[1]
|
Flemming T, Bartl M, Li P. Set-point optimization for closed-loop control systems under uncertainty. Industrial & Engineering Chemistry Research, 2007, 46(14): 4930-4942 doi: 10.1021/ie061540t
|
[2]
|
Liberzon D, Morse A S. Basic problems in stability and design of switched systems. IEEE Control Systems, 1999, 19(5): 59-70 doi: 10.1109/37.793443
|
[3]
|
Hespanha J P, Morse A S. Stability of switched systems with average dwell-time. In: Proceedings of the 38th IEEE Conference on Decision and Control. Phoenix, AZ, USA: IEEE, 1999, 3: 2655-2660
|
[4]
|
李少远, 席裕庚.多模型预测控制的平滑切换.上海交通大学学报, 1999, 33(11): 1345-1347 doi: 10.3321/j.issn:1006-2467.1999.11.005Li Shao-Yuan, Xi Yu-Geng. Switching smoothly of multi-model predictive control systems. Journal of Shanghai Jiaotong University, 1999, 33(11): 1345-1347 doi: 10.3321/j.issn:1006-2467.1999.11.005
|
[5]
|
林相泽, 李世华, 邹云.非线性切换系统不变集的输出反馈镇定.自动化学报, 2008, 34(7): 784-791 http://www.aas.net.cn/CN/abstract/abstract17942.shtmlLin Xiang-Ze, Li Shi-Hua, Zou Yun. Output feedback stabilization of invariant sets for nonlinear switched systems. Acta Automatica Sinica, 2008, 34(7): 784-791 http://www.aas.net.cn/CN/abstract/abstract17942.shtml
|
[6]
|
柴天佑, 张亚军.基于未建模动态补偿的非线性自适应切换控制方法.自动化学报, 2011, 37(7): 773-786 http://www.aas.net.cn/CN/abstract/abstract17475.shtmlChai Tian-You, Zhang Ya-Jun. Nonlinear adaptive switching control method based on unmodeled dynamics compensation. Acta Automatica Sinica, 2011, 37(7): 773-786 http://www.aas.net.cn/CN/abstract/abstract17475.shtml
|
[7]
|
Wan Z Y, Kothare M V. Efficient scheduled stabilizing output feedback model predictive control for constrained nonlinear systems. IEEE Transactions on Automatic Control, 2004, 49(7): 1172-1177 doi: 10.1109/TAC.2004.831122
|
[8]
|
Diehl M, Amrit R, Rawlings J B. A Lyapunov function for economic optimizing model predictive control. IEEE Transactions on Automatic Control, 2011, 56(3): 703-707 doi: 10.1109/TAC.2010.2101291
|
[9]
|
Amrit R, Rawlings J B, Angeli D. Economic optimization using model predictive control with a terminal cost. Annual Reviews in Control, 2011, 35(2): 178-186 doi: 10.1016/j.arcontrol.2011.10.011
|
[10]
|
Grüne L. Economic receding horizon control without terminal constraints. Automatica, 2013, 49(3): 725-734 doi: 10.1016/j.automatica.2012.12.003
|
[11]
|
Heidarinejad M, Liu J F, Christofides P D. Economic model predictive control of nonlinear process systems using Lyapunov techniques. AIChE Journal, 2012, 58(3): 855-870 doi: 10.1002/aic.v58.3
|
[12]
|
Heidarinejad M, Liu J F, Christofides P D. Economic model predictive control of switched nonlinear systems. Systems & Control Letters, 2013, 62(1): 77-84 https://www.researchgate.net/publication/257012464_Economic_model_predictive_control_of_switched_nonlinear_systems
|
[13]
|
何德峰.约束非线性系统稳定经济模型预测控制.自动化学报, 2016, 42(11): 1680-1690 http://www.aas.net.cn/CN/abstract/abstract18957.shtmlHe De-Feng. Stabilizing economic model predictive control of constrained nonlinear systems. Acta Automatica Sinica, 2016, 42(11): 1680-1690 http://www.aas.net.cn/CN/abstract/abstract18957.shtml
|
[14]
|
He D F, Sun J, Yu L. Economic MPC with a contractive constraint for nonlinear systems. International Journal of Robust and Nonlinear Control, 2016, 26(18): 4072-4087 doi: 10.1002/rnc.v26.18
|
[15]
|
Liu S, Liu J F. Economic model predictive control for scheduled switching operations. In: Proceedings of the 2016 American Control Conference (ACC). Boston, MA, USA: IEEE, 2016. 1784-1789
|
[16]
|
Liu S, Liu J F. Economic model predictive control with extended horizon. Automatica, 2016, 73: 180-192 doi: 10.1016/j.automatica.2016.06.027
|
[17]
|
Angeli D, Amrit R, Rawlings J B. On average performance and stability of economic model predictive control. IEEE Transactions on Automatic Control, 2012, 57(7): 1615-1626 doi: 10.1109/TAC.2011.2179349
|
[18]
|
Grüne L, Stieler M. Asymptotic stability and transient optimality of economic MPC without terminal conditions. Journal of Process Control, 2014, 24(8): 1187-1196 doi: 10.1016/j.jprocont.2014.05.003
|
[19]
|
Flores-Tlacuahuac A, Moreno S T, Biegler L T. Global optimization of highly nonlinear dynamic systems. Industrial & Engineering Chemistry Research, 2008, 47(8): 2643-2655
|