[1]
|
Bonvin D. Control and optimization of batch processes. IEEE Control Systems, 2006, 26(6): 34-45 doi: 10.1109/MCS.2006.252831
|
[2]
|
Tomazi K, Linninger A A, Daniel J R. Batch processing industries. Batch Processes. Boca Raton, FL: CRC Press, 2006. 7-39
|
[3]
|
Tchobanoglous G, Burton F G, Stensel H D. Wastewater Engineering: Treatment and Reuse. New York: McGraw-Hill, 2003.
|
[4]
|
Young R A, Akhtar M. Environmentally Friendly Technologies for the Pulp and Paper Industry. New York: Wiley, 1998.
|
[5]
|
Mazurek J, Ashford N A. Making Microchips: Policy, Globalization, and Economic Restructuring in the Semiconductor Industry. Cambridge, MA: MIT Press, 1998.
|
[6]
|
McCormick K. Manufacturing in Global Pharmaceutical Industry. London: Urch, 2003.
|
[7]
|
Myerson A S. Handbook of Industrial Crystallization. London, UK: Butterworths-Heinemann, 2001.
|
[8]
|
Seborg D E, Edgar T F, Mellichamp D A. Process Dynamics and Control. New York: Wiley, 2004.
|
[9]
|
Nagy Z K, Braatz R D. Robust nonlinear model predictive control of batch processes. AIChE Journal, 2003, 49(7): 1776-1786 doi: 10.1002/(ISSN)1547-5905
|
[10]
|
Moore K L. Iterative Learning Control for Deterministic Systems. London, UK: Springer-Verlag, 1993.
|
[11]
|
孙海乔. 间歇过程的鲁棒迭代学习控制研究[硕士学位论文], 江南大学, 中国, 2014.Sun Hai-Qiao. Research on robust iterative learning control applied to batch process[Master dissertation], Jiangnan University, China, 2014.
|
[12]
|
王晶, 王玥, 王伟, 曹柳林, 靳其兵.基于去伪策略的间歇过程自适应迭代学习.中南大学学报(自然科学版), 2015, 46(4): 1318-1325 doi: 10.11817/j.issn.1672-7207.2015.04.021Wang Jing, Wang Yue, Wang Wei, Cao Liu-Lin, Jin Qi-Bing. Adaptive iterative learning control based on unfalsified strategy applied in batch process. Journal of Central South University (Science and Technology), 2015, 46(4): 1318-1325 doi: 10.11817/j.issn.1672-7207.2015.04.021
|
[13]
|
François G, Srinivasan B, Bonvin D. Use of measurements for enforcing the necessary conditions of optimality in the presence of constraints and uncertainty. Journal of Process Control, 2005, 15(6): 701-712 doi: 10.1016/j.jprocont.2004.11.006
|
[14]
|
Del Castillo E, Hurwitz A M. Run-to-run process control: literature review and extensions. Journal of Quality Technology, 1997, 29(2): 184-196
|
[15]
|
Sachs E, Guo R S, Ha S, Hu A. Process control system for VLSI fabrication. IEEE Transactions on Semiconductor Manufacturing, 1991, 4(2): 134-144 doi: 10.1109/66.79725
|
[16]
|
Xu J X, Chen Y Q, Lee T H, Yamamoto S. Terminal iterative learning control with an application to RTPCVD thickness control. Automatica, 1999, 35(9): 1535-1542 doi: 10.1016/S0005-1098(99)00076-X
|
[17]
|
Flores-Cerrillo J, MacGregor J F. Iterative learning control for final batch product quality using partial least squares models. Industrial & Engineering Chemistry Research, 2005, 44(24): 9146-9155
|
[18]
|
Gauthier G, Boulet B. Terminal iterative learning control design with singular value decomposition decoupling for thermoforming ovens. In: Proceedings of the 2009 American Control Conference. St. Louis, MO, USA: IEEE, 2009. 1640-1645
|
[19]
|
Arimoto S, Kawamura S, Miyazaki F. Bettering operation of robots by learning. Journal of Robotic Systems, 1984, 1(2): 123-140 doi: 10.1002/(ISSN)1097-4563
|
[20]
|
Lee K S, Bang S H, Chang K S. Feedback-assisted iterative learning control based on an inverse process model. Journal of Process Control, 1994, 4(2): 77-89 doi: 10.1016/0959-1524(94)80026-X
|
[21]
|
Lee K S, Bang S H, Yi S, Son J S, Yoon S C. Iterative learning control of heat-up phase for a batch polymerization reactor. Journal of Process Control, 1996, 6(4): 255-262 doi: 10.1016/0959-1524(96)00048-0
|
[22]
|
Liu T, Gao F R. Robust two-dimensional iterative learning control for batch processes with state delay and time-varying uncertainties. Chemical Engineering Science, 2010, 65(23): 6134-6144 doi: 10.1016/j.ces.2010.08.031
|
[23]
|
Wang Y Q, Liu T, Zhao Z. Advanced PI control with simple learning set-point design: application on batch processes and robust stability analysis. Chemical Engineering Science, 2012, 71: 153-165 doi: 10.1016/j.ces.2011.12.028
|
[24]
|
Wang Y Q, Zisser H, Dassau E, Jovanovič L, Doyle Ⅲ F J. Model predictive control with learning-type set-point: application to artificial pancreatic β-cell. AIChE Journal, 2010, 56(6): 1510-1518 doi: 10.1002/aic.12081
|
[25]
|
Liu T, Wang X Z, Chen J H. Robust PID based indirect-type iterative learning control for batch processes with time-varying uncertainties. Journal of Process Control, 2014, 24(12): 95-106 doi: 10.1016/j.jprocont.2014.07.002
|
[26]
|
Márquez-Vera M A, Ramos-Velasco L E, Suárez-Cansino, Márquez-Vera C A. Fuzzy iterative learning control applied in a biological reactor using a reduced number of measures. Applied Mathematics and Computation, 2014, 246: 608-618 doi: 10.1016/j.amc.2014.08.072
|
[27]
|
Gao F R, Yang Y, Shao C. Robust iterative learning control with applications to injection molding process. Chemical Engineering Science, 2001, 56(24): 7025-7034 doi: 10.1016/S0009-2509(01)00339-6
|
[28]
|
Shi J, Gao F R, Wu T J. Robust design of integrated feedback and iterative learning control of a batch process based on a 2D Roesser system. Journal of Process Control, 2005, 15(8): 907-924 doi: 10.1016/j.jprocont.2005.02.005
|
[29]
|
Shi J, Gao F R, Wu T J. Integrated design and structure analysis of robust iterative learning control system based on a two-dimensional model. Industrial & Engineering Chemistry Research, 2005, 44(21): 8095-8105
|
[30]
|
Shi J, Gao F R, Wu T J. A robust iterative learning control design for batch processes with uncertain perturbation and initialization. AIChE Journal, 2006, 52(6): 2171-2187 doi: 10.1002/(ISSN)1547-5905
|
[31]
|
Hao S L, Liu T, Paszke W, Galkowski K. Robust iterative learning control for batch processes with input delay subject to time-varying uncertainties. IET Control Theory & Applications, 2016, 10(15): 1904-1915
|
[32]
|
Tan K K, Zhao S, Huang S N, Lee T H, Tay A. A new repetitive control for LTI systems with input delay. Journal of Process Control, 2009, 19(4): 711-716 doi: 10.1016/j.jprocont.2008.07.004
|
[33]
|
Xu J X, Xu J. On iterative learning from different tracking tasks in the presence of time-varying uncertainties. IEEE Transactions on Systems, Man, and Cybernetics, Part B, Cybernetics, 2004, 34(1): 589-597 doi: 10.1109/TSMCB.2003.818433
|
[34]
|
Sun M X, He X X. Iterative learning identification and control of discrete time-varying systems. In: Proceedings of the 2017 Chinese Control Conference. Zhangjiajie, Hunan, China: IEEE, 2017. 520-524
|
[35]
|
Chi R H, Hou Z S, Xu J X. Adaptive ILC for a class of discrete-time systems with iteration-varying trajectory and random initial condition. Automatica, 2008, 44(8): 2207-2213 doi: 10.1016/j.automatica.2007.12.004
|
[36]
|
Tayebi A. Adaptive iterative learning control for robot manipulators. Automatica, 2004, 40(7): 1195-1203 doi: 10.1016/j.automatica.2004.01.026
|
[37]
|
Sun M X, Ge S S. Adaptive repetitive control for a class of nonlinearly parametrized systems. IEEE Transactions on Automatic Control, 2006, 51(10): 1684-1688 doi: 10.1109/TAC.2006.883028
|
[38]
|
Li X D, Xiao T F, Zheng H X. Adaptive discrete-time iterative learning control for non-linear multiple input multiple output systems with iteration-varying initial error and reference trajectory. IET Control Theory & Applications, 2011, 5(9): 1131-1139
|
[39]
|
Yan W L, Sun M X. adaptive iterative learning control of discrete-time varying systems with unknown control directions. International Journal of Adaptive Control and Signal Processing, 2013, 27(4): 340-348 doi: 10.1002/acs.v27.4
|
[40]
|
Chi R H, Hou Z S, Jin S T. A data-driven adaptive ILC for a class of nonlinear discrete-time systems with random initial states and iteration-varying target trajectory. Journal of the Franklin Institute, 2015, 352(6): 2407-2424 doi: 10.1016/j.jfranklin.2015.03.014
|
[41]
|
Amann N, Owens D H, Rogers E. Iterative learning control for discrete-time systems with exponential rate of convergence. IEE Proceedings-Control Theory and Applications, 1996, 143(2): 217-224 doi: 10.1049/ip-cta:19960244
|
[42]
|
Lee J H, Lee K S, Kim W C. Model-based iterative learning control with a quadratic criterion for time-varying linear systems. Automatica, 2000, 36(5): 641-657 doi: 10.1016/S0005-1098(99)00194-6
|
[43]
|
Moore K L, Verwoerd M H A. l1-optimal robust iterative learning controller design. In: Proceedings of the 2008 American Control Conference. Seattle, WA, USA: IEEE, 2008. 3881-3886
|
[44]
|
Xu J X, Tan Y. Robust optimal design and convergence properties analysis of iterative learning control approaches. Automatica, 2002, 38(11): 1867-1880 doi: 10.1016/S0005-1098(02)00143-7
|
[45]
|
Sanzida N, Nagy Z K. Iterative learning control for the systematic design of supersaturation controlled batch cooling crystallisation processes. Computers & Chemical Engineering, 2013, 59: 111-121
|
[46]
|
Axelsson P, Karlsson R, Norrlöf M. Estimation-based norm-optimal iterative learning control. Systems & Control Letters, 2014, 73: 76-80
|
[47]
|
Nguyen D H, Banjerdpongchai D. An LMI approach for robust iterative learning control with quadratic performance criterion. Journal of Process Control, 2009, 19(6): 1054-1060 doi: 10.1016/j.jprocont.2008.12.004
|
[48]
|
Lim I, Barton K L. Pareto iterative learning control: optimized control for multiple performance objectives. Control Engineering Practice, 2014, 26(1): 125-135
|
[49]
|
Chu B, Owens D H. Accelerated norm-optimal iterative learning control algorithms using successive projection. International Journal of Control, 2009, 82(8): 1469-1484 doi: 10.1080/00207170802512824
|
[50]
|
Tousain R, van der Meche E, Bosgra O. Design strategy for iterative learning control based on optimal control. In: Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, FL, USA: IEEE, 2001, 5: 4463-4468
|
[51]
|
刘山, 吴铁军. 基于最优化指标的迭代学习控制. 第四届全球智能控制与自动化大会(WCICA'02). 上海, 2002. 621-625Liu Shan, Wu Tie-Jun. Iterative learning control based on optimization criterion. In: Proceedings of the 4th World Congress on Intelligent Control and Automation. Shanghai, China, 2002. 621-625
|
[52]
|
Chen C, Xiong Z H, Zhong Y S. Design and analysis of integrated predictive iterative learning control for batch process based on two-dimensional system theory. Chinese Journal of Chemical Engineering, 2014, 22(7): 762-768 doi: 10.1016/j.cjche.2014.05.008
|
[53]
|
Mishra S, Topcu U, Tomizuka M. Optimization-based constrained iterative learning control. IEEE Transactions on Control Systems Technology, 2011, 19(6): 1613-1621 doi: 10.1109/TCST.2010.2083663
|
[54]
|
Amann N, Owens D H, Rogers E. Predictive optimal iterative learning control. International Journal of Control, 1998, 69(2): 203-226 doi: 10.1080/002071798222794
|
[55]
|
Lee K S, Chin I S, Lee H J, Lee J H. Model predictive control technique combined with iterative learning for batch processes. AIChE Journal, 1999, 45(10): 2175-2187 doi: 10.1002/(ISSN)1547-5905
|
[56]
|
Wang L P, Freeman C T, Chai S, Rogers E. Predictive-repetitive control with constraints: from design to implementation. Journal of Process Control, 2013, 23(7): 956-967 doi: 10.1016/j.jprocont.2013.03.012
|
[57]
|
Jin S T, Hou Z S, Chi R H. A novel data-driven terminal iterative learning control with iteration prediction algorithm for a class of discrete-time nonlinear systems. Journal of Applied Mathematics, 2014, 2014: Article No. 307809
|
[58]
|
Chin I, Qin S J, Lee K S, Cho M. A two-stage iterative learning control technique combined with real-time feedback for independent disturbance rejection. Automatica, 2004, 40(11): 1913-1922 doi: 10.1016/j.automatica.2004.05.011
|
[59]
|
Slotine J J E, Li W P. Applied Nonlinear Control. Englewood Cliffs, NJ, USA: Prentice Hall, 1991.
|
[60]
|
Chen L J, Narendra K S. Identification and control of a nonlinear discrete-time system based on its linearization: a unified framework. IEEE Transactions on Neural Networks, 2004, 15(3): 663-673 doi: 10.1109/TNN.2004.826206
|
[61]
|
席裕庚, 王凡, 非线性系统预测控制的多模型方法, 自动化学报, 1996, 22(4): 456-461 http://www.aas.net.cn/CN/abstract/abstract17156.shtmlXi Yu-Geng, Wang Fan. Nonlinear multi-model predictive control. Acta Automatica Sinica, 1996, 22(4): 456-461 http://www.aas.net.cn/CN/abstract/abstract17156.shtml
|
[62]
|
Deng H, Li H X, Wu Y H. Feedback-linearization-based neural adaptive control for unknown nonaffine nonlinear discrete-time systems. IEEE Transactions on Neural Networks, 2008, 19(9): 1615-1625 doi: 10.1109/TNN.2008.2000804
|
[63]
|
Dumont G A, Fu Y. Non-linear adaptive control via laguerre expansion of volterra kernels. International Journal of Adaptive Control and Signal Processing, 1993, 7(5): 367-382 doi: 10.1002/(ISSN)1099-1115
|
[64]
|
Volckaert M, Diehl M, Swevers J. Generalization of norm optimal ILC for nonlinear systems with constraints. Mechanical Systems and Signal Processing, 2013, 39(1-2): 280-296 doi: 10.1016/j.ymssp.2013.03.009
|
[65]
|
严求真, 孙明轩.非线性不确定系统准最优学习控制.自动化学报, 2015, 41(9): 1659-1668 http://www.aas.net.cn/CN/abstract/abstract18739.shtmlYan Qiu-Zhen, Sun Ming-Xuan. Suboptimal learning control for nonlinear systems with both parametric and nonparametric uncertainties. Acta Automatica Sinica, 2015, 41(9): 1659-1668 http://www.aas.net.cn/CN/abstract/abstract18739.shtml
|
[66]
|
Endelt B. Design strategy for optimal iterative learning control applied on a deep drawing process. The International Journal of Advanced Manufacturing Technology, 2017, 88(1): 3-18
|
[67]
|
Wang D G, Song W Y, Shi P, Li H X. Approximation to a class of non-autonomous systems by dynamic fuzzy inference marginal linearization method. Information Sciences, 2013, 245: 197-217 doi: 10.1016/j.ins.2013.05.011
|
[68]
|
Xiong Z H, Zhang J. A batch-to-batch iterative optimal control strategy based on recurrent neural network models. Journal of Process Control, 2005, 15(1): 11-21 doi: 10.1016/j.jprocont.2004.04.005
|
[69]
|
Liu X J, Kong X B. Nonlinear fuzzy model predictive iterative learning control for drum-type boiler-turbine system. Journal of Process Control, 2013, 23(8): 1023-1040 doi: 10.1016/j.jprocont.2013.06.004
|
[70]
|
侯忠生, 许建新.数据驱动控制理论及方法的回顾和展望.自动化学报, 2009, 35(6): 650-667 http://www.aas.net.cn/CN/abstract/abstract13327.shtmlHou Zhong-Sheng, Xu Jian-Xin. On data-driven control theory: the state of the art and perspective. Acta Automatica Sinica, 2009, 35(6): 650-667 http://www.aas.net.cn/CN/abstract/abstract13327.shtml
|
[71]
|
Hou Z S, Jin S T. Model Free Adaptive Control: Theory and Applications. New York: CRC Press, 2013.
|
[72]
|
侯忠生.再论无模型自适应控制.系统科学与数学, 2014, 34(10): 1182-1191 http://www.cnki.com.cn/Article/CJFDTOTAL-STYS201410005.htmHou Zhong-Sheng. Highlight and perspective on model free adaptive control. Journal of Systems Science and Mathematical Sciences, 2014, 34(10): 1182-1191 http://www.cnki.com.cn/Article/CJFDTOTAL-STYS201410005.htm
|
[73]
|
Hou Z S, Wang Z. From model-based control to data-driven control: survey, classification and perspective. Information Sciences, 2013, 235: 3-35 doi: 10.1016/j.ins.2012.07.014
|
[74]
|
Yin S, Li X W, Gao H J, Kaynak O. Data-based techniques focused on modern industry: an overview. IEEE Transactions on Industrial Electronics, 2015, 62(1): 657-667 doi: 10.1109/TIE.2014.2308133
|
[75]
|
Xu J X, Hou Z S. Notes on data-driven system approaches. Acta Automatica Sinica, 2009, 35(6): 668-675
|
[76]
|
Chi R H, Wang D W, Hou Z S, Jin S T. Data-driven optimal terminal iterative learning control. Journal of Process Control, 2012, 22(10): 2026-2037 doi: 10.1016/j.jprocont.2012.08.001
|
[77]
|
Chi R H, Hou Z S, Huang B, Jin S T. A unified data-driven design framework of optimality-based generalized iterative learning control. Computers & Chemical Engineering, 2015, 77: 10-23
|
[78]
|
Chi R H, Hou Z S, Jin S T, Wang D W, Chien C J. Enhanced data-driven optimal terminal ILC using current iteration control knowledge. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(11): 2939-2948 doi: 10.1109/TNNLS.2015.2461022
|
[79]
|
Roman R C, Radac M B, Precup R E, Petriu E M. Data-driven model-free adaptive control tuned by virtual reference feedback tuning. Acta Polytechnica Hungarica, 2016, 13(1): 83-96
|
[80]
|
Hou Z S, Liu S D, Tian T T. Lazy-learning-based data-driven model-free adaptive predictive control for a class of discrete-time nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems, 2016, doi: 10.1109/TNNLS.2016.2561702, tobepublished.
|
[81]
|
Hou Z S, Xu J X, Yan J W. An iterative learning approach for density control of freeway traffic flow via ramp metering. Transportation Research, Part C: Emerging Technologies, 2008, 16(1): 71-97 doi: 10.1016/j.trc.2007.06.007
|
[82]
|
Hou Z S, Xu J X, Zhong H W. Freeway traffic control using iterative learning control-based ramp metering and speed signaling. IEEE Transactions on Vehicular Technology, 2007, 56(2): 466-477 doi: 10.1109/TVT.2007.891431
|
[83]
|
Togai M, Yamano O. Analysis and design of an optimal learning control scheme for industrial robots: a discrete system approach. In: Proceedings of the 24th IEEE Conference on Decision and Control. Fort Lauderdale, FL, USA: IEEE, 1985. 1399-1404
|
[84]
|
Tao K M, Kosut R L, Aral G. Learning feedforward control. In: Proceedings of the 1994 American Control Conference. Baltimore, MD, USA: IEEE, 1994, 3: 2575-2579
|
[85]
|
Gorinevsky D M. Direct learning of feedforward control for manipulator path tracking. In: Proceedings of the 1992 IEEE International Symposium on Intelligent Control. Glasgow, UK: IEEE, 1992. 42-47
|
[86]
|
Lee K S, Kim W C, Lee J H. Model-based iterative learning control with quadratic criterion for linear batch processes. Journal of Control Automation Systems Engineering, 1996, 2(3): 148-157
|
[87]
|
Barton K L, Alleyne A G. A norm optimal approach to time-varying ILC with application to a multi-axis robotic testbed. IEEE Transactions on Control Systems Technology, 2011, 19(1): 166-180 doi: 10.1109/TCST.2010.2040476
|
[88]
|
van de Wijdeven J, Donkers T, Bosgra O. Iterative learning control for uncertain systems: robust monotonic convergence analysis. Automatica, 2009, 45(10): 2383-2391 doi: 10.1016/j.automatica.2009.06.033
|
[89]
|
Lee K S, Lee J H. Constrained model-based predictive control combined with iterative learning for batch or repetitive processes. In: Proceedings of the 2nd Asian Control Conference. Seoul, Korea: 1997. 33-36
|
[90]
|
Lee J H, Morari M, Garcia C E. State space interpretation of model predictive control. Automatica, 1994, 30(4): 707-717 doi: 10.1016/0005-1098(94)90159-7
|
[91]
|
Oh S K, Lee J M. Iterative learning model predictive control for constrained multivariable control of batch processes. Computers & Chemical Engineering, 2016, 93: 284-292
|
[92]
|
Cao Z X, Lu J Y, Zhang R D, Gao F R. Iterative learning Kalman filter for repetitive processes. Journal of Process Control, 2016, 46: 92-104 doi: 10.1016/j.jprocont.2016.08.003
|
[93]
|
Liu T, Wang Y Q. A synthetic approach for robust constrained iterative learning control of piecewise affine batch processes. Automatica, 2012, 48(11): 2762-2775 doi: 10.1016/j.automatica.2012.08.026
|
[94]
|
Son T D, Ahn H S. Terminal iterative learning control with multiple intermediate pass points. In: Proceedings of the 2011 American Control Conference. San Francisco, CA, USA: IEEE, 2011. 3651-3656
|
[95]
|
Freeman C T, Cai Z L, Rogers E, Lewin P L. Iterative learning control for multiple point-to-point tracking application. IEEE Transactions on Control Systems Technology, 2011, 19(3): 590-600 doi: 10.1109/TCST.2010.2051670
|
[96]
|
Freeman C T. Constrained point-to-point iterative learning control with experimental verification. Control Engineering Practice, 2012, 20(5): 489-498 doi: 10.1016/j.conengprac.2012.01.003
|
[97]
|
Son T D, Ahn H S, Moore K L. Iterative learning control in optimal tracking problems with specified data points. Automatica, 2013, 49(5): 1465-1472 doi: 10.1016/j.automatica.2013.02.008
|
[98]
|
Owens D H, Freeman C T, Van Dinh T. Norm-optimal iterative learning control with intermediate point weighting: theory, algorithms, and experimental evaluation. IEEE Transactions on Control Systems Technology, 2013, 21(3): 999-1007 doi: 10.1109/TCST.2012.2196281
|
[99]
|
Owens D H, Feng K. Parameter optimization in iterative learning control. International Journal of Control, 2003, 76(11): 1059-1069 doi: 10.1080/0020717031000121410
|
[100]
|
Hätönen J J, Feng K, Owens D H. New connections between positivity and parameter-optimal iterative learning control. In: Proceedings of the the 2003 IEEE International Symposium on Intelligent Control. Houston, TX, USA: IEEE, 2003. 69-74
|
[101]
|
Harte T J, Hätönen J, Owens D H. Discrete-time inverse model-based iterative learning control: stability, monotonicity and robustness. International Journal of Control, 2005, 78(8): 577-586 doi: 10.1080/00207170500111606
|
[102]
|
Owens D H, Hätönen J J, Daley S. Robust monotone gradient-based discrete-time iterative learning control. International Journal of Robust and Nonlinear Control, 2009, 19(6): 634-661 doi: 10.1002/rnc.v19:6
|
[103]
|
Owens D H. Multivariable norm optimal and parameter optimal iterative learning control: a unified formulation. International Journal of Control, 2012, 85(8): 1010-1025 doi: 10.1080/00207179.2012.673136
|
[104]
|
Chen Y Q, Gong Z M, Wen C Y. Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays. Automatica, 1998, 34(3): 345-353 doi: 10.1016/S0005-1098(97)00196-9
|
[105]
|
Gunnarsson S, Norrlöf M. On the disturbance properties of high order iterative learning control algorithms. Automatica, 2006, 42(11): 2031-2034 doi: 10.1016/j.automatica.2006.06.010
|
[106]
|
Hätönen J, Owens D H, Feng K. Basis functions and parameter optimisation in high-order iterative learning control. Automatica, 2006, 42(2): 287-294 doi: 10.1016/j.automatica.2005.05.025
|
[107]
|
Hakvoort W B J, Aarts R G K M, van Dijk J, Jonker J B. Lifted system iterative learning control applied to an industrial robot. Control Engineering Practice, 2008, 16(4): 377-391 doi: 10.1016/j.conengprac.2007.05.002
|
[108]
|
Rice J K, Verhaegen M. A structured matrix approach to efficient calculation of LQG repetitive learning controllers in the lifted setting. International Journal of Control, 2010, 83(6): 1265-1276 doi: 10.1080/00207171003682671
|
[109]
|
Hakvoort W B J, Aarts R G K M, van Dijk J, Jonker J B. A computationally efficient algorithm of iterative learning control for discrete-time linear time-varying systems. Automatica, 2009, 45(12): 2925-2929 doi: 10.1016/j.automatica.2009.09.023
|
[110]
|
Barton K L, Bristow D A, Alleyne A G. A numerical method for determining monotonicity and convergence rate in iterative learning control. International Journal of Control, 2010, 83(2): 219-226 doi: 10.1080/00207170903131177
|
[111]
|
Haber A, Fraanje R, Verhaegen M. Linear computational complexity robust ILC for lifted systems. Automatica, 2012, 48(6): 1102-1110 doi: 10.1016/j.automatica.2012.02.009
|
[112]
|
Sun H Q, Alleyne A G. A computationally efficient norm optimal iterative learning control approach for LTV systems. Automatica, 2014, 50(1): 141-148 doi: 10.1016/j.automatica.2013.09.009
|
[113]
|
贾立, 施继平, 邱铭森, 俞金寿.基于无约束迭代学习的间歇生产过程优化控制.化工学报, 2010, 61(8): 1889-1894 http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201008004.htmJia Li, Shi Ji-Ping, Qiu Ming-Sen, Yu Jin-Shou. Nonrestraint-iterative learning-based optimal control for batch processes. CIESR Journal, 2010, 61(8): 1889-1894 http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201008004.htm
|
[114]
|
李恒杰, 郝晓弘, 曾贤强.基于克隆选择算法的非线性优化迭代学习控制.吉林大学学报(工学版), 2010, 40(4): 1054-1058 http://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201004034.htmLi Heng-Jie, Hao Xiao-Hong, Zeng Xian-Qiang. Clonal selection algorithm based nonlinear optimal iterative learning control. Journal of Jilin University (Engineering and Technology Edition), 2010, 40(4): 1054-1058 http://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201004034.htm
|
[115]
|
逄勃, 邵诚.一种参数优化的非线性离散系统鲁棒迭代学习控制方法.控制与决策, 2014, 29(3): 449-454 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201403010.htmPeng Bo, Shao Cheng. A robust iterative learning control with parameter-optimization for discrete nonlinear systems. Control and Decision, 2014, 29(3): 449-454 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201403010.htm
|
[116]
|
Chi R H, Liu X H, Zhang R K, Hou Z S, Huang B. Constrained data-driven optimal iterative learning control. Journal of Process Control, 2017, 55: 10-29 doi: 10.1016/j.jprocont.2017.03.003
|
[117]
|
Chi R H, Wang D W, Lewis F L, Hou Z S, Jin S T. Adaptive terminal ILC for iteration-varying target points. Asian Journal of Control, 2015, 17(3): 952-962 doi: 10.1002/asjc.v17.3
|
[118]
|
Liu T Q, Wang D W, Chi R H. Neural network based terminal iterative learning control for uncertain nonlinear non-affine systems. International Journal of Adaptive Control and Signal Processing, 2015, 29(10): 1274-1286 doi: 10.1002/acs.v29.10
|
[119]
|
Liu Y, Chi R H, Hou Z S. Neural network state learning based adaptive terminal ILC for tracking iteration-varying target points. International Journal of Automation and Computing, 2015, 12(3): 266-272 doi: 10.1007/s11633-015-0891-0
|
[120]
|
Chi R H, Lin N, Zhang R K, Huang B, Feng Y J. Stochastic high-order internal model-based adaptive TILC with random uncertainties in initial states and desired reference points. International Journal of Adaptive Control and Signal Processing, 2017, 31(5): 726-741 doi: 10.1002/acs.v31.5
|
[121]
|
Chi R H, Huang B, Wang D W, Zhang R K, Feng Y J. Data-driven optimal terminal iterative learning control with initial value dynamic compensation. IET Control Theory & Applications, 2016, 10(12): 1357-1364
|
[122]
|
Chi R H, Liu Y, Hou Z S, Jin S T. Data-driven terminal iterative learning control with high-order learning law for a class of non-linear discrete-time multiple-input-multiple output systems. IET Control Theory & Applications, 2015, 9(7): 1075-1082
|
[123]
|
Chi R H, Liu Y, Hou Z S, Jin S T. High-order data-driven optimal TILC approach for fed-batch processes. The Canadian Journal of Chemical Engineering, 2015, 93(8): 1455-1461 doi: 10.1002/cjce.v93.8
|
[124]
|
Chi R H, Hou Z S. Dual-stage optimal iterative learning control for nonlinear non-affine discrete-time systems. Acta Automatica Sinica, 2007, 33(10): 1061-1065 doi: 10.1360/aas-007-1061
|
[125]
|
池荣虎, 侯忠生, 隋树林.快速路入口匝道的非参数自适应学习控制.控制理论与应用, 2008, 25(6): 1011-1015 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200806007.htmChi Rong-Hu, Hou Zhong-Sneng, Sui Shu-Lin. Non-parameter adaptive iterative learning control for the freeway traffic ramp metering. Control Theory & Applications, 2008, 25(6): 1011-1015 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200806007.htm
|
[126]
|
Jin S T, Hou Z S, Chi R H, Liu X B. Data-driven model-free adaptive iterative learning control for a class of discrete-time nonlinear systems. Control Theory & Applications, 2012, 29(8): 1001-1009
|
[127]
|
Jin S T, Hou Z S, Chi R H. Optimal terminal iterative learning control for the automatic train stop system. Asian Journal of Control, 2015, 17(5): 1992-1999 doi: 10.1002/asjc.1065
|
[128]
|
Janssens P, Pipeleers G, Swevers J. Model-free iterative learning control for LTI systems and experimental validation on a linear motor test setup. In: Proceedings of the 2011 American Control Conference (ACC). San Francisco, CA, USA: IEEE, 2011. 4287-4292
|
[129]
|
Janssens P, Pipeleers G, Swevers J. A data-driven constrained norm-optimal iterative learning control framework for LTI systems. IEEE Transactions on Control Systems Technology, 2013, 21(2): 546-551 doi: 10.1109/TCST.2012.2185699
|
[130]
|
Rǎdac M B, Precup R E, Petriu E M, Preitl S, Dragoş C A. Data-driven reference trajectory tracking algorithm and experimental validation. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2327-2336 doi: 10.1109/TII.2012.2220973
|
[131]
|
Radac M B, Precup R E. Model-free constrained data-driven iterative reference input tuning algorithm with experimental validation. International Journal of General Systems, 2016, 45(4): 455-476 doi: 10.1080/03081079.2015.1072524
|
[132]
|
Zhou Y L, Yin Y X, Zhang Q Z, Gan W S. Model-free iterative learning control for repetitive impulsive noise using FFT. In: Proceedings of the 2012 Intentatinal symposium on Neural Networks: Advances in Neural Networks. Berlin, Heidelberg: Springer-Verlag, 2012. 461-467
|
[133]
|
Wei Q L, Liu D R, Shi G. A novel dual iterative Q-learning method for optimal battery management in smart residential environments. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2509-2518 doi: 10.1109/TIE.2014.2361485
|
[134]
|
Radac M B, Precup R E. Optimal behaviour prediction using a primitive-based data-driven model-free iterative learning control approach. Computers in Industry, 2015, 74: 95-109 doi: 10.1016/j.compind.2015.03.004
|
[135]
|
Hou Z S, Chi R H, Gao H J. An overview of dynamic-linearization-based data-driven control and applications. IEEE Transactions on Industrial Electronics, 2017, 64(5): 4076-4090 doi: 10.1109/TIE.2016.2636126
|