2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

间歇过程最优迭代学习控制的发展:从基于模型到数据驱动

池荣虎 侯忠生 黄彪

池荣虎, 侯忠生, 黄彪. 间歇过程最优迭代学习控制的发展:从基于模型到数据驱动. 自动化学报, 2017, 43(6): 917-932. doi: 10.16383/j.aas.2017.c170086
引用本文: 池荣虎, 侯忠生, 黄彪. 间歇过程最优迭代学习控制的发展:从基于模型到数据驱动. 自动化学报, 2017, 43(6): 917-932. doi: 10.16383/j.aas.2017.c170086
CHI Rong-Hu, HOU Zhong-Sheng, HUANG Biao. Optimal Iterative Learning Control of Batch Processes: From Model-based to Data-driven. ACTA AUTOMATICA SINICA, 2017, 43(6): 917-932. doi: 10.16383/j.aas.2017.c170086
Citation: CHI Rong-Hu, HOU Zhong-Sheng, HUANG Biao. Optimal Iterative Learning Control of Batch Processes: From Model-based to Data-driven. ACTA AUTOMATICA SINICA, 2017, 43(6): 917-932. doi: 10.16383/j.aas.2017.c170086

间歇过程最优迭代学习控制的发展:从基于模型到数据驱动

doi: 10.16383/j.aas.2017.c170086
基金项目: 

国家自然科学基金 61433002

国家自然科学基金 61374102

详细信息
    作者简介:

    侯忠生 北京交通大学先进控制系统研究所教授.1994年获得东北大学博士学位.主要研究方向为无模型自适应控制, 数据驱动控制, 学习控制, 智能交通系统.E-mail:zhshhou@bjtu.edu.cn

    黄彪 加拿大阿尔伯塔大学化学与材料工程学院教授.1997年获得阿尔伯塔大学博士学位.主要研究方向为过程控制, 系统辨识, 控制性能评价, 贝叶斯方法和状态估计.E-mail:bhuang@ualberta.ca

    通讯作者:

    池荣虎 青岛科技大学自动化与电子工程学院教授.2007年获得北京交通大学博士学位.主要研究方向为数据驱动控制, 学习控制, 智能交通系统.本文通信作者.E-mail:ronghuchi@hotmail.com

Optimal Iterative Learning Control of Batch Processes: From Model-based to Data-driven

Funds: 

National Natural Science Foundation of China 61433002

National Natural Science Foundation of China 61374102

More Information
    Author Bio:

    Professor at the Advanced Control Systems Laboratory, Beijing Jiaotong University. He received his Ph.D. degree from Northeastern University in 1994. His research interest covers model-free adaptive control, data-driven control, learning control, intelligent traffic systems

    Professor in the Department of Chemical and Materials, University of Alberta. He received his Ph.D. degree from University of Alberta, Canada in 1997. His research interest covers process control, system identification, control performance assessment, Bayesian methods, and state estimation.

    Corresponding author: CHI Rong-Hu Professor at the School of Automation & Electronics Engineering, Qingdao University of Science & Technology. He received his Ph.D. degree from Beijing Jiaotong University in 2007. His research interest covers data-driven control, learning control, intelligent traffic systems. Corresponding author of this paper
  • 摘要: 本文综述了间歇过程的基于模型的和数据驱动的最优迭代学习控制方法.基于模型的最优迭代学习控制方法需要已知被控对象精确的线性模型,其研究较为成熟和完善,有着系统的设计方法和分析工具.数据驱动的最优迭代学习控制系统设计和分析的关键是非线性重复系统的迭代动态线性化.本文简要综述了基于模型的最优迭代学习控制的研究进展,详细回顾了数据驱动的迭代动态线性化方法,包括其详细的推导过程和突出的特点.回顾和讨论了广义的数据驱动最优迭代学习控制方法,包括完整轨迹跟踪的数据驱动最优迭代学习控制方法,提出和讨论了多中间点跟踪的数据驱动最优点到点迭代学习控制方法,和终端输出跟踪的数据驱动最优终端迭代学习控制方法.进一步,迭代学习控制研究中的关键问题,如随机迭代变化初始条件、迭代变化参考轨迹、输入输出约束、高阶学习控制律、计算复杂性等.本文突出强调了基于模型的和数据驱动的最优迭代学习控制方法各自的特点与区别联系,以方便读者理解.最后,本文提出数据驱动的迭代学习控制方法已成为越来越复杂间歇过程控制发展的未来方向,一些开放的具有挑战性的问题还有待于进一步研究.
  • [1] Bonvin D. Control and optimization of batch processes. IEEE Control Systems, 2006, 26(6): 34-45 doi: 10.1109/MCS.2006.252831
    [2] Tomazi K, Linninger A A, Daniel J R. Batch processing industries. Batch Processes. Boca Raton, FL: CRC Press, 2006. 7-39
    [3] Tchobanoglous G, Burton F G, Stensel H D. Wastewater Engineering: Treatment and Reuse. New York: McGraw-Hill, 2003.
    [4] Young R A, Akhtar M. Environmentally Friendly Technologies for the Pulp and Paper Industry. New York: Wiley, 1998.
    [5] Mazurek J, Ashford N A. Making Microchips: Policy, Globalization, and Economic Restructuring in the Semiconductor Industry. Cambridge, MA: MIT Press, 1998.
    [6] McCormick K. Manufacturing in Global Pharmaceutical Industry. London: Urch, 2003.
    [7] Myerson A S. Handbook of Industrial Crystallization. London, UK: Butterworths-Heinemann, 2001.
    [8] Seborg D E, Edgar T F, Mellichamp D A. Process Dynamics and Control. New York: Wiley, 2004.
    [9] Nagy Z K, Braatz R D. Robust nonlinear model predictive control of batch processes. AIChE Journal, 2003, 49(7): 1776-1786 doi: 10.1002/(ISSN)1547-5905
    [10] Moore K L. Iterative Learning Control for Deterministic Systems. London, UK: Springer-Verlag, 1993.
    [11] 孙海乔. 间歇过程的鲁棒迭代学习控制研究[硕士学位论文], 江南大学, 中国, 2014.

    Sun Hai-Qiao. Research on robust iterative learning control applied to batch process[Master dissertation], Jiangnan University, China, 2014.
    [12] 王晶, 王玥, 王伟, 曹柳林, 靳其兵.基于去伪策略的间歇过程自适应迭代学习.中南大学学报(自然科学版), 2015, 46(4): 1318-1325 doi: 10.11817/j.issn.1672-7207.2015.04.021

    Wang Jing, Wang Yue, Wang Wei, Cao Liu-Lin, Jin Qi-Bing. Adaptive iterative learning control based on unfalsified strategy applied in batch process. Journal of Central South University (Science and Technology), 2015, 46(4): 1318-1325 doi: 10.11817/j.issn.1672-7207.2015.04.021
    [13] François G, Srinivasan B, Bonvin D. Use of measurements for enforcing the necessary conditions of optimality in the presence of constraints and uncertainty. Journal of Process Control, 2005, 15(6): 701-712 doi: 10.1016/j.jprocont.2004.11.006
    [14] Del Castillo E, Hurwitz A M. Run-to-run process control: literature review and extensions. Journal of Quality Technology, 1997, 29(2): 184-196
    [15] Sachs E, Guo R S, Ha S, Hu A. Process control system for VLSI fabrication. IEEE Transactions on Semiconductor Manufacturing, 1991, 4(2): 134-144 doi: 10.1109/66.79725
    [16] Xu J X, Chen Y Q, Lee T H, Yamamoto S. Terminal iterative learning control with an application to RTPCVD thickness control. Automatica, 1999, 35(9): 1535-1542 doi: 10.1016/S0005-1098(99)00076-X
    [17] Flores-Cerrillo J, MacGregor J F. Iterative learning control for final batch product quality using partial least squares models. Industrial & Engineering Chemistry Research, 2005, 44(24): 9146-9155
    [18] Gauthier G, Boulet B. Terminal iterative learning control design with singular value decomposition decoupling for thermoforming ovens. In: Proceedings of the 2009 American Control Conference. St. Louis, MO, USA: IEEE, 2009. 1640-1645
    [19] Arimoto S, Kawamura S, Miyazaki F. Bettering operation of robots by learning. Journal of Robotic Systems, 1984, 1(2): 123-140 doi: 10.1002/(ISSN)1097-4563
    [20] Lee K S, Bang S H, Chang K S. Feedback-assisted iterative learning control based on an inverse process model. Journal of Process Control, 1994, 4(2): 77-89 doi: 10.1016/0959-1524(94)80026-X
    [21] Lee K S, Bang S H, Yi S, Son J S, Yoon S C. Iterative learning control of heat-up phase for a batch polymerization reactor. Journal of Process Control, 1996, 6(4): 255-262 doi: 10.1016/0959-1524(96)00048-0
    [22] Liu T, Gao F R. Robust two-dimensional iterative learning control for batch processes with state delay and time-varying uncertainties. Chemical Engineering Science, 2010, 65(23): 6134-6144 doi: 10.1016/j.ces.2010.08.031
    [23] Wang Y Q, Liu T, Zhao Z. Advanced PI control with simple learning set-point design: application on batch processes and robust stability analysis. Chemical Engineering Science, 2012, 71: 153-165 doi: 10.1016/j.ces.2011.12.028
    [24] Wang Y Q, Zisser H, Dassau E, Jovanovič L, Doyle Ⅲ F J. Model predictive control with learning-type set-point: application to artificial pancreatic β-cell. AIChE Journal, 2010, 56(6): 1510-1518 doi: 10.1002/aic.12081
    [25] Liu T, Wang X Z, Chen J H. Robust PID based indirect-type iterative learning control for batch processes with time-varying uncertainties. Journal of Process Control, 2014, 24(12): 95-106 doi: 10.1016/j.jprocont.2014.07.002
    [26] Márquez-Vera M A, Ramos-Velasco L E, Suárez-Cansino, Márquez-Vera C A. Fuzzy iterative learning control applied in a biological reactor using a reduced number of measures. Applied Mathematics and Computation, 2014, 246: 608-618 doi: 10.1016/j.amc.2014.08.072
    [27] Gao F R, Yang Y, Shao C. Robust iterative learning control with applications to injection molding process. Chemical Engineering Science, 2001, 56(24): 7025-7034 doi: 10.1016/S0009-2509(01)00339-6
    [28] Shi J, Gao F R, Wu T J. Robust design of integrated feedback and iterative learning control of a batch process based on a 2D Roesser system. Journal of Process Control, 2005, 15(8): 907-924 doi: 10.1016/j.jprocont.2005.02.005
    [29] Shi J, Gao F R, Wu T J. Integrated design and structure analysis of robust iterative learning control system based on a two-dimensional model. Industrial & Engineering Chemistry Research, 2005, 44(21): 8095-8105
    [30] Shi J, Gao F R, Wu T J. A robust iterative learning control design for batch processes with uncertain perturbation and initialization. AIChE Journal, 2006, 52(6): 2171-2187 doi: 10.1002/(ISSN)1547-5905
    [31] Hao S L, Liu T, Paszke W, Galkowski K. Robust iterative learning control for batch processes with input delay subject to time-varying uncertainties. IET Control Theory & Applications, 2016, 10(15): 1904-1915
    [32] Tan K K, Zhao S, Huang S N, Lee T H, Tay A. A new repetitive control for LTI systems with input delay. Journal of Process Control, 2009, 19(4): 711-716 doi: 10.1016/j.jprocont.2008.07.004
    [33] Xu J X, Xu J. On iterative learning from different tracking tasks in the presence of time-varying uncertainties. IEEE Transactions on Systems, Man, and Cybernetics, Part B, Cybernetics, 2004, 34(1): 589-597 doi: 10.1109/TSMCB.2003.818433
    [34] Sun M X, He X X. Iterative learning identification and control of discrete time-varying systems. In: Proceedings of the 2017 Chinese Control Conference. Zhangjiajie, Hunan, China: IEEE, 2017. 520-524
    [35] Chi R H, Hou Z S, Xu J X. Adaptive ILC for a class of discrete-time systems with iteration-varying trajectory and random initial condition. Automatica, 2008, 44(8): 2207-2213 doi: 10.1016/j.automatica.2007.12.004
    [36] Tayebi A. Adaptive iterative learning control for robot manipulators. Automatica, 2004, 40(7): 1195-1203 doi: 10.1016/j.automatica.2004.01.026
    [37] Sun M X, Ge S S. Adaptive repetitive control for a class of nonlinearly parametrized systems. IEEE Transactions on Automatic Control, 2006, 51(10): 1684-1688 doi: 10.1109/TAC.2006.883028
    [38] Li X D, Xiao T F, Zheng H X. Adaptive discrete-time iterative learning control for non-linear multiple input multiple output systems with iteration-varying initial error and reference trajectory. IET Control Theory & Applications, 2011, 5(9): 1131-1139
    [39] Yan W L, Sun M X. adaptive iterative learning control of discrete-time varying systems with unknown control directions. International Journal of Adaptive Control and Signal Processing, 2013, 27(4): 340-348 doi: 10.1002/acs.v27.4
    [40] Chi R H, Hou Z S, Jin S T. A data-driven adaptive ILC for a class of nonlinear discrete-time systems with random initial states and iteration-varying target trajectory. Journal of the Franklin Institute, 2015, 352(6): 2407-2424 doi: 10.1016/j.jfranklin.2015.03.014
    [41] Amann N, Owens D H, Rogers E. Iterative learning control for discrete-time systems with exponential rate of convergence. IEE Proceedings-Control Theory and Applications, 1996, 143(2): 217-224 doi: 10.1049/ip-cta:19960244
    [42] Lee J H, Lee K S, Kim W C. Model-based iterative learning control with a quadratic criterion for time-varying linear systems. Automatica, 2000, 36(5): 641-657 doi: 10.1016/S0005-1098(99)00194-6
    [43] Moore K L, Verwoerd M H A. l1-optimal robust iterative learning controller design. In: Proceedings of the 2008 American Control Conference. Seattle, WA, USA: IEEE, 2008. 3881-3886
    [44] Xu J X, Tan Y. Robust optimal design and convergence properties analysis of iterative learning control approaches. Automatica, 2002, 38(11): 1867-1880 doi: 10.1016/S0005-1098(02)00143-7
    [45] Sanzida N, Nagy Z K. Iterative learning control for the systematic design of supersaturation controlled batch cooling crystallisation processes. Computers & Chemical Engineering, 2013, 59: 111-121
    [46] Axelsson P, Karlsson R, Norrlöf M. Estimation-based norm-optimal iterative learning control. Systems & Control Letters, 2014, 73: 76-80
    [47] Nguyen D H, Banjerdpongchai D. An LMI approach for robust iterative learning control with quadratic performance criterion. Journal of Process Control, 2009, 19(6): 1054-1060 doi: 10.1016/j.jprocont.2008.12.004
    [48] Lim I, Barton K L. Pareto iterative learning control: optimized control for multiple performance objectives. Control Engineering Practice, 2014, 26(1): 125-135
    [49] Chu B, Owens D H. Accelerated norm-optimal iterative learning control algorithms using successive projection. International Journal of Control, 2009, 82(8): 1469-1484 doi: 10.1080/00207170802512824
    [50] Tousain R, van der Meche E, Bosgra O. Design strategy for iterative learning control based on optimal control. In: Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, FL, USA: IEEE, 2001, 5: 4463-4468
    [51] 刘山, 吴铁军. 基于最优化指标的迭代学习控制. 第四届全球智能控制与自动化大会(WCICA'02). 上海, 2002. 621-625

    Liu Shan, Wu Tie-Jun. Iterative learning control based on optimization criterion. In: Proceedings of the 4th World Congress on Intelligent Control and Automation. Shanghai, China, 2002. 621-625
    [52] Chen C, Xiong Z H, Zhong Y S. Design and analysis of integrated predictive iterative learning control for batch process based on two-dimensional system theory. Chinese Journal of Chemical Engineering, 2014, 22(7): 762-768 doi: 10.1016/j.cjche.2014.05.008
    [53] Mishra S, Topcu U, Tomizuka M. Optimization-based constrained iterative learning control. IEEE Transactions on Control Systems Technology, 2011, 19(6): 1613-1621 doi: 10.1109/TCST.2010.2083663
    [54] Amann N, Owens D H, Rogers E. Predictive optimal iterative learning control. International Journal of Control, 1998, 69(2): 203-226 doi: 10.1080/002071798222794
    [55] Lee K S, Chin I S, Lee H J, Lee J H. Model predictive control technique combined with iterative learning for batch processes. AIChE Journal, 1999, 45(10): 2175-2187 doi: 10.1002/(ISSN)1547-5905
    [56] Wang L P, Freeman C T, Chai S, Rogers E. Predictive-repetitive control with constraints: from design to implementation. Journal of Process Control, 2013, 23(7): 956-967 doi: 10.1016/j.jprocont.2013.03.012
    [57] Jin S T, Hou Z S, Chi R H. A novel data-driven terminal iterative learning control with iteration prediction algorithm for a class of discrete-time nonlinear systems. Journal of Applied Mathematics, 2014, 2014: Article No. 307809
    [58] Chin I, Qin S J, Lee K S, Cho M. A two-stage iterative learning control technique combined with real-time feedback for independent disturbance rejection. Automatica, 2004, 40(11): 1913-1922 doi: 10.1016/j.automatica.2004.05.011
    [59] Slotine J J E, Li W P. Applied Nonlinear Control. Englewood Cliffs, NJ, USA: Prentice Hall, 1991.
    [60] Chen L J, Narendra K S. Identification and control of a nonlinear discrete-time system based on its linearization: a unified framework. IEEE Transactions on Neural Networks, 2004, 15(3): 663-673 doi: 10.1109/TNN.2004.826206
    [61] 席裕庚, 王凡, 非线性系统预测控制的多模型方法, 自动化学报, 1996, 22(4): 456-461 http://www.aas.net.cn/CN/abstract/abstract17156.shtml

    Xi Yu-Geng, Wang Fan. Nonlinear multi-model predictive control. Acta Automatica Sinica, 1996, 22(4): 456-461 http://www.aas.net.cn/CN/abstract/abstract17156.shtml
    [62] Deng H, Li H X, Wu Y H. Feedback-linearization-based neural adaptive control for unknown nonaffine nonlinear discrete-time systems. IEEE Transactions on Neural Networks, 2008, 19(9): 1615-1625 doi: 10.1109/TNN.2008.2000804
    [63] Dumont G A, Fu Y. Non-linear adaptive control via laguerre expansion of volterra kernels. International Journal of Adaptive Control and Signal Processing, 1993, 7(5): 367-382 doi: 10.1002/(ISSN)1099-1115
    [64] Volckaert M, Diehl M, Swevers J. Generalization of norm optimal ILC for nonlinear systems with constraints. Mechanical Systems and Signal Processing, 2013, 39(1-2): 280-296 doi: 10.1016/j.ymssp.2013.03.009
    [65] 严求真, 孙明轩.非线性不确定系统准最优学习控制.自动化学报, 2015, 41(9): 1659-1668 http://www.aas.net.cn/CN/abstract/abstract18739.shtml

    Yan Qiu-Zhen, Sun Ming-Xuan. Suboptimal learning control for nonlinear systems with both parametric and nonparametric uncertainties. Acta Automatica Sinica, 2015, 41(9): 1659-1668 http://www.aas.net.cn/CN/abstract/abstract18739.shtml
    [66] Endelt B. Design strategy for optimal iterative learning control applied on a deep drawing process. The International Journal of Advanced Manufacturing Technology, 2017, 88(1): 3-18
    [67] Wang D G, Song W Y, Shi P, Li H X. Approximation to a class of non-autonomous systems by dynamic fuzzy inference marginal linearization method. Information Sciences, 2013, 245: 197-217 doi: 10.1016/j.ins.2013.05.011
    [68] Xiong Z H, Zhang J. A batch-to-batch iterative optimal control strategy based on recurrent neural network models. Journal of Process Control, 2005, 15(1): 11-21 doi: 10.1016/j.jprocont.2004.04.005
    [69] Liu X J, Kong X B. Nonlinear fuzzy model predictive iterative learning control for drum-type boiler-turbine system. Journal of Process Control, 2013, 23(8): 1023-1040 doi: 10.1016/j.jprocont.2013.06.004
    [70] 侯忠生, 许建新.数据驱动控制理论及方法的回顾和展望.自动化学报, 2009, 35(6): 650-667 http://www.aas.net.cn/CN/abstract/abstract13327.shtml

    Hou Zhong-Sheng, Xu Jian-Xin. On data-driven control theory: the state of the art and perspective. Acta Automatica Sinica, 2009, 35(6): 650-667 http://www.aas.net.cn/CN/abstract/abstract13327.shtml
    [71] Hou Z S, Jin S T. Model Free Adaptive Control: Theory and Applications. New York: CRC Press, 2013.
    [72] 侯忠生.再论无模型自适应控制.系统科学与数学, 2014, 34(10): 1182-1191 http://www.cnki.com.cn/Article/CJFDTOTAL-STYS201410005.htm

    Hou Zhong-Sheng. Highlight and perspective on model free adaptive control. Journal of Systems Science and Mathematical Sciences, 2014, 34(10): 1182-1191 http://www.cnki.com.cn/Article/CJFDTOTAL-STYS201410005.htm
    [73] Hou Z S, Wang Z. From model-based control to data-driven control: survey, classification and perspective. Information Sciences, 2013, 235: 3-35 doi: 10.1016/j.ins.2012.07.014
    [74] Yin S, Li X W, Gao H J, Kaynak O. Data-based techniques focused on modern industry: an overview. IEEE Transactions on Industrial Electronics, 2015, 62(1): 657-667 doi: 10.1109/TIE.2014.2308133
    [75] Xu J X, Hou Z S. Notes on data-driven system approaches. Acta Automatica Sinica, 2009, 35(6): 668-675
    [76] Chi R H, Wang D W, Hou Z S, Jin S T. Data-driven optimal terminal iterative learning control. Journal of Process Control, 2012, 22(10): 2026-2037 doi: 10.1016/j.jprocont.2012.08.001
    [77] Chi R H, Hou Z S, Huang B, Jin S T. A unified data-driven design framework of optimality-based generalized iterative learning control. Computers & Chemical Engineering, 2015, 77: 10-23
    [78] Chi R H, Hou Z S, Jin S T, Wang D W, Chien C J. Enhanced data-driven optimal terminal ILC using current iteration control knowledge. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(11): 2939-2948 doi: 10.1109/TNNLS.2015.2461022
    [79] Roman R C, Radac M B, Precup R E, Petriu E M. Data-driven model-free adaptive control tuned by virtual reference feedback tuning. Acta Polytechnica Hungarica, 2016, 13(1): 83-96
    [80] Hou Z S, Liu S D, Tian T T. Lazy-learning-based data-driven model-free adaptive predictive control for a class of discrete-time nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems, 2016, doi: 10.1109/TNNLS.2016.2561702, tobepublished.
    [81] Hou Z S, Xu J X, Yan J W. An iterative learning approach for density control of freeway traffic flow via ramp metering. Transportation Research, Part C: Emerging Technologies, 2008, 16(1): 71-97 doi: 10.1016/j.trc.2007.06.007
    [82] Hou Z S, Xu J X, Zhong H W. Freeway traffic control using iterative learning control-based ramp metering and speed signaling. IEEE Transactions on Vehicular Technology, 2007, 56(2): 466-477 doi: 10.1109/TVT.2007.891431
    [83] Togai M, Yamano O. Analysis and design of an optimal learning control scheme for industrial robots: a discrete system approach. In: Proceedings of the 24th IEEE Conference on Decision and Control. Fort Lauderdale, FL, USA: IEEE, 1985. 1399-1404
    [84] Tao K M, Kosut R L, Aral G. Learning feedforward control. In: Proceedings of the 1994 American Control Conference. Baltimore, MD, USA: IEEE, 1994, 3: 2575-2579
    [85] Gorinevsky D M. Direct learning of feedforward control for manipulator path tracking. In: Proceedings of the 1992 IEEE International Symposium on Intelligent Control. Glasgow, UK: IEEE, 1992. 42-47
    [86] Lee K S, Kim W C, Lee J H. Model-based iterative learning control with quadratic criterion for linear batch processes. Journal of Control Automation Systems Engineering, 1996, 2(3): 148-157
    [87] Barton K L, Alleyne A G. A norm optimal approach to time-varying ILC with application to a multi-axis robotic testbed. IEEE Transactions on Control Systems Technology, 2011, 19(1): 166-180 doi: 10.1109/TCST.2010.2040476
    [88] van de Wijdeven J, Donkers T, Bosgra O. Iterative learning control for uncertain systems: robust monotonic convergence analysis. Automatica, 2009, 45(10): 2383-2391 doi: 10.1016/j.automatica.2009.06.033
    [89] Lee K S, Lee J H. Constrained model-based predictive control combined with iterative learning for batch or repetitive processes. In: Proceedings of the 2nd Asian Control Conference. Seoul, Korea: 1997. 33-36
    [90] Lee J H, Morari M, Garcia C E. State space interpretation of model predictive control. Automatica, 1994, 30(4): 707-717 doi: 10.1016/0005-1098(94)90159-7
    [91] Oh S K, Lee J M. Iterative learning model predictive control for constrained multivariable control of batch processes. Computers & Chemical Engineering, 2016, 93: 284-292
    [92] Cao Z X, Lu J Y, Zhang R D, Gao F R. Iterative learning Kalman filter for repetitive processes. Journal of Process Control, 2016, 46: 92-104 doi: 10.1016/j.jprocont.2016.08.003
    [93] Liu T, Wang Y Q. A synthetic approach for robust constrained iterative learning control of piecewise affine batch processes. Automatica, 2012, 48(11): 2762-2775 doi: 10.1016/j.automatica.2012.08.026
    [94] Son T D, Ahn H S. Terminal iterative learning control with multiple intermediate pass points. In: Proceedings of the 2011 American Control Conference. San Francisco, CA, USA: IEEE, 2011. 3651-3656
    [95] Freeman C T, Cai Z L, Rogers E, Lewin P L. Iterative learning control for multiple point-to-point tracking application. IEEE Transactions on Control Systems Technology, 2011, 19(3): 590-600 doi: 10.1109/TCST.2010.2051670
    [96] Freeman C T. Constrained point-to-point iterative learning control with experimental verification. Control Engineering Practice, 2012, 20(5): 489-498 doi: 10.1016/j.conengprac.2012.01.003
    [97] Son T D, Ahn H S, Moore K L. Iterative learning control in optimal tracking problems with specified data points. Automatica, 2013, 49(5): 1465-1472 doi: 10.1016/j.automatica.2013.02.008
    [98] Owens D H, Freeman C T, Van Dinh T. Norm-optimal iterative learning control with intermediate point weighting: theory, algorithms, and experimental evaluation. IEEE Transactions on Control Systems Technology, 2013, 21(3): 999-1007 doi: 10.1109/TCST.2012.2196281
    [99] Owens D H, Feng K. Parameter optimization in iterative learning control. International Journal of Control, 2003, 76(11): 1059-1069 doi: 10.1080/0020717031000121410
    [100] Hätönen J J, Feng K, Owens D H. New connections between positivity and parameter-optimal iterative learning control. In: Proceedings of the the 2003 IEEE International Symposium on Intelligent Control. Houston, TX, USA: IEEE, 2003. 69-74
    [101] Harte T J, Hätönen J, Owens D H. Discrete-time inverse model-based iterative learning control: stability, monotonicity and robustness. International Journal of Control, 2005, 78(8): 577-586 doi: 10.1080/00207170500111606
    [102] Owens D H, Hätönen J J, Daley S. Robust monotone gradient-based discrete-time iterative learning control. International Journal of Robust and Nonlinear Control, 2009, 19(6): 634-661 doi: 10.1002/rnc.v19:6
    [103] Owens D H. Multivariable norm optimal and parameter optimal iterative learning control: a unified formulation. International Journal of Control, 2012, 85(8): 1010-1025 doi: 10.1080/00207179.2012.673136
    [104] Chen Y Q, Gong Z M, Wen C Y. Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays. Automatica, 1998, 34(3): 345-353 doi: 10.1016/S0005-1098(97)00196-9
    [105] Gunnarsson S, Norrlöf M. On the disturbance properties of high order iterative learning control algorithms. Automatica, 2006, 42(11): 2031-2034 doi: 10.1016/j.automatica.2006.06.010
    [106] Hätönen J, Owens D H, Feng K. Basis functions and parameter optimisation in high-order iterative learning control. Automatica, 2006, 42(2): 287-294 doi: 10.1016/j.automatica.2005.05.025
    [107] Hakvoort W B J, Aarts R G K M, van Dijk J, Jonker J B. Lifted system iterative learning control applied to an industrial robot. Control Engineering Practice, 2008, 16(4): 377-391 doi: 10.1016/j.conengprac.2007.05.002
    [108] Rice J K, Verhaegen M. A structured matrix approach to efficient calculation of LQG repetitive learning controllers in the lifted setting. International Journal of Control, 2010, 83(6): 1265-1276 doi: 10.1080/00207171003682671
    [109] Hakvoort W B J, Aarts R G K M, van Dijk J, Jonker J B. A computationally efficient algorithm of iterative learning control for discrete-time linear time-varying systems. Automatica, 2009, 45(12): 2925-2929 doi: 10.1016/j.automatica.2009.09.023
    [110] Barton K L, Bristow D A, Alleyne A G. A numerical method for determining monotonicity and convergence rate in iterative learning control. International Journal of Control, 2010, 83(2): 219-226 doi: 10.1080/00207170903131177
    [111] Haber A, Fraanje R, Verhaegen M. Linear computational complexity robust ILC for lifted systems. Automatica, 2012, 48(6): 1102-1110 doi: 10.1016/j.automatica.2012.02.009
    [112] Sun H Q, Alleyne A G. A computationally efficient norm optimal iterative learning control approach for LTV systems. Automatica, 2014, 50(1): 141-148 doi: 10.1016/j.automatica.2013.09.009
    [113] 贾立, 施继平, 邱铭森, 俞金寿.基于无约束迭代学习的间歇生产过程优化控制.化工学报, 2010, 61(8): 1889-1894 http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201008004.htm

    Jia Li, Shi Ji-Ping, Qiu Ming-Sen, Yu Jin-Shou. Nonrestraint-iterative learning-based optimal control for batch processes. CIESR Journal, 2010, 61(8): 1889-1894 http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201008004.htm
    [114] 李恒杰, 郝晓弘, 曾贤强.基于克隆选择算法的非线性优化迭代学习控制.吉林大学学报(工学版), 2010, 40(4): 1054-1058 http://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201004034.htm

    Li Heng-Jie, Hao Xiao-Hong, Zeng Xian-Qiang. Clonal selection algorithm based nonlinear optimal iterative learning control. Journal of Jilin University (Engineering and Technology Edition), 2010, 40(4): 1054-1058 http://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201004034.htm
    [115] 逄勃, 邵诚.一种参数优化的非线性离散系统鲁棒迭代学习控制方法.控制与决策, 2014, 29(3): 449-454 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201403010.htm

    Peng Bo, Shao Cheng. A robust iterative learning control with parameter-optimization for discrete nonlinear systems. Control and Decision, 2014, 29(3): 449-454 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201403010.htm
    [116] Chi R H, Liu X H, Zhang R K, Hou Z S, Huang B. Constrained data-driven optimal iterative learning control. Journal of Process Control, 2017, 55: 10-29 doi: 10.1016/j.jprocont.2017.03.003
    [117] Chi R H, Wang D W, Lewis F L, Hou Z S, Jin S T. Adaptive terminal ILC for iteration-varying target points. Asian Journal of Control, 2015, 17(3): 952-962 doi: 10.1002/asjc.v17.3
    [118] Liu T Q, Wang D W, Chi R H. Neural network based terminal iterative learning control for uncertain nonlinear non-affine systems. International Journal of Adaptive Control and Signal Processing, 2015, 29(10): 1274-1286 doi: 10.1002/acs.v29.10
    [119] Liu Y, Chi R H, Hou Z S. Neural network state learning based adaptive terminal ILC for tracking iteration-varying target points. International Journal of Automation and Computing, 2015, 12(3): 266-272 doi: 10.1007/s11633-015-0891-0
    [120] Chi R H, Lin N, Zhang R K, Huang B, Feng Y J. Stochastic high-order internal model-based adaptive TILC with random uncertainties in initial states and desired reference points. International Journal of Adaptive Control and Signal Processing, 2017, 31(5): 726-741 doi: 10.1002/acs.v31.5
    [121] Chi R H, Huang B, Wang D W, Zhang R K, Feng Y J. Data-driven optimal terminal iterative learning control with initial value dynamic compensation. IET Control Theory & Applications, 2016, 10(12): 1357-1364
    [122] Chi R H, Liu Y, Hou Z S, Jin S T. Data-driven terminal iterative learning control with high-order learning law for a class of non-linear discrete-time multiple-input-multiple output systems. IET Control Theory & Applications, 2015, 9(7): 1075-1082
    [123] Chi R H, Liu Y, Hou Z S, Jin S T. High-order data-driven optimal TILC approach for fed-batch processes. The Canadian Journal of Chemical Engineering, 2015, 93(8): 1455-1461 doi: 10.1002/cjce.v93.8
    [124] Chi R H, Hou Z S. Dual-stage optimal iterative learning control for nonlinear non-affine discrete-time systems. Acta Automatica Sinica, 2007, 33(10): 1061-1065 doi: 10.1360/aas-007-1061
    [125] 池荣虎, 侯忠生, 隋树林.快速路入口匝道的非参数自适应学习控制.控制理论与应用, 2008, 25(6): 1011-1015 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200806007.htm

    Chi Rong-Hu, Hou Zhong-Sneng, Sui Shu-Lin. Non-parameter adaptive iterative learning control for the freeway traffic ramp metering. Control Theory & Applications, 2008, 25(6): 1011-1015 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200806007.htm
    [126] Jin S T, Hou Z S, Chi R H, Liu X B. Data-driven model-free adaptive iterative learning control for a class of discrete-time nonlinear systems. Control Theory & Applications, 2012, 29(8): 1001-1009
    [127] Jin S T, Hou Z S, Chi R H. Optimal terminal iterative learning control for the automatic train stop system. Asian Journal of Control, 2015, 17(5): 1992-1999 doi: 10.1002/asjc.1065
    [128] Janssens P, Pipeleers G, Swevers J. Model-free iterative learning control for LTI systems and experimental validation on a linear motor test setup. In: Proceedings of the 2011 American Control Conference (ACC). San Francisco, CA, USA: IEEE, 2011. 4287-4292
    [129] Janssens P, Pipeleers G, Swevers J. A data-driven constrained norm-optimal iterative learning control framework for LTI systems. IEEE Transactions on Control Systems Technology, 2013, 21(2): 546-551 doi: 10.1109/TCST.2012.2185699
    [130] Rǎdac M B, Precup R E, Petriu E M, Preitl S, Dragoş C A. Data-driven reference trajectory tracking algorithm and experimental validation. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2327-2336 doi: 10.1109/TII.2012.2220973
    [131] Radac M B, Precup R E. Model-free constrained data-driven iterative reference input tuning algorithm with experimental validation. International Journal of General Systems, 2016, 45(4): 455-476 doi: 10.1080/03081079.2015.1072524
    [132] Zhou Y L, Yin Y X, Zhang Q Z, Gan W S. Model-free iterative learning control for repetitive impulsive noise using FFT. In: Proceedings of the 2012 Intentatinal symposium on Neural Networks: Advances in Neural Networks. Berlin, Heidelberg: Springer-Verlag, 2012. 461-467
    [133] Wei Q L, Liu D R, Shi G. A novel dual iterative Q-learning method for optimal battery management in smart residential environments. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2509-2518 doi: 10.1109/TIE.2014.2361485
    [134] Radac M B, Precup R E. Optimal behaviour prediction using a primitive-based data-driven model-free iterative learning control approach. Computers in Industry, 2015, 74: 95-109 doi: 10.1016/j.compind.2015.03.004
    [135] Hou Z S, Chi R H, Gao H J. An overview of dynamic-linearization-based data-driven control and applications. IEEE Transactions on Industrial Electronics, 2017, 64(5): 4076-4090 doi: 10.1109/TIE.2016.2636126
  • 加载中
计量
  • 文章访问数:  3078
  • HTML全文浏览量:  920
  • PDF下载量:  1771
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-23
  • 录用日期:  2017-05-11
  • 刊出日期:  2017-06-20

目录

    /

    返回文章
    返回