promote ecological civilization construction. CIESC Journal, 2014, 65(2): 374-380 http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201402002.htm
    [7] 王基铭.我国石化产业面临的挑战及对策建议.当代石油石化, 2015, 23(11): 1-7 doi: 10.3969/j.issn.1009-6809.2015.11.001

    Wang Ji-Ming. Challenges facing China's petrochemical industry and their countermeasure suggestions. Petroleum & Petrochemical Today, 2015, 23(11): 1-7 doi: 10.3969/j.issn.1009-6809.2015.11.001
    [8] 桂卫华, 阳春华, 陈晓方, 王雅琳.有色冶金过程建模与优化的若干问题及挑战.自动化学报, 2013, 39(3): 197-207 http://www.aas.net.cn/CN/abstract/abstract17799.shtml

    Gui Wei-Hua, Yang Chun-Hua, Chen Xiao-Fang, Wang Ya-Lin. Modeling and optimization problems and challenges arising in nonferrous metallurgical process. Acta Automatica Sinica, 2013, 39(3): 197-207 http://www.aas.net.cn/CN/abstract/abstract17799.shtml
    [9] 柴天佑.生产制造全流程优化控制对控制与优化理论方法的挑战.自动化学报, 2009, 35(6): 641-649 http://www.aas.net.cn/CN/abstract/abstract18090.shtml

    Chai Tian-You. Challenges of optimal control for plant-wide production processes in terms of control and optimization theories. Acta Automatica Sinica, 2009, 35(6): 641-649 http://www.aas.net.cn/CN/abstract/abstract18090.shtml
    [10] Zhang Y, Qian F, Zhang Y, Schietekat C M, van Geem K M, Guy, Marin G B. Impact of flue gas radiative properties and burner geometry in furnace simulations. AIChE Journal, 2015, 61(3): 936-954 doi: 10.1002/aic.v61.3
    [11] Wei M, Yang M L, Qian F, Du W L, Zhong W M. Integrated dual-production mode modeling and multiobjective optimization of an industrial continuous catalytic naphtha reforming process. Industrial & Engineering Chemistry Research, 2016, 55(19): 5714-5725
    [12] Joseph B, Brosilow C B. Inferential control of process: Part Ⅰ. steady state analysis and design. AIChE Journal, 1978, 24(3): 485-492 doi: 10.1002/(ISSN)1547-5905
    [13] Zhou P, Lu S W, Chai T Y. Data-driven soft-sensor modeling for product quality estimation using case-based reasoning and fuzzy-similarity rough sets. IEEE Transactions on Automation Science and Engineering, 2014, 11(4): 992-1003 doi: 10.1109/TASE.2013.2288279
    [14] Dote Y, Ovaska S J. Industrial applications of soft computing: a review. Proceedings of the IEEE, 2001, 89(9): 1243-1265 doi: 10.1109/5.949483
    [15] Gao X Y, Shang C, Jiang Y H, Huang D X, Chen T. Refinery scheduling with varying crude: a deep belief network classification and multimodel approach. AIChE Journal, 2014, 60(7): 2525-2532 doi: 10.1002/aic.v60.7
    [16] 栾郭宏, 贺凯迅, 程辉, 钱锋.基于神经网络的近红外光谱辛烷值模型的研究及应用.计算机与应用化学, 2014, 31(1): 63-68 http://www.cnki.com.cn/Article/CJFDTOTAL-JSYH201401014.htm

    Luan Guo-Hong, He Kai-Xun, Cheng Hui, Qian Feng. Octane model based on neural network by near-infrared spectroscopy and its application. Computers and Applied Chemistry, 2014, 31(1): 63-68 http://www.cnki.com.cn/Article/CJFDTOTAL-JSYH201401014.htm
    [17] 孙帆, 钱锋.乙二醇生产过程中环氧乙烷浓度的软测量研究.计算机与应用化学, 2010, 27(1): 6-10 http://www.cnki.com.cn/Article/CJFDTOTAL-JSYH201001003.htm

    Sun Fan, Qian Feng. The soft-sensing measurement of ethylene oxide concentration in ethylene glycol production process. Computers and Applied Chemistry, 2010, 27(1): 6-10 http://www.cnki.com.cn/Article/CJFDTOTAL-JSYH201001003.htm
    [18] 李智. 对苯二甲酸加氢精制过程建模、控制与监控研究[博士学位论文], 华东理工大学, 中国, 2017

    Li Zhi. Research on modeling, control and process monitoring for industrial terephthalic acid hydropurification process[Ph.D. dissertation], East China University of Science and Technology, China, 2017
    [19] 赵恒平, 俞金寿.化工数据预处理及其在建模中的应用.华东理工大学学报(自然科学版), 2005, 31(2): 223-226 http://www.cnki.com.cn/Article/CJFDTOTAL-HLDX200502022.htm

    Zhao Heng-Ping, Yu Jin-Shou. Chemical data pretreatment and its application in modeling. Journal of East China University of Science and Technology (Natural Science Edition), 2005, 31(2): 223-226 http://www.cnki.com.cn/Article/CJFDTOTAL-HLDX200502022.htm
    [20] 张子羿, 胡益, 侍洪波.一种基于聚类方法的多阶段间歇过程监控方法.化工学报, 2013, 64(12): 4522-4528 http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201312038.htm

    Zhang Zi-Yi, Hu Yi, Shi Hong-Bo. Multi-stage batch process monitoring based on a clustering method. CIESC Journal, 2013, 64(12): 4522-4528 http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201312038.htm
    [21] Jin Y K, Li J L, Du W L, Qian F. Adaptive sampling for surrogate modelling with artificial neural network and its application in an industrial cracking furnace. The Canadian Journal of Chemical Engineering, 2016, 94(2): 262-272 doi: 10.1002/cjce.v94.2
    [22] 王海宁, 夏陆岳, 周猛飞, 朱鹏飞, 潘海天.过程工业软测量中的多模型融合建模方法.化工进展, 2014, 33(12): 3157-3163 http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201412006.htm

    Wang Hai-Ning, Xia Lu-Yue, Zhou Meng-Fei, Zhu Peng-Fei, Pan Hai-Tian. Multi-model fusion modeling method for process industries soft sensor. Chemical Industry and Engineering Progress, 2014, 33(12): 3157-3163 http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201412006.htm
    [23] Chen T, Ren J H. Bagging for Gaussian process regression. Neurocomputing, 2009, 72(7-9): 1605-1610 doi: 10.1016/j.neucom.2008.09.002
    [24] 陈贵华, 王昕, 王振雷, 钱锋.基于模糊核聚类的乙烯裂解深度DE-LSSVM多模型建模.化工学报, 2012, 63(6): 1790-1796 http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201206021.htm

    Chen Gui-Hua, Wang Xin, Wang Zhen-Lei, Qian Feng. Multiple DE-LSSVM modeling of ethylene cracking severity based on fuzzy kernel clustering. CIESC Journal, 2012, 63(6): 1790-1796 http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201206021.htm
    [25] Qian F, Tao L L, Sun W Z, Du W L. Development of a free radical kinetic model for industrial oxidation of p-xylene based on artificial neural network and adaptive immune genetic algorithm. Industrial & Engineering Chemistry Research, 2012, 51(8): 3229-3237
    [26] 段斌, 梁军, 费正顺, 杨敏, 胡斌.基于GA-ANN的非线性半参数建模方法.浙江大学学报工学版, 2011, 45(6): 977-983 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201106002.htm

    Duan Bin, Liang Jun, Fei Zheng-Shun, Yang Min, Hu Bin. Nonlinear semi-parametric modeling method based on GA-ANN. Journal of Zhejiang University (Engineering Science), 2011, 45(6): 977-983 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201106002.htm
    [27] 席裕庚, 李德伟, 林姝.模型预测控制——现状与挑战.自动化学报, 2013, 39(3): 222-236 http://www.aas.net.cn/CN/abstract/abstract17874.shtml

    Xi Yu-Geng, Li De-Wei, Lin Shu. Model predictive control——status and challenges. Acta Automatica Sinica, 2013, 39(3): 222-236 http://www.aas.net.cn/CN/abstract/abstract17874.shtml
    [28] 王晓强. 化工过程实时优化与预测控制集成研究[博士学位论文], 华东理工大学, 中国, 2017

    Wang Xiao-Qiang. Research on integration of real-time optimization and predictive control for chemical processes[Ph.D. dissertation], East China University of Science and Technology, China, 2017
    [29] Zanin A C, de Gouvêa M T, Odloak D. Integrating real-time optimization into the model predictive controller of the FCC system. Control Engineering Practice, 2002, 10(8): 819-831 doi: 10.1016/S0967-0661(02)00033-3
    [30] Adetola V, Guay M. Integration of real-time optimization and model predictive control. Journal of Process Control, 2010, 20(2): 125-133 doi: 10.1016/j.jprocont.2009.09.001
    [31] Marchetti A G, Ferramosca A, González A H. Steady-state target optimization designs for integrating real-time optimization and model predictive control. Journal of Process Control, 2014, 24(1): 129-145 doi: 10.1016/j.jprocont.2013.11.004
    [32] Lawryńczuk M, Marusak P M, Tatjewski P. Cooperation of model predictive control with steady-state economic optimisation. Control and Cybernetics, 2008, 37(1): 133-158
    [33] Wang X, Mahalec V, Li Z, Qian F. Real-time optimization and control of an industrial Ethylbenzene Dehydrogenation process. Chemical Engineering Transactions, to be published.
    [34] Kadam J V, Marquardt W, Schlegel M, Backx T, Bosgra O H, Brouwer P J, Dünnebier G, van Hessem D, Tiagounov A, de Wolf S. Towards integrated dynamic real-time optimization and control of industrial processes. In: Proceedings of Foundations of Computer-Aided Process Operations (FOCAPO2003). Florida, USA: FOCAPO, 2003. 593-596
    [35] Kadam J V, Marquardt W. Integration of Economical Optimization and Control for Intentionally Transient Process Operation. Berlin Heidelberg: Springer, 2007.
    [36] Wang X Q, Mahalec V, Qian F. Globally optimal dynamic real time optimization without model mismatch between optimization and control layer. Computers & Chemical Engineering, 2017, 104: 64-75
    [37] Castro P M. Normalized multiparametric disaggregation: an efficient relaxation for mixed-integer bilinear problems. Journal of Global Optimization, 2016, 64(4): 765-784 doi: 10.1007/s10898-015-0342-z
    [38] 吉林石化乙烯装置节能创新示范项目通过国家验收. 乙醛醋酸化工, 2015, (6): 46-47

    The project of energy saving innovation demonstration project in Jilin petrochemical plant is approved by the state. Fine Chemical Industrial Raw Materials & Intermediates, 2015, (6): 46-47
    [39] Reibstein D J, Gatignon H. Optimal product line pricing: the influence of elasticities and cross-elasticities. Journal of Marketing Research, 1984, 21(3): 259-267 doi: 10.2307/3151602
    [40] 张雪宁, 梁唯溪.企业多产品多目标的价格决策.武汉理工大学学报(信息与管理工程版), 2004, 26(5): 162-165 http://www.cnki.com.cn/Article/CJFDTOTAL-WHQC200405044.htm

    Zhang Xue-Ning, Liang Wei-Xi. Price decision of multi-products for multi-targets. Journal of Wuhan University of Technology (Information & Management Engineering), 2004, 26(5): 162-165 http://www.cnki.com.cn/Article/CJFDTOTAL-WHQC200405044.htm
    [41] 赵江安.基于买方市场环境下的价格决策.统计与决策, 2004, (12): 53-55 doi: 10.3969/j.issn.1002-6487.2004.12.031

    Zhao Jiang-An. Price decision based on the buyer's market environment. Statistics and Decision, 2004, (12): 53-55 doi: 10.3969/j.issn.1002-6487.2004.12.031
    [42] Prasad A, Sethi S P. Competitive advertising under uncertainty: a stochastic differential game approach. Journal of Optimization Theory and Applications, 2004, 123(1): 163-185 doi: 10.1023/B:JOTA.0000043996.62867.20
    [43] Sinitsyn M. Technical note-price promotions in asymmetric duopolies with heterogeneous consumers. Management Science, 2008, 54(12): 2081-2087 doi: 10.1287/mnsc.1080.0931
    [44] Herrera F, López E, Rodríguez M A. A linguistic decision model for promotion mix management solved with genetic algorithms. Fuzzy Sets and Systems, 2002, 131(1): 47-61 doi: 10.1016/S0165-0114(01)00254-8
    [45] Moro L F L, Zanin A C, Pinto J M. A planning model for refinery diesel production. Computers & Chemical Engineering, 1998, 22(S1): S1039-S1042
    [46] 赵浩, 荣冈, 冯毅萍.炼油企业生产计划与重点装置工艺条件集成优化.控制理论与应用, 2014, 31(6): 773-778 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201406013.htm

    Zhao Hao, Rong Gang, Feng Yi-Ping. Integrating refinery unit operations with production planning optimization. Control Theory & Applications, 2014, 31(6): 773-778 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201406013.htm
    [47] Li J, Xiao X, Boukouvala F, Floudas C A, Zhao B G, Du G M, Su X, Liu H W. Data-driven mathematical modeling and global optimization framework for entire petrochemical planning operations. AIChE Journal, 2016, 62(9): 3020-3040 doi: 10.1002/aic.15220
    [48] 王贺. 面向订单式生产企业物料需求计划子系统的设计与实现[硕士学位论文], 哈尔滨工业大学, 中国, 2013

    Wang He. Design and implementation order-oriented manufacturing enterprise mrp subsystem[Master dissertation], Harbin Institute of Technology, China, 2013
    [49] De Boer L, Labro E, Morlacchi P. A review of methods supporting supplier selection. European Journal of Purchasing & Supply Management, 2001, 7(2): 75-89
    [50] Xia W J, Wu Z M. Supplier selection with multiple criteria in volume discount environments. Omega, 2007, 35(5): 494-504 doi: 10.1016/j.omega.2005.09.002
    [51] Mannan S. Lees' Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control. (4th edition). Burlington, MA: Butterworth-Heinemann, 2012.
    [52] Kim G H, Spafford E H. The design and implementation of tripwire: a file system integrity checker. In: Proceedings of the 2nd ACM Conference on Computer and Communications Security. Fairfax, Virginia, USA: ACM, 1994. 18-29
    [53] Venkatasubramanian V, Rengaswamy R, Yin K W, Kavuri S N. A review of process fault detection and diagnosis: Part Ⅰ: quantitative model-based methods. Computers & Chemical Engineering, 2003, 27(3): 293-311
    [54] Sengul H, Santella N, Steinberg L J, Cruz A M. Analysis of hazardous material releases due to natural hazards in the United States. Disasters, 2012, 36(4): 723-743 doi: 10.1111/disa.2012.36.issue-4
    [55] Veltman L M. Incident data analysis using data mining techniques[Master dissertation], Texas A&M University, USA, 2008
    [56] 曲彦光, 张勤, 朱群雄.动态不确定因果图在化工系统动态故障诊断中的应用.智能系统学报, 2015, 10(3): 354-361 http://cdmd.cnki.com.cn/Article/CDMD-10010-1015544412.htm

    Qu Yan-Guang, Zhang Qin, Zhu Qun-Xiong. Application of dynamic uncertain causality graph to dynamic fault diagnosis in chemical processes. CAAI Transactions on Intelligent Systems, 2015, 10(3): 354-361 http://cdmd.cnki.com.cn/Article/CDMD-10010-1015544412.htm
    [57] Peng K X, Zhang K, You B, Dong J, Wang Z D. A quality-based nonlinear fault diagnosis framework focusing on industrial multimode batch processes. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2615-2624
    [58] Dai Y Y, Zhao J S. Fault diagnosis of batch chemical processes using a dynamic time warping (DTW)-based artificial immune system. Industrial & Engineering Chemistry Research, 2011, 50(8): 4534-4544
    [59] Askarian M, Escudero G, Graells M, Zarghami R, Jalali-Farahani F, Mostoufi N. Fault diagnosis of chemical processes with incomplete observations: a comparative study. Computers & Chemical Engineering, 2016, 84: 104-116
    [60] De Visscher A. Air Dispersion Modeling: Foundations and Applications. New Jersey, USA: John Wiley & Sons, 2013.
    [61] Hanna S, Dharmavaram S, Zhang J, Sykes I, Witlox H, Khajehnajafi S, Koslan K. Comparison of six widely-used dense gas dispersion models for three recent chlorine railcar accidents. Process Safety Progress, 2008, 27(3): 248-259 doi: 10.1002/prs.v27:3
    [62] Tauseef S M, Rashtchian D, Abbasi S A. CFD-based simulation of dense gas dispersion in presence of obstacles. Journal of Loss Prevention in the Process Industries, 2011, 24(4): 371-376 doi: 10.1016/j.jlp.2011.01.014
    [63] Lauret P, Heymes F, Aprin L, Johannet A. Atmospheric dispersion modeling using Artificial Neural Network based cellular automata. Environmental Modelling & Software, 2016, 85: 56-69
    [64] Kanevce G H, Kanevce L P, Andreevski I B, Dulikravich G S. Inverse approaches in improvement of air pollution plume dispersion models for regulatory applications. In: Proceeding of Inverse Problems, Design and Optimization Symposium. Miami, Florida, USA: Taylor & Francis, 2007.
    [65] Berry J W, Fleischer L, Hart W E, Phillips C A, Watson J P. Sensor placement in municipal water networks. Journal of Water Resources Planning and Management, 2005, 131(3): 237-243 doi: 10.1061/(ASCE)0733-9496(2005)131:3(237)
    [66] Berry J, Hart W E, Phillips C A, Uber J. A general integer-programming-based framework for sensor placement in municipal water networks. In: Proceedings of the 2004 World Water and Environmental Resources Congress. Salt Lake City, Utah, USA: American Society of Civil Engineers, 2004, DOI: 10.1061/40737(2004)455
    [67] Legg S W, Wang C, Benavides-Serrano A J, Laird C D. Optimal gas detector placement under uncertainty considering conditional-value-at-risk. Journal of Loss Prevention in the Process Industries, 2013, 26(3): 410-417 doi: 10.1016/j.jlp.2012.06.006
    [68] Benavides-Serrano A J, Legg S W, Vázquez-Román R, Mannan M S, Laird C D. A stochastic programming approach for the optimal placement of gas detectors: unavailability and voting strategies. Industrial & Engineering Chemistry Research, 2014, 53(13): 5355-5365
    [69] 梅辽颖, 陈彬.镇海炼化:插上智能的翅膀.中国石油石化, 2016, (11): 54-55 doi: 10.3969/j.issn.1671-7708.2016.11.013

    Mei Liao-Ying, Chen Bin. Sinopec Zhenhai refining & chemical company: insert the wings to smart. China Petrochem, 2016, (11): 54-55 doi: 10.3969/j.issn.1671-7708.2016.11.013
    [70] 林镜.九江石化智能制造4.0.中国石油企业, 2016, (1): 36-37 http://www.cnki.com.cn/Article/CJFDTOTAL-IDER201605004.htm

    Lin Jing. Jiujiang petrochemical smart manufacturing 4.0. China Petroleum Enterprise, 2016, (1): 36-37 http://www.cnki.com.cn/Article/CJFDTOTAL-IDER201605004.htm
    [71] 柴天佑.工业过程控制系统研究现状与发展方向.中国科学:信息科学, 2016, 46(8): 1003-1015 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201608005.htm

    Chai Tian-You. Industrial process control systems: research status and development direction. Scientia Sinica Informationis, 2016, 46(8): 1003-1015 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201608005.htm
    [72] Pan Y H. Heading toward artificial intelligence 2.0. Engineering, 2016, 2(4) : 409-413 doi: 10.1016/J.ENG.2016.04.018
    [73] 桂卫华, 陈晓方, 阳春华, 谢永芳.知识自动化及工业应用.中国科学:信息科学, 2016, 46(8): 1016-1034 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201608006.htm

    Gui Wei-Hua, Chen Xiao-Fang, Yang Chun-Hua, Xie Yong-Fang. Knowledge automation and its industrial application. Scientia Sinica Informationis, 2016, 46(8): 1016-1034 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201608006.htm
    [74] Tidriri K, Chatti N, Verron S, Tiplica T. Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: a review of researches and future challenges. Annual Reviews in Control, 2016, 42: 63-81 doi: 10.1016/j.arcontrol.2016.09.008
    [75] Jung S. Facility siting and plant layout optimization for chemical process safety. Korean Journal of Chemical Engineering, 2016, 33(1): 1-7 doi: 10.1007/s11814-015-0242-4
  • 加载中
计量
  • 文章访问数:  2981
  • HTML全文浏览量:  706
  • PDF下载量:  2095
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-14
  • 录用日期:  2017-05-26
  • 刊出日期:  2017-06-20

目录

    /

    返回文章
    返回