2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合帧率变换与HEVC标准的新型视频压缩编码算法

武其达 何小海 林宏伟 陶青川 吴笛

武其达, 何小海, 林宏伟, 陶青川, 吴笛. 结合帧率变换与HEVC标准的新型视频压缩编码算法. 自动化学报, 2018, 44(9): 1626-1636. doi: 10.16383/j.aas.2017.c170121
引用本文: 武其达, 何小海, 林宏伟, 陶青川, 吴笛. 结合帧率变换与HEVC标准的新型视频压缩编码算法. 自动化学报, 2018, 44(9): 1626-1636. doi: 10.16383/j.aas.2017.c170121
WU Qi-Da, HE Xiao-Hai, LIN Hong-Wei, TAO Qing-Chuan, WU Di. A New Video Compression Encoding Algorithm Combining Frame Rate Conversion With HEVC Standard. ACTA AUTOMATICA SINICA, 2018, 44(9): 1626-1636. doi: 10.16383/j.aas.2017.c170121
Citation: WU Qi-Da, HE Xiao-Hai, LIN Hong-Wei, TAO Qing-Chuan, WU Di. A New Video Compression Encoding Algorithm Combining Frame Rate Conversion With HEVC Standard. ACTA AUTOMATICA SINICA, 2018, 44(9): 1626-1636. doi: 10.16383/j.aas.2017.c170121

结合帧率变换与HEVC标准的新型视频压缩编码算法

doi: 10.16383/j.aas.2017.c170121
基金项目: 

国家自然科学基金 61471248

四川省教育厅2014年研究生教育改革创新项目 2014-Education-034

四川省科技计划项目 2015JY0189

详细信息
    作者简介:

    武其达 四川大学电子信息学院硕士研究生. 主要研究方向为图像通信和视频编码与传输. E-mail: wqdlucky@163.com

    林宏伟 四川大学电子信息学院博士研究生. 主要研究方向为视频压缩和图像通信. E-mail: linhongwei@xbmu.edu.cn

    陶青川 博士, 四川大学电子信息学院副教授. 主要研究方向为模式识别, 图像处理, 机器视觉与机器学习. E-mail: taoqingchuan@scu.edu.cn

    吴笛 博士, 中国人民武装警察部队警官学院副教授. 主要研究方向为图像处理和图像通信. E-mail: wudi1945@163.com

    通讯作者:

    何小海 博士, 四川大学电子信息学院教授.主要研究方向为图像处理, 模式识别和图像通信. 本文通信作者. E-mail: hxh@scu.edu.cn

A New Video Compression Encoding Algorithm Combining Frame Rate Conversion With HEVC Standard

Funds: 

National Natural Science Foundation of China 61471248

2014 Postgraduate Education Innovation Project of Sichuan Education Department 2014-Education-034

Science and Technology Project of Sichuan Province 2015JY0189

More Information
    Author Bio:

    Master student at the College of Electronics and Information Engineering, Sichuan University. His research interest covers image communication and video coding and transmission

    Ph. D. candidate at the College of Electronics and Information Engineering, Sichuan University. His research interest covers video compression and image communication

    Ph. D., associate professor at the College of Electronics and Information Engineering, Sichuan University. His research interest covers pattern recognition, image processing, machine vision, and machine learning

    Ph. D., associate professor at the O–cers College of PAP. His research interest covers image processing and image communication

    Corresponding author: HE Xiao-Hai Ph. D., professor at the College of Electronics and Information Engineering, Sichuan University. His research interest covers image processing, pattern recognition, and image communication. Corresponding author of this paper
  • 摘要: 相比于之前主流的H.264视频压缩编码标准,HEVC在保证重建视频质量相同的前提下,可以将码率降低近50%,节省了传输所需的带宽.即便如此,由于一些特定的网络带宽限制,为继续改善HEVC视频编码性能,进一步提升对视频的压缩效率仍然是当前研究的热点.本文提出一种HEVC标准编码与帧率变换方法相结合的新型的视频压缩编码算法,首先在编码端,提出一种自适应抽帧方法,降低原视频帧率,减少所需传输数据量,对低帧率视频进行编解码;在解码端,结合从HEVC传输码流中提取的运动信息以及针对HEVC编码特定的视频帧的分块模式信息等,对丢失帧运动信息进行估计;最后,通过本文提出的改进基于块覆盖双向运动补偿插帧方法对视频进行恢复重建.实验结果证实了本文所提算法的有效性.
    1)  本文责任编委 黄庆明
  • 图  1  自适应抽帧结果图

    Fig.  1  The result of adaptive frame skip

    图  2  HEVC中的运动估计

    Fig.  2  The motion estimation in HEVC

    图  3  双向运动补偿插帧

    Fig.  3  Bidirectional motion compensated interpolation

    图  4  编码帧中帧内块位置分布

    Fig.  4  The distribution of intra-block in coded frame

    图  5  运动矢量平滑

    Fig.  5  Motion vector smoothing

    图  6  块覆盖插值

    Fig.  6  Block-covered interpolation

    图  7  平滑滤波

    Fig.  7  Smoothing filtering

    图  8  平滑滤波模板

    Fig.  8  The template of smoothing filter

    图  9  本文算法框图

    Fig.  9  The framework of the proposed method

    图  10  率失真性能比较

    Fig.  10  The comparison of rate distortion performance

    图  11  ParkScene主观效果对比

    Fig.  11  The comparison of subjective effect for ParkScene

    表  1  本文算法与标准HM16.0码率及PSNR对比

    Table  1  The comparison of bitrate and PSNR about proposed method and HM16.0

    序列名称QPHM16.0编码方法本文算法
    码率(Kbps)PSNR (dB)码率(Kbps)PSNR (dB)
    Mobisode2_416 $\times$ 24022153.88946.1768116.3144.284
    27102.87744.563377.7643.249
    3255.99342.022742.11541.339
    3732.22439.546923.53439.143
    4220.64737.341114.9937
    PartyScene_832 $\times$ 480225 498.26134.14613 575.07231.5
    273 432.8932.00242 287.62430.084
    321 527.85328.67741 060.82427.703
    37666.78425.6876475.3225.263
    42303.95123.5107222.06423.321
    FourPeople_1280 $\times$ 720222 787.10542.4472 007.23541.766
    271 488.77441.18691 165.05640.699
    32715.81738.8563595.18138.57
    37387.89936.0701329.45335.924
    42216.28433.02183.03432.927
    ParkScene_1920 $\times$ 1 080225 332.27338.17313 736.0836.742
    272 266.5635.43121 613.40434.566
    32700.95531.8568512.07231.449
    37291.66829.5234215.17629.296
    42134.25327.897298.77627.757
    PeopleOnStreet_2 560 $\times$ 1 600229 743.63534.39386 512.65831.08
    275 535.94631.56663 768.41529.343
    323 166.58928.76972 181.69527.431
    371 934.10226.42741 343.425.644
    421 126.62624.0122785.93523.687
    下载: 导出CSV

    表  2  本文算法与标准HEVC码率节省对比

    Table  2  The comparison of rate saving for proposed method and HEVC

    序列名称Mobisode2PartySceneFourPeopleParkScenePeopleOnStreet平均值
    BD-rate (%)$-$14.8264$-$12.3977$-$11.5055$-$15.1996$-$12.0341$-$13.1927
    下载: 导出CSV

    表  3  不同算法重建视频平均PSNR (dB)

    Table  3  The average PSNR (dB) value of video reconstructed with different methods

    序列名称传统双向运动补偿插帧文献[9]本文算法
    FourPeople37.014737.328337.9772
    ParkScene31.12531.416731.962
    Mobile26.779428.306528.6146
    Tennis30.136630.484430.7237
    下载: 导出CSV

    表  4  编码时间效率对比

    Table  4  The comparison of coding time

    序列名称QP (dB)标准HM16.0编码时间(s)本文算法时间(s)$\Delta T$ (%)
    PartyScene_832 $\times$ 4802210717.1615 892.436$-$45.02
    277 868.5874 714.987$-$40.08
    325 986.1523 403.753$-$43.14
    374 875.392 784.821$-$42.88
    424 057.4442 211.079$-$45.51
    FourPeople_1 280 $\times$ 720229 724.6385 338.595$-$45.1
    277 885.0484 838.479$-$38.64
    327 171.393 917.959$-$45.37
    376 850.9323 673.508$-$46.38
    426 492.3653 571.843$-$44.98
    ParkScene_1 920 $\times$ 1 0802236 263.06619 216.03$-$47.01
    2725 401.10115 042.524$-$40.78
    3220 704.78511 547.355$-$44.23
    3718 175.2299 847.318$-$45.82
    4216 256.878 745.239$-$46.21
    PeopleOnStreet_2 560 $\times$ 1 6002251 921.73528 433.679$-$45.24
    2739 493.2223 313.14$-$40.97
    3232 649.23617 791.625$-$45.51
    3728 675.29815 602.986$-$45.59
    4224 987.76913 700.208$-$45.17
    平均$-$44.1815
    下载: 导出CSV
  • [1] Lee S H, Shin Y C, Yang S, Moon H H, Park R H. Adaptive motion-compensated interpolation for frame rate up-conversion. IEEE Transactions on Consumer Electronics, 2002, 48 (3):444-450 doi: 10.1109/TCE.2002.1037026
    [2] Hilman K, Park H W, Kim Y M. Using motion-compensated frame-rate conversion for the correction of 3:2 pulldown artifacts in video sequences. IEEE Transactions on Circuits and Systems for Video Technology, 2000, 10 (6):869-877 doi: 10.1109/76.867925
    [3] Kim D, Park H. An efficient motion-compensated frame interpolation method using temporal information for high-resolution videos. Journal of Display Technology, 2015, 11 (7):580-588 doi: 10.1109/JDT.2015.2417313
    [4] Tsai T H, Shi A T, Huang K T. Accurate frame rate up-conversion for advanced visual quality. IEEE Transactions on Broadcasting, 2016, 62 (2):426-435 doi: 10.1109/TBC.2016.2550764
    [5] Choi B T, Lee S H, Ko S J. New frame rate up-conversion using bi-directional motion estimation. IEEE Transactions on Consumer Electronics, 2000, 46 (3):603-609 doi: 10.1109/30.883418
    [6] Choi B D, Han J W, Kim C S, Ko S J. Motion-compensated frame interpolation using bilateral motion estimation and adaptive overlapped block motion compensation. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17 (4):407-416 doi: 10.1109/TCSVT.2007.893835
    [7] Kang S J, Cho K R, Kim Y H. Motion compensated frame rate up-conversion using extended bilateral motion estimation. IEEE Transactions on Consumer Electronics, 2007, 53 (4):1759-1767 doi: 10.1109/TCE.2007.4429281
    [8] Kang S J, Yoo S J, Kim Y H. Dual motion estimation for frame rate up-conversion. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20 (12):1909-1914 doi: 10.1109/TCSVT.2010.2087832
    [9] Hu H P, Liu G Y. A novel method for frame rate up-conversion. In: Proceedings of the 2011 International Conference on Image Analysis and Signal Processing (IASP). Wuhan, China: IEEE, 2011. 6-9
    [10] Inseo H, Ho S J, Myung H S. A new motion compensated frame interpolation algorithm using adaptive motion estimation. Journal of the Institute of Electronics and Information Engineers, 2015, 52 (6):62-69 doi: 10.5573/ieie.2015.52.6.062
    [11] Xu C, Chen Y Q, Gao Z Y, Ye Y Z, Shan T. Frame rate up-conversion with true motion estimation and adaptive motion vector refinement. In: Proceedings of the 4th International Congress on Image and Signal Processing (CISP). Shanghai, China: IEEE, 2011. 353-356
    [12] Cao Y Z H, He X H, Teng Q Z, Wu W. Motion compensated frame rate up-conversion using soft-decision motion estimation and adaptive-weighted motion compensated interpolation. Journal of Computational Information Systems, 2013, 9 (14):5789-5797
    [13] Kaviani H R, Shirani S. Frame rate upconversion using optical flow and patch-based reconstruction. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26 (9):1581-1594 doi: 10.1109/TCSVT.2015.2469120
    [14] Lee W H, Choi K, Ra J B. Frame rate up conversion based on variational image fusion. IEEE Transactions on Image Processing, 2014, 23 (1):399-412 doi: 10.1109/TIP.2013.2288139
    [15] 孙琰玥, 何小海, 宋海英, 陈为龙.一种用于视频超分辨率重建的块匹配图像配准方法.自动化学报, 2011, 37(1):37-43 http://www.aas.net.cn/CN/abstract/abstract17404.shtml

    Sun Yan-Yue, He Xiao-Hai, Song Hai-Ying, Chen Wei-Long. A block-matching image registration algorithm for video super-resolution reconstruction. Acta Automatica Sinica, 2011, 37 (1):37-43 http://www.aas.net.cn/CN/abstract/abstract17404.shtml
    [16] Kim U S, Sunwoo M H. New frame rate up-conversion algorithms with low computational complexity. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24 (3):384-393 doi: 10.1109/TCSVT.2013.2278142
    [17] 鲁志红, 郭丹, 汪萌.基于加权运动估计和矢量分割的运动补偿内插算法.自动化学报, 2015, 41 (5):1034-1041 http://www.aas.net.cn/CN/abstract/abstract18677.shtml

    Lu Zhi-Hong, Guo Dan, Wang Meng. Motion-compensated frame interpolation based on weighted motion estimation and vector segmentation. Acta Automatica Sinica, 2015, 41 (5):1034-1041 http://www.aas.net.cn/CN/abstract/abstract18677.shtml
    [18] 马名浪, 何小海, 滕奇志, 陈洪刚, 卿粼波.基于自适应稀疏变换的指纹图像压缩.自动化学报, 2016, 42 (8):1274-1284 http://www.aas.net.cn/CN/abstract/abstract18916.shtml

    Ma Ming-Lang, He Xiao-Hai, Teng Qi-Zhi, Chen Hong-Gang, Qing Lin-Bo. Fingerprint image compression algorithm via adaptive sparse transformation. Acta Automatica Sinica, 2016, 42 (8):1274-1284 http://www.aas.net.cn/CN/abstract/abstract18916.shtml
    [19] Hong B, Eom M, Choe Y. Scene change detection using edge direction based on intra prediction mode in H.264/AVC compression domain. In: Proceedings of the 2006 IEEE Region 10 Conference. Hong Kong, China: IEEE, 2006. 1-4
    [20] Yan C G, Zhang Y D, Xu J Z, Dai F, Zhang J, Dai Q H, Wu F. Efficient parallel framework for HEVC motion estimation on many-core processors. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24 (12):2077-2089 doi: 10.1109/TCSVT.2014.2335852
    [21] Heithausen C, Vorwerk J H. Motion compensation with higher order motion models for HEVC. In: Proceedings of the 2015 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). South Brisbane, QLD, Australia: IEEE, 2015. 1438-1442
    [22] Lee S H, Kwon O, Park R H. Weighted-adaptive motion-compensated frame rate up-conversion. IEEE Transactions on Consumer Electronics, 2003, 49 (3):485-492 doi: 10.1109/TCE.2003.1233759
    [23] Song H B, Men A D, Shi G J. A method for halo artifact reduction in MEMC. In: Proceedings of the 2009 Digest of Technical Papers International Conference on Consumer Electronics. Las Vegas, NV, USA: IEEE, 2009. 1-2
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  1963
  • HTML全文浏览量:  433
  • PDF下载量:  505
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-07
  • 录用日期:  2017-08-02
  • 刊出日期:  2018-09-20

目录

    /

    返回文章
    返回