2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动态场景红外图像的压缩感知域高斯混合背景建模

王传云 秦世引

陈光荣, 王军政, 汪首坤, 赵江波, 沈伟, 李静. 自适应鲁棒控制器设计新方法在电液伺服系统中的应用. 自动化学报, 2016, 42(3): 375-384. doi: 10.16383/j.aas.2016.c150473
引用本文: 王传云, 秦世引. 动态场景红外图像的压缩感知域高斯混合背景建模. 自动化学报, 2018, 44(7): 1212-1226. doi: 10.16383/j.aas.2017.c170061
CHEN Guang-Rong, WANG Jun-Zheng, WANG Shou-Kun, ZHAO Jiang-Bo, SHEN Wei, LI Jing. Application of a New Adaptive Robust Controller Design Method to Electro-hydraulic Servo System. ACTA AUTOMATICA SINICA, 2016, 42(3): 375-384. doi: 10.16383/j.aas.2016.c150473
Citation: WANG Chuan-Yun, QIN Shi-Yin. Background Modeling of Infrared Image in Dynamic Scene With Gaussian Mixture Model in Compressed Sensing Domain. ACTA AUTOMATICA SINICA, 2018, 44(7): 1212-1226. doi: 10.16383/j.aas.2017.c170061

动态场景红外图像的压缩感知域高斯混合背景建模

doi: 10.16383/j.aas.2017.c170061
基金项目: 

辽宁省教育厅科研项目 L201726

沈阳市科技计划项目 18-013-0-24

国家自然科学基金 61703287

北京市科技计划项目 D16110400130000-D161100001316001

国家自然科学基金 61731001

国家自然科学基金 U1435220

沈阳航空航天大学博士启动基金 17YB16

详细信息
    作者简介:

    王传云 北京航空航天大学自动化科学与电气工程学院博士研究生.沈阳航空航天大学计算机学院讲师.2009年获得沈阳航空航天大学计算机应用技术硕士学位.主要研究方向为模式识别, 物联网.E-mail:wangcy0301@buaa.edu.cn

    通讯作者:

    秦世引 北京航空航天大学自动化科学与电气工程学院教授.1990年获得浙江大学工业控制工程与智能自动化博士学位.主要研究方向为图像处理, 模式识别, 智能优化控制.本文通信作者.E-mail:qsy@buaa.edu.cn

Background Modeling of Infrared Image in Dynamic Scene With Gaussian Mixture Model in Compressed Sensing Domain

Funds: 

Scientific Research Project of Liaoning Educational Department L201726

Shenyang Science and Technology Project 18-013-0-24

National Natural Science Foundation of China 61703287

Beijing Science and Technology Project D16110400130000-D161100001316001

National Natural Science Foundation of China 61731001

National Natural Science Foundation of China U1435220

Doctoral Scientific Research Foundation of Shenyang Aerospace University 17YB16

More Information
    Author Bio:

    Ph. D. candidate at the School of Automation Science and Electrical Engineering, Beihang University, lecturer at the School of Computer Science, Shenyang Aerospace University. He received his master degree in computer application technology from Shenyang Aerospace University in 2009. His research interest covers pattern recognition and internet of things

    Corresponding author: QIN Shi-Yin Professor at the School of Automation Science and Electrical Engineering, Beihang University. He received his Ph. D. degree in industrial control engineering and intelligent automation from Zhejiang University in 1990. His research interest covers image processing, pattern recognition, and intelligent optimizing controls. Corresponding author of this paper
  • 摘要: 针对动态场景下红外图像的背景模型构建问题,提出一种基于压缩感知(Compressed sensing,CS)域高斯混合模型(Gaussian mixture model,GMM)的背景建模方法.该方法不是对图像中的每个像素建立高斯混合模型,而是对图像局部区域的压缩感知测量值建立高斯混合模型.1)通过提取红外图像轮廓的角点特征,估计相邻帧图像间的相对运动参数以对图像进行校正与配准;2)将每帧图像网格化为适当数目的局部子图,利用序列图像构建每个局部子图的压缩感知域高斯混合背景模型;3)采用子空间学习训练稀疏字典,通过子空间追踪对可能含有目标的局部子图进行选择性稀疏重构;4)通过背景减除实现前景目标检测.以红外图像数据集CDnet2014和VIVID PETS2005进行实验验证,结果表明:该方法能建立有效的动态场景红外图像背景模型,对成像过程中所受到的场景动态变化、背景扰动等具有较强的鲁棒性,其召回率、精确率、F-measure等性能指标及处理速度较之于同类算法具有明显优势.
  • 广义系统[1]的研究是从20世纪70年代[2]开始的, 在近40年的历史中广义系统理论研究得到了迅速发展, 并取得了一系列的丰硕成果[3-5].广义系统理论已成为现代控制理论中一个独立的研究领域, 这些研究成果主要集中在广义定常系统[6]、广义周期时变系统[7-8]和广义时变系统[9-10].随着科学技术的发展和工程技术的需要, 广义时变系统时域控制研究也受到了广泛的关注.

    时域稳定性最早是由Kamenkov在文献[11]中提出来的, 至今已有很多可观的成果.文献[12-15]提出了时域稳定和时域有界的定义, 并对一般线性时变系统的时域稳定进行研究.文献[16-18]给出了带脉冲的线性时变系统的时域稳定的定义, 并利用 $L_{2}$ 增益给出时域稳定的判定定理.文献[19-22]探讨了带有干扰的参数不确定性系统时域稳定及时域控制的问题, 文献[23-24]利用微分矩阵不等式研究了一类带有跳变的线性时变系统的时域稳定. Ambrosino等研究了状态依赖时变脉冲动力系统的时域稳定性问题[25], 并在文献[26-29]中对时间依赖和状态依赖脉冲动力系统的时域稳定进行了对比和分析.文献[30-31]利用分段线性化将时变矩阵转化为一组标准的矩阵不等式, 解决了小区间内时变矩阵不等式的求解问题.时变脉冲系统中的研究方法多是时变系统与正常脉冲系统的自然推广, 文中所研究的广义时变脉冲系统不仅是时变脉冲系统的推广, 而且还考虑到广义系统自身的脉冲效应, 因此给研究和实验带来了一定的困难.

    本文主要研究状态依赖广义时变脉冲系统的时域稳定问题.在考虑广义系统自身无脉冲效应的前提下, 运用微分矩阵不等式方法给出了广义时变脉冲系统时域稳定的充分条件, 并设计了状态反馈控制器.最后根据分段线性化将小区间内广义时变矩阵不等式转化为广义时不变线性矩阵不等式, 应用Matlab LMI工具箱编程进行求解.

    $\boldsymbol{R} ^{n}$ 表示 $n$ -维欧几里得空间, $\boldsymbol{R}^{+}$ 是正实数集, $R > 0$ 是对称正定矩阵. ${N}$ 是自然数. $J=[t_0, t_0 +T]$ 表示时间域, 其中, $T \in \boldsymbol{R}^{+}$ .

    考虑如下形式的状态依赖广义时变脉冲系统:

    $ \begin{align} \left\{ \begin{array}{l} E\dot{{\boldsymbol x}}(t)=A(t){\boldsymbol x}(t), \quad {\boldsymbol x}(t)\notin \mathcal{S}_k\\ {\boldsymbol x}^{+}_{k}(t)=A_{d, k}{\boldsymbol x}(t), \quad {\boldsymbol x}(t)\in \mathcal{S}_k\\ {\boldsymbol x}(t_{0})={\boldsymbol x}_{0}, \quad k=1, 2, \cdot\cdot\cdot, N \end{array} \right. \end{align} $

    (1)

    其中, ${\boldsymbol x}(t)\in \boldsymbol{R}^{n}$ 为状态向量; $A(\cdot):t\in \boldsymbol{R}^{+}\mapsto \boldsymbol{R}^{n\times n}$ 是连续的函数矩阵, $A_{d, k}\in \boldsymbol{R}^{n\times n}, k=1, 2, \cdot\cdot\cdot, {N} $ 是时不变矩阵; $E$ 为奇异矩阵; ${S}_{k}\subseteq \boldsymbol{R}^{n}, k=1, 2, \cdot\cdot\cdot, {N}$ 是单连通互不相交的跳变集合 $({\boldsymbol x}_{0}\notin \mathcal{S}_{k})$ .根据脉冲时刻定义如下跳变时间集合:

    $ \mathcal{T}_{x(\cdot)}=\{t\in \boldsymbol{R}^{+}|{\boldsymbol x}(t)\in \mathcal{S}_{k}, k=1, 2, \cdot\cdot\cdot, {N}\} $

    定义1.如果 ${\boldsymbol x}_{0}^{\rm T}E^{\rm T}R{\boldsymbol x}_{0}\leq c_{1}$ 推出 ${\boldsymbol x}^{\rm T}(t)E^{\rm T}\Gamma(t){\boldsymbol x}(t) < c_{1}$ , 对 $\forall t\in J$ , 则称系统 (1) 是对于 $(c_1, J, R, \Gamma(\cdot))$ 时域稳定的.其中 $c_{1}>0, R$ 是对称正定矩阵, $\Gamma(\cdot)$ 是定义在 $J$ 上的函数矩阵, $\Gamma(t_0) < R$ .

    定义2.如果存在常数 $s$ 对于任意 $t\in J$ 使得 $\det (sE-A(t)) \neq 0$ , 则广义时变系统 $E\dot{{\boldsymbol x}}(t)=A(t){\boldsymbol x}(t)$ 是一致正则的.

    系统 (1) 一致正则与Campbell意义下的解析可解是等价的, 广义时变系统的一致正则性和 $A(t)$ 的连续性保证了其解的存在唯一性, 下面的讨论假定系统是一致正则的.我们将系统作如下分解:

    $ \begin{align*} &MEN\!=\!\left[\begin{array}{ccc} I&0\\0&0 \end{array}\right], MA(t)N\!=\!\left[\begin{array}{ccc} A_{11}(t)& A_{12}(t)\\A_{21}(t)& A_{22}(t)\end{array}\right]\\ &N^{-1}{\boldsymbol x}(t)=\left[\begin{array}{ccc}{\boldsymbol x}_{1}(t)& {\boldsymbol x}_{2}(t)\end{array}\right]\end{align*} $

    其中, $M, N$ 均为可逆矩阵, 则系统 (1) 等价于如下系统:

    $ \begin{align*} \begin{aligned} &\dot{{\boldsymbol x}}_{1}(t)=A_{11}(t){\boldsymbol x}_{1}(t)+A_{12}(t) {\boldsymbol x}_{2}(t)\\ &0 = A_{21}(t) {\boldsymbol x}_{1}(t)+A_{22}(t){\boldsymbol x}_{2}(t) \end{aligned} \end{align*} $

    显然, 系统 (1) 对于任意初始条件无脉冲的充要条件是 $A_{22}(t)$ 可逆.

    另外考虑一类带有外部干扰的状态依赖广义时变脉冲系统

    $ \begin{align} \left\{ \begin{array}{l} E\dot{{\boldsymbol x}}(t)=A(t){\boldsymbol x}(t)+G(t){\boldsymbol\omega}(t), \quad {\boldsymbol x}(t)\notin \mathcal{S}_k\\ {\boldsymbol x}^{+}_{k}(t)=A_{d, k}{\boldsymbol x}(t), \quad {\boldsymbol x}(t)\in \mathcal{S}_k\\ {\boldsymbol x}(t_{0})={\boldsymbol x}_{0}, \quad k=1, 2, \cdot\cdot\cdot, {N} \end{array} \right. \end{align} $

    (2)

    外部干扰 ${\boldsymbol \omega}(t)$ 满足:

    $ \begin{align} \begin{array}{l} \int_{t_0}^{t_0 +T}{\boldsymbol \omega}^{\rm T}(s){\boldsymbol \omega}(s){\rm d}s\leq d, \quad d\geq 0 \end{array} \end{align} $

    (3)

    定义3.如果 ${\boldsymbol x}_{0}^{\rm T}E^{\rm T}R{\boldsymbol x}_{0}\leq c_{1}$ 推出 ${{\boldsymbol{x}}^{\text{T}}}(t){{E}^{\text{T}}}\Gamma (t)\boldsymbol{x}(t) < {{c}_{2}}$ , 对 $\forall t\in J$ , 则称系统 (2) 是对于 $(c_1, c_2, {\boldsymbol \omega(t)}, J, R, \Gamma(\cdot))$ 时域稳定的.其中 $0 < c_{1} < c_{2}, R$ 是对称正定矩阵, $\Gamma(\cdot)$ 是定义在 $J$ 上的函数矩阵, $\Gamma(t_0) < R$ , 外部干扰 ${\boldsymbol \omega}(t)$ 满足式 (3).

    本节分别对系统 (1) 和 (2) 给出时域稳定的充分条件.

    定理1.对于系统 (1), 如果存在分段连续可微对称非奇异函数矩阵 $P(\cdot)$ 在 $J$ 上满足下列一组矩阵不等式, $\forall t\in J$ .

    $ E^{\rm T}P(t)=P^{\rm T}(t)E\geq 0 $

    (4a)

    $ A^{\rm T}(t)P(t)+P^{\rm T}(t)A(t)+E^{\rm T}\dot{P}(t) < 0 $

    (4b)

    $ \begin{array}{l} A_{d, k}^{\rm T}E^{\rm T}P(t)A_{d, k}-E^{\rm T}P(t) < 0\\ \qquad {\boldsymbol x}(t)\in \mathcal{S}_k, \qquad k=1, 2, \cdot\cdot\cdot, {N} \end{array} $

    (4c)

    $ E^{\rm T}\Gamma(t)\leq E^{\rm T}P(t)\leq E^{\rm T}P(t_0) < E^{\rm T}R $

    (4d)

    则称系统 (1) 对于 $(c_1, J, R, \Gamma(\cdot))$ 时域稳定.

    证明.  由定理条件 (4a) 和下式

    $ \begin{align*} M^{\rm -T}P(t)N=\left[\begin{array}{cc}P_{1}(t)&P_{2}(t)\\ P_{3}(t)&P_{4}(t)\end{array}\right] \end{align*} $

    有 $P_2(t)=0$ 和 $P_1(t)$ 对称, 将条件 (4b) 进行分解可得:

    $ \begin{align*} \begin{aligned} &N^{\rm T}A^{\rm T}(t)M^{\rm T}M^{\rm -T}P(t)N +\\ &\quad N^{\rm T}P^{\rm T}(t)M^{-1}MA(t)N+\\ &\quad N^{\rm T}E^{\rm T}M^{\rm T}M^{\rm -T}\dot{P}(t)N =\\ &\quad \left[\begin{array}{cc}A_{11}^{\rm T}(t)&A_{21}^{\rm T}(t)\\A_{12}^{\rm T}(t)&A_{22}^{\rm T}(t)\end{array}\right]\left[\begin{array}{cc}P_{1}(t)&P_{2}(t)\\P_{3}(t)&P_{4}(t)\end{array}\right]+\\ &\quad \left[\begin{array}{cc}P_{1}^{\rm T}(t)&P_{3}^{\rm T}(t)\\P_{2}^{\rm T}(t)&P_{4}^{\rm T}(t)\end{array}\right]\left[\begin{array}{cc}A_{11}(t)&A_{12}(t)\\A_{21}(t)&A_{22}(t)\end{array}\right]+\\ &\quad \left[\begin{array}{cc}I&0\\0&0\end{array}\right]\left[\begin{array}{cc}\dot{P}_{1}(t)&\dot{P}_{2}(t)\\ \dot{P}_{3}(t)&\dot{P}_{4}(t)\end{array}\right]=\\ &\quad \left[\begin{array}{cc}\ast&\ast\\\ast&A_{22}^{\rm T}(t)P_{4}(t)+P_{4}^{\rm T}(t)A_{22}(t)\end{array}\right] < 0 \end{aligned} \end{align*} $

    由上式显然有 $A_{22}^{\rm T}(t)P_{4}(t)+P_{4}^{\rm T}(t)A_{22}(t) < 0$ .因此, $A_{22}(t)$ 可逆, 系统对任意初始状态无脉冲.

    构造下列广义Lyapunov函数

    $ \begin{align*} V(t, {\boldsymbol x})={\boldsymbol x}^{\rm T}(t)E^{\rm T}P(t){\boldsymbol x}(t) \end{align*} $

    当 $t\notin \mathcal{T}_{x(\cdot)}$ , 即系统状态向量 ${\boldsymbol x}(t)$ 没有达到跳变集合.则对 $V(t, {\boldsymbol x})$ 求导:

    $ \begin{align*} &\dot V(t, {\boldsymbol x})={\boldsymbol x}^{\rm T}(t)[A^{\rm T}(t)P(t)+P^{\rm T}(t)A(t)+\\ &\qquad E^{\rm T}\dot{P}(t)]{\boldsymbol x}(t) \end{align*} $

    由条件 (4b) 可知 $\dot V(t, {\boldsymbol x})< 0$ .

    然而当 $t\in\mathcal{T}_{x(\cdot)}$ , 即系统依赖状态发生跳变, 由条件 (4c) 可得:

    $ \begin{align*} & V (t, {\boldsymbol x}^+_k)-V (t, {\boldsymbol x})={\boldsymbol x}^{\rm T}(t)\times\\ & \qquad [A_{d, k}^{\rm T}E^{\rm T}P (t) A_{d, k}-E^{\rm T}P (t)]{\boldsymbol x}(t) < 0 \end{align*} $

    则可以推出 $V(t, {\boldsymbol x})$ 在 $J$ 上是严格递减的.

    对于系统 (1) 给定初始条件 $t_0$ 使得 ${\boldsymbol x}_{0}^{\rm T}E^{\rm T}R{\boldsymbol x}_{0}\leq c_{1}$ , 对所有的 $t\in J$ 都有:

    $ \begin{align*} \begin{aligned} {\boldsymbol x}^{\rm T}(t)E^{\rm T}\Gamma(t){\boldsymbol x}(t)&\leq {\boldsymbol x}^{\rm T}(t)E^{\rm T}P(t){\boldsymbol x}(t)\leq\\ & {\boldsymbol x}_{0}^{\rm T}E^{\rm T}P(t_0){\boldsymbol x}_{0} < \\ &{\boldsymbol x}_{0}^{\rm T}E^{\rm T}RE{\boldsymbol x}_{0} < c_1 \end{aligned} \end{align*} $

    因此系统 (1) 对于 $(c_1, J, R, \Gamma(\cdot))$ 时域稳定.

    定理2.对于系统 (2), 如果存在分段连续可微对称非奇异函数矩阵 $P(\cdot)$ 在 $J$ 上满足下列不等式, $\forall t\in J$ .

    $ E^{\rm T}P(t)=P^{\rm T}(t)E\geq 0 $

    (5a)

    $ \begin{bmatrix} \Pi(t)&P^{\rm T}(t)G(t)\\ G^{\rm T}(t)P(t)&-I \end{bmatrix}< 0 $

    (5b)

    $ \begin{array}{l} A_{d, k}^{\rm T}E^{\rm T}P(t)A_{d, k}-E^{\rm T}P(t)< 0\\ \qquad {\boldsymbol x}(t)\in \mathcal{S}_k, \qquad k=1, 2, \cdot\cdot\cdot, {N} \end{array} $

    (5c)

    $ E^{\rm T}\Gamma(t)\leq E^{\rm T}P(t)\leq E^{\rm T}P(t_0) < E^{\rm T}R $

    (5d)

    则称系统 (2) 是对于 $(c_1, c_2, {\boldsymbol \omega}(t), J, R, \Gamma(\cdot))$ 时域稳定的.其中

    $ \begin{align*} \Pi(t)=A^{\rm T}(t)P(t)+P^{\rm T}(t)A(t)+E^{\rm T}\dot{P}(t) \end{align*} $

    证明.由条件 (5b) 可知 $\Pi(t) < 0$ , 同理可证系统 (2) 对任意初始状态无脉冲.

    考虑下列广义Lyapunov函数

    $ \begin{align*} V(t, {\boldsymbol x})={\boldsymbol x}^{\rm T}(t)E^{\rm T}P(t){\boldsymbol x}(t) \end{align*} $

    当 $t\notin \mathcal{T}_{x(\cdot)}$ , 即系统状态向量 ${\boldsymbol x}(t)$ 没有达到跳变集合.则对 $V(t, {\boldsymbol x})$ 求导:

    $ \begin{align*} \begin{array}{l} \dot V(t, {\boldsymbol x})={\boldsymbol x}^{\rm T}(t)\Pi(t){\boldsymbol x}(t)+{\boldsymbol \omega}^{\rm T}(t)G^{\rm T}(t)P(t)\times\\ {\boldsymbol x}(t)+{\boldsymbol x}^{\rm T}(t)P^{\rm T}(t)G(t){\boldsymbol \omega}(t) \end{array} \end{align*} $

    构造下列向量

    $ \begin{align*} {\boldsymbol z}(t)=\left[\begin{array}{c}{\boldsymbol x}(t)\\ {\boldsymbol \omega}(t) \end{array}\right] \end{align*} $

    由式 (5b) 得:

    $ \begin{array}{lll} {\boldsymbol z}^{\rm T}(t) \left[\begin{array}{cc}\Pi(t)&P^{\rm T}(t)G(t)\\ G^{\rm T}(t)P(t)&-I\end{array}\right]{\boldsymbol z}(t)=\\ \quad \dot V(t, {\boldsymbol x})-{\boldsymbol \omega}^{\rm T}(t){\boldsymbol \omega}(t) < 0 \end{array} $

    显然有:

    $ \begin{align*} \dot V(t, {\boldsymbol x}) < {\boldsymbol \omega}^{\rm T}(t){\boldsymbol \omega}(t) \end{align*} $

    对上式在 $[t_0, t]$ 上求积分得:

    $ \begin{align*} \int_{t_0}^{t}\dot V(s, {\boldsymbol x}){\rm d}s < \int_{t_0}^{t}{\boldsymbol \omega}^{\rm T}(s){\boldsymbol \omega}(s){\rm d}s \end{align*} $

    $ \begin{align*} \begin{aligned} V(t, {\boldsymbol x})& < V(t_0, {\boldsymbol x})+\int_{t_0}^{t}{\boldsymbol \omega}^{\rm T}(s){\boldsymbol \omega}(s){\rm d}s < \\ &{\boldsymbol x}_{0}^{\rm T}E^{\rm T}P(t_0){\boldsymbol x}_{0}+d < \\ &{\boldsymbol x}_{0}^{\rm T}E^{\rm T}R{\boldsymbol x}_{0}+d < \\ &c_1+d \end{aligned} \end{align*} $

    当 $t\in\mathcal{T}_{x(\cdot)}$ , 即系统状态发生跳变

    $ \begin{align*} \begin{aligned} V(t, {\boldsymbol x}^+)&= {\boldsymbol x}^{\rm T}(t)A_{d, k}^{\rm T}E^{\rm T}P(t)A_{d, k}{\boldsymbol x}(t)< \\ &{\boldsymbol x}^{\rm T}(t)E^{\rm T}P(t){\boldsymbol x}(t) < V(t, {\boldsymbol x}) < \\ &c_1+d \end{aligned} \end{align*} $

    则 $\exists c_2>c_1$ 使得 $V(t, {\boldsymbol x})$ 在 $J$ 上有 $V(t, {\boldsymbol x}) < c_2$ .

    对系统 (2) 给定初始条件 $t_0$ 使得 ${\boldsymbol x}_{0}^{\rm T}E^{\rm T}R{\boldsymbol x}_{0}\leq c_{1}$ , 对所有的 $t\in J$ 都有:

    $ \begin{align*} {\boldsymbol x}^{\rm T}(t)E^{\rm T}\Gamma (t){\boldsymbol x}(t)\leq {\boldsymbol x}^{\rm T}(t)E^{\rm T}P(t){\boldsymbol x}(t) < c_2\end{align*} $

    则称系统 (2) 对于 $(c_1, c_2, {\boldsymbol\omega}(t), J, R, \Gamma(\cdot))$ 时域稳定.

    接下来应用S-procedure理论[30]进一步研究系统 (1) 和系统 (2) 的时域稳定.

    引理1[25].存在一个连续闭集 $\mathcal{S}\subseteq \boldsymbol{R}^n$ 、对称矩阵 $Q_0\in \boldsymbol{R}^{n\times n}$ 、 $Q_i\in \boldsymbol{R}^{n\times n}$ 满足:

    $ {\boldsymbol x}^{\rm T}(t)Q_{0}{\boldsymbol x}(t) < 0, \quad {\boldsymbol x}(t)\in \mathcal{S} $

    (6a)

    $ {\boldsymbol x}^{\rm T}(t)Q_{i}{\boldsymbol x}(t) < 0, \quad {\boldsymbol x}(t)\in \mathcal{S}, \quad i=1, \cdot\cdot\cdot, p $

    (6b)

    则一定存在非负标量 $c_i, i=1, \cdot\cdot\cdot, p$ , 使得:

    $ \begin{align} Q_0-\sum_{i=1}^{p}c_iQ_i < 0 \end{align} $

    (6c)

    显然条件 (6c) 可以推出条件 (6a). S-procedure就是通过判断条件 (6c) 的可行性来验证条件 (6a) 是否成立的.一般来说, 条件 (6c) 比条件 (6a) 更容易检验.所以, 通过应用S-procedure理论可以找到检验 (6a) 成立的更有效的方法.

    由引理1的结论, 考虑条件 (4c), 当给定 $k$ 时, 令

    $ \begin{align*} \begin{array}{l} Q_0=A_{d, k}^{\rm T}E^{\rm T}P(t)A_{d, k}-E^{\rm T}P(t), \quad \mathcal{S}=\mathcal{S}_k \end{array} \end{align*} $

    则条件 (4c) 等价于如下不等式:

    $ \begin{align*} \begin{array}{l} A_{d, k}^{\rm T}E^{\rm T}P(t)A_{d, k}- E^{\rm T}P(t)-\sum\limits_{i=1}^{p}c_{i, k}(t)Q_{i, k} < 0 \end{array} \end{align*} $

    于是可以推出如下定理.

    定理3.如果存在对称矩阵集合 $Q_{i, k}, i=1, \cdot\cdot\cdot, p_k, k=1, \cdot\cdot\cdot, {N}$ 满足引理1条件, 并且存在一个连续可微对称非奇异函数矩阵 $P(\cdot)$ 和非负标量 $c_{i, k}(\cdot)\geq 0 $ 有:

    $ E^{\rm T}P(t)=P^{\rm T}(t)E\geq 0 $

    (7a)

    $ A^{\rm T}(t)P(t)+P^{\rm T}(t)A(t)+E^{\rm T}\dot{P}(t) < 0 $

    (7b)

    $ \begin{array}{l} A_{d, k}^{\rm T}E^{\rm T}P(t)A_{d, k}- E^{\rm T}P(t)-\sum\limits_{i=1}^{p}c_{i, k}(t)Q_{i, k}<0\\ \qquad {\boldsymbol x}(t)\in \mathcal{S}_k, \quad k=1, 2, \cdot\cdot\cdot, {N} \end{array} $

    (7c)

    $ E^{\rm T}\Gamma(t)\leq E^{\rm T}P(t)\leq E^{\rm T}P(t_0)< E^{\rm T}R $

    (7d)

    成立, 则系统 (1) 对于 $(c_1, J, R, \Gamma(\cdot))$ 时域稳定.其中 $J=[t_0\quad t_0 +T]$ .

    注1.由引理1知定理3的条件有利于这类问题的求解.在定理1中, 跳变时需要解无穷多个矩阵不等式, 而在定理3中, 跳变时只需解在指定集合上的有限个矩阵不等式.同理, 由定理2可以推出如下定理.

    定理4.如果存在对称矩阵集合 $Q_{i, k}, i=1, \cdot\cdot\cdot, p_k, k=1, \cdot\cdot\cdot, {N}$ 满足引理1条件, 并且存在一个连续可微对称非奇异函数矩阵 $P(\cdot)$ 和非负标量 $c_{i, k}(\cdot)\geq 0$ 有:

    $ E^{\rm T}P(t)=P^{\rm T}(t)E\geq 0 $

    (8a)

    $ \begin{bmatrix} \Pi(t)&P^{\rm T}(t)G(t)\\ G^{\rm T}(t)P(t)&-I \end{bmatrix} < 0 $

    (8b)

    $ \begin{array}{l} A_{d, k}^{\rm T}E^{\rm T}P(t)A_{d, k}-E^{\rm T}P(t)-\sum\limits_{i=1}^{p}c_{i, k}(t)Q_{i, k} < 0\\ \qquad {\boldsymbol x}(t)\in \mathcal{S}_k, \quad k=1, 2, \cdot\cdot\cdot, {N} \end{array} $

    (8c)

    $ E^{\rm T}\Gamma(t)\leq E^{\rm T}P(t)\leq E^{\rm T}P(t_0) < E^{\rm T}R $

    (8d)

    成立, 则称系统 (2) 对于 $(c_1, c_2, {\boldsymbol \omega}(t), J, R, \Gamma(\cdot))$ 时域稳定.其中 $\Pi(t)$ 与定理2相同.

    考虑如下状态依赖广义时变脉冲系统

    $ \begin{align} \left\{ \begin{array}{l} E\dot{{\boldsymbol x}}(t)=A(t){\boldsymbol x}(t)+G(t){\boldsymbol \omega}(t)+\\ \qquad B(t)u(t), \quad {\boldsymbol x}(t)\notin \mathcal{S}_k\\ {\boldsymbol x}^{+}_{k}(t)=A_{d, k}{\boldsymbol x}(t), \quad {\boldsymbol x}(t)\in \mathcal{S}_k\\ {\boldsymbol x}(t_{0})={\boldsymbol x}_{0}\quad k=1, 2, \cdot\cdot\cdot, {N} \end{array} \right. \end{align} $

    (9)

    对上述系统找到一个状态反馈控制律

    $ \begin{align*} {\boldsymbol u}(t)=K(t){\boldsymbol x}(t) \end{align*} $

    使得闭环系统

    $ \begin{align} \left\{ \begin{array}{l} E\dot{{\boldsymbol x}}(t)=A_c(t){\boldsymbol x}(t)+G(t){\boldsymbol \omega}(t), \quad {\boldsymbol x}(t)\notin \mathcal{S}_k\\ {\boldsymbol x}^{+}_{k}(t)=A_{d, k}{\boldsymbol x}(t), \quad {\boldsymbol x}(t)\in \mathcal{S}_k\\ {\boldsymbol x}(t_{0})={\boldsymbol x}_{0}, \quad k=1, 2, \cdot\cdot\cdot, {N} \end{array} \right. \end{align} $

    (10)

    是时域稳定, 其中 $A_c(t)=A(t)+B(t)K(t)$ .

    定理5.对于系统 (10), 如果存在分段连续可微对称非奇异的函数矩阵 $\bar{P}(\cdot)$ 、函数矩阵 $L_{k}(\cdot)$ 和非负标量 $C_{i, k}\leq 0$ 满足下列不等式组, $\forall t\in J$ .

    $ \begin{bmatrix} \Pi_{1}(t)&G(t)\\ G^{\rm T}(t)&-I \end{bmatrix} < 0 $

    (11a)

    $ \begin{array}{l} A_{d, k}^{\rm T}E^{\rm T}\bar{P}^{-1}(t)A_{d, k}-E^{\rm T}\bar{P}^{-1}(t)-\\ \qquad \quad \sum\limits_{i=1}^{p}c_{i, k}(t)Q_{i, k} < 0\\ \qquad {\boldsymbol x}(t)\in S_k, \quad k=1, 2, \cdot\cdot\cdot, {N} \end{array} $

    (11b)

    $ E^{\rm T}\Gamma(t)\leq E^{\rm T}\bar{P}^{-1}(t)\leq E^{\rm T}\bar{P}^{-1}(t_0) < E^{\rm T}R $

    (11c)

    则称系统 (10) 对于 $(c_1, c_2, {\boldsymbol\omega}(t), J, R, \Gamma(\cdot))$ 时域稳定, 且状态反馈控制律为

    $ \begin{align} K_k(t)=L_k(t)\bar{P}^{-1}(t) \end{align} $

    (12)

    其中, $\Pi_1(t)=-E\dot{\bar{P}}(t)+\bar{P}^{\rm T}(t)A^{\rm T}(t)+A(t)\bar{P}(t)+L^{\rm T}_{k}(t)B^{\rm T}(t)+B(t)L_{k}(t)$ .

    证明.对于 $t\in J_k$ , 将状态反馈控制律 $K_{k}(t)=L_{k}(t)\bar{P}^{-1}(t)$ 带入式 (9), 可以得到闭环系统 (10), 其中, $A_{c}(t)=A(t)+B(t)L_{i}(t)\bar{P}(t)^{-1}$ .显然 (11a) 等价于下列不等式:

    $ \begin{align} \left[\begin{array}{cc}\Pi_{2}(t)&G(t)\\ G^{\rm T}(t)&-I\end{array}\right] < 0 \end{align} $

    (13)

    其中

    $ \begin{align*} \Pi_{2}(t)=-E\dot{\bar{P}}(t)+\bar{P}^{\rm T}(t)A_{c}^{\rm T}(t)+A_{c}(t)\bar{P}(t) \end{align*} $

    令 $P(t)=\bar{P}^{-1}(t)$ , 将式 (13) 分别左乘 ${\rm diag}\{\bar{P}^{\rm -T}(t), I\}$ , 右乘 ${\rm diag} \{\bar{P}^{-1}(t), I\}$ , 得到下列不等式:

    $ \begin{align*} \left[\begin{array}{cc}\Pi_{3}(t)&\bar{P}^{\rm-T}(t)G(t)\\ G^{\rm T}(t)\bar{P}^{-1}(t)&-I\end{array}\right] < 0 \end{align*} $

    其中, $ \Pi_{3}(t)=-\bar{P}^{\rm -T}(t)E\dot{\bar{P}}(t)\bar{P}^{-1}(t)+ A_{c}^{\rm T}(t) \bar{P}^{-1}(t)+\bar{P}^{\rm -T}(t)A_{c}(t).$

    因为 $P(t)=\bar{P}^{-1}(t)$ , 故

    $ \begin{align*} I=\bar{P}(t)P(t), \quad 0=\dot{\bar{P}}(t)P(t)+\bar{P}(t)\dot{P}(t) \end{align*} $

    又因为 $E^{\rm T}P(t)=P^{\rm T}(t)E\geq0$ , 我们很容易可以得出:

    $ \begin{align*} -P^{\rm T}(t)E\dot{\bar{P}}(t)P(t)=-E^{\rm T}P(t)\dot{\bar{P}}(t)P(t)=E^{\rm T}\dot{P}(t)\end{align*} $

    由此可得:

    $ \begin{align} \left[\begin{array}{cc}\Pi_{4}(t)&P^{\rm T}(t)G(t)\\ G^{\rm T}(t)P(t)&-I\end{array}\right] < 0 \end{align} $

    (14)

    其中

    $ \begin{align*} \Pi_{4}(t)=E^{\rm T}\dot{P}(t)+A_c^{\rm T}(t)P(t)+P(t)A_c(t) \end{align*} $

    另一方面, 因为 $P(t)=\bar{P}^{-1}(t)$ , 条件 (11b) 和 (11c) 等价于式 (7c) 和 (7d).综上所述, 闭环系统 (10) 是对于 $(c_1, c_2, {\boldsymbol\omega}(t), J, R, \Gamma(\cdot))$ 时域稳定的.

    为了将小区间内的时变矩阵不等式转化为标准的矩阵不等式组.可以将小区间内的时变矩阵不等式做如下处理.假设 $P(t)$ (或 $\bar{P}(t)$ ) 是分段线性的, $P(t)$ (或 $\bar{P}(t)$ ) 在 $\mathcal{T}_{x(\cdot)}$ 处发生跳变 (以下只给出 $P(t)$ (或 $\bar{P}(t)$ ) 的形式, $L(t)$ 、 $\dot{P}(t)$ 形式与 $P(t)$ 类似).

    $ \begin{align*} \label{eq} \left\{ \begin{aligned} & P(0)({\rm or}\ (\bar{P}(0)))=\Pi_{1}^{0}\\ & P(t)({\rm or}\ (\bar{P}(t)))=\Pi_{k}^{0}+\Pi_{k}^{s}(t-(k-1)T_{s}), \\ & \qquad \qquad k\in N : kx \bar{k}, \quad t\in[(k-1)T_{s}, kT_{s}]\\ & P(t)({\rm or}\ (\bar{P}(t)))=\Pi_{\bar{k}+1}^{0}+\Pi_{\bar{k}+1}^{0}(t-\bar{k}T_{s}), t\in[\bar{k}T_{s}, T] \end{aligned} \right. \end{align*} $

    因此上述条件可以转化为一组标准的矩阵不等式求解问题.由于 $E^{\rm T}P(t)=P^{\rm T}(t)E\geq0$ ( $E^{\rm T}\Pi_{k}^{0}=\Pi_{k}^{0\rm T}E\geq0$ $E^{\rm T}\Pi_{k}^{s}=\Pi_{k}^{s{\rm T}}E\geq0$ ) 是一组非严格的矩阵不等式, 这样对于求解会造成一定的麻烦.为了将非严格的矩阵不等式组转化为严格的矩阵不等式组, 我们介绍如下引理.

    引理2[31].如果 $X\in \boldsymbol{R}^{n\times n}$ 是对称矩阵且满足 $E_{L}^{\rm T}XE_{L}>0$ , $T\in {\bf R }^{(n-r)\times(n-r)}$ 是非奇异矩阵.则 $XE+M^{\rm T}TS^{\rm T}$ 也是非奇异的且它的逆可以表示为

    $ \begin{align*} (XE+M^{\rm T}TS^{\rm T})^{-1}=XE^{\rm T}+STM \end{align*} $

    其中, $X$ 是对称矩阵, $T$ 是非奇异矩阵.

    $ \begin{align*} E_{R}^{\rm T}XE_{R}=(E_{L}^{\rm T}XE_{L})^{-1}, \ T=(S^{\rm T}S)^{-1}T^{-1}(MM^{\rm T})^{-1}\end{align*} $

    $M$ 和 $S$ 是行满秩矩阵满足 $ME=0$ , $ES=0$ ; $E$ 可以分解为 $E=E_{L}E_{R}^{\rm T}$ , 其中 $E_{L}\in \boldsymbol{R}^{n\times r}$ , $E_{R}\in {\bf R }^{n\times r}$ 是列满秩的.

    令 $\Pi_{k}^{0}=X_{k}^{0}E+M^{\rm T}T_{k}^{0}S^{\rm T}$ , $\Pi_{k}^{s}=X_{k}^{s}E+M^{\rm T}T_{k}^{s}S^{\rm T}$ .根据引理2可以得到 $(X_{k}^{0}E+M^{\rm T}T_{k}^{0}S^{\rm T})^{-1}=X_{k}^{0}E^{\rm T}+ST_{k}^{0}M$ 和 $(X_{k}^{s}E+M^{\rm T}T_{k}^{s}S^{\rm T})^{-1}=X_{k}^{s}E^{\rm T}+ST_{k}^{0}M$ .这样 $E^{\rm T}P(t)=P^{\rm T}(t)E\geq0$ 就得到了满足.因此, 非严格的矩阵不等式组转化为了严格的矩阵不等式组.利用Matlab LMI工具箱, 就可以对 $X_{k}^{s}, T_{k}^{0}, T_{k}^{s}, X_{k}^{0}$ (或 $X_{k}^{0}, X_{k}^{s}, T_{k}^{0}, T_{k}^{s}), \Lambda_{k}^{0}, \Lambda_{k}^{s}$ 进行求解, 从而得到 $P(t)$ (或 $(\bar{P}(t))$ 和 $L(t)$ .

    例1.考虑广义时变脉冲系统 (9),

    $ \begin{align*} &E=\left[\begin{array}{ccc} 1&0\\0&0 \end{array}\right], \quad A=\left[\begin{array}{ccc} 1&-1.5\\0.5&t \end{array}\right]\\ &A_{d, 1}=\left[\begin{array}{ccc} 0.8&0\\-1&0.5 \end{array}\right], \quad G=\left[\begin{array}{ccc} 1\\1 \end{array}\right] B=\left[\begin{array}{ccc} 0\\1 \end{array}\right] \end{align*} $

    跳变集合

    $ \begin{align*} \mathcal{S}_1= \left(\begin{array}{*{20}c}\left(\begin{array}{*{20}c}0.5\\ 0.2\end{array}\right), &\left(\begin{array}{*{20}c}0.4\\ 0.4 \end{array}\right)\end{array}\right) \end{align*} $

    其中, 选取 ${\boldsymbol\omega}(t)=1$ , $J=[0 {\rm s}\quad 5 {\rm s}]$ , $R=\left[{array}{ccc} 2&0\\0&2 {array}\right]$ , $c_1=3$ , $c_2=4$ .由引理1可选取

    $ \begin{align*} Q=\left[\begin{array}{ccc} 0.4000&-0.7000\\-0.7000&1.0000 \end{array}\right]\end{align*} $

    显然

    $ \begin{align*} E_{R}=E_{L}=\left[\begin{array}{ccc} 1\\0 \end{array}\right] \end{align*} $

    我们选 $M^{\rm T}=S=[0 \quad 1]^{\rm T}$ .则存在 $\Gamma(t)=\left[{array}{ccc} 1&0\\0&1{array}\right]$ , 根据Matlab LMI工具箱求解矩阵不等式组, 可得正数 $c_1(\cdot)$ 及矩阵 $P(\cdot), L_1(\cdot)$ , 使得式 (11) 成立, 则闭环系统 (10) 是时域稳定的, 且状态反馈控制律 $K(t)=[K_1(t)\quad K_2(t)]$ 见图 1.

    图 1  控制器 $K_{1}(t)$ , $K_{2}(t)$
    Fig. 1  Control gain $K_{1}(t)$ , $K_{2}(t)$

    本文针对状态依赖广义时变脉冲系统时域稳定问题进行研究, 给出了广义时变脉冲系统时域稳定充分条件及状态反馈控制器的设计.并且对上述充分条件提出DLMIs优化计算的方法, 使得这类问题在数值计算上易于处理.利用分段线性化将小区间内广义时变矩阵不等式转化为广义时不变线性矩阵不等式来求解.最后给出数值算例来验证结论的有效性.


  • 本文责任编委 胡清华
  • 图  1  局部图像的压缩感知域高斯混合背景建模过程示意图

    Fig.  1  Diagram of local background modeling with Gaussian mixture model in compressed sensing domain

    图  2  通过子空间学习从训练样本生成的稀疏字典示例

    Fig.  2  An example of sparse dictionary generated from training samples by subspace learning

    图  3  原红外图像及提取角点特征的图像轮廓

    Fig.  3  Original infrared image and contour with corners

    图  4  利用RANSAC算法匹配相邻两帧图像的角点特征

    Fig.  4  Corner features matching between two frames by using RANSAC algorithm

    图  5  基于双线性灰度插值的畸变图像几何校正

    Fig.  5  Geometric correction of distortion image based on bilinear interpolation

    图  6  动态场景红外图像的压缩感知域高斯混合背景建模及目标检测流程图

    Fig.  6  Flow chart of background modeling with Gaussian mixture model in compressed sensing domain and target detection of infrared image in dynamic scene

    图  7  固定场景图像序列下各算法的平均召回率和精确率

    Fig.  7  The average recall and precision of different algorithms in fixed scene image sequences

    图  8  Park场景代表性图像及各算法得到的前景掩膜图像

    Fig.  8  Images of park scene and foreground masks obtained from different algorithms

    图  9  Lakeside场景代表性图像及各算法得到的前景掩膜图像

    Fig.  9  Images of lakeside scene and foreground masks obtained from different algorithms

    图  10  动态场景图像序列下各算法的平均召回率和精确率

    Fig.  10  The average recall and precision of different algorithms in dynamic scene image sequences

    图  11  Pktest01场景代表性图像及各算法得到的前景掩膜图像

    Fig.  11  Images of Pktest01 scene and foreground masks obtained from different algorithms

    图  12  Pktest03场景代表性图像及各算法得到的前景掩膜图像

    Fig.  12  Images of Pktest03 scene and foreground masks obtained from different algorithms

    表  1  固定场景图像序列下各算法的F-measure指标

    Table  1  The F-measure index of different algorithms in fixed scene image sequences

    GMM KDE Codebook ViBe GRASTA DECOLOR Ours
    CDnet2014 park 0.6429 0.3761 0.3379 0.5335 0.4645 0.8098 0.6607
    CDnet2014 lakeside 0.2561 0.0185 0.1943 0.2 0.0238 0.224 0.7848
    下载: 导出CSV

    表  2  处理固定场景中一帧红外图像的平均时间消耗(s)

    Table  2  The average time consumption of each infrared image in fixed scenes (s)

    压缩感知 模型构建 稀疏重构 背景减除
    CDnet2014 park 0.0065 0.1352 0.4938 0.0003
    CDnet2014 lakeside 0.0043 0.0827 0.5594 0.0003
    下载: 导出CSV

    表  3  动态场景图像序列下各算法的F-measure指标

    Table  3  The F-measure index of different algorithms in dynamic scene image sequences

    GMM KDE Codebook ViBe GRASTA DECOLOR Ours
    PETS2005 pktest01 0.0089 0.0052 0.0040 0.0086 0.0125 0.3927 0.3369
    PETS2005 pktest03 0.0099 0.0086 0.0062 0.0123 0.0047 0.1929 0.2198
    下载: 导出CSV

    表  4  处理动态场景中一帧红外图像的平均时间消耗(s)

    Table  4  The average time consumption of each infrared image in dynamic scenes (s)

    图像校正与配准 背景建模与重构
    DECOLOR Ours DECOLOR Ours
    PETS2005 pktest01 0.6610 1.4632 0.6053 0.5509
    PETS2005 pktest03 0.7608 1.1273 0.6942 0.6454
    下载: 导出CSV
  • [1] Cao Y, Liu R M, Yang J. Small target detection using two-dimensional least mean square (TDLMS) filter based on neighborhood analysis. International Journal of Infrared and Millimeter Waves, 2008, 29(2):188-200 doi: 10.1007/s10762-007-9313-x
    [2] Bae T W, Kim Y C, Ahn S H, Sohng K I. An efficient two-dimensional least mean square (TDLMS) based on block statistics for small target detection. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30(10):1092-1101 doi: 10.1007/s10762-009-9530-6
    [3] Kim S. Double layered-background removal filter for detecting small infrared targets in heterogenous backgrounds. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(1):79-101 doi: 10.1007/s10762-010-9742-9
    [4] Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking. In: Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, Colorado, USA: IEEE, 1999, 2: 252
    [5] Lee D S. Effective Gaussian mixture learning for video background subtraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5):827-832 doi: 10.1109/TPAMI.2005.102
    [6] Haines T S F, Xiang T. Background subtraction with dirichlet process mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(4):670-683 doi: 10.1109/TPAMI.2013.239
    [7] Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction. In: Proceedings of the 6th European Conference on Computer Vision. Berlin, Heidelberg, Germany: Springer, 2000. 751-767
    [8] Kim K, Chalidabhongse T H, Harwood D, Davis L. Real-time foreground-background segmentation using codebook model. Real-Time Imaging, 2005, 11(3):172-185 doi: 10.1016/j.rti.2004.12.004
    [9] Barnich O, Van Droogenbroeck M. ViBe:a universal background subtraction algorithm for video sequences. IEEE Transactions on Image Processing, 2011, 20(6):1709-1724 doi: 10.1109/TIP.2010.2101613
    [10] Wang L, Wang L, Wen M, Zhuo Q, Wang W Y. Background subtraction using incremental subspace learning. In: Proceedings of the 2007 IEEE International Conference on Image Processing. San Antonio, Texas, USA: IEEE, 2007. V-45-V-48
    [11] Seo J W, Kim S D. Recursive on-line (2D)2PCA and its application to long-term background subtraction. IEEE Transactions on Multimedia, 2014, 16(8):2333-2344 doi: 10.1109/TMM.2014.2353772
    [12] He J, Balzano L, Szlam A. Incremental gradient on the grassmannian for online foreground and background separation in subsampled video. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, Rhode Island, USA: IEEE, 2012. 1568-1575 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.662.1791&rep=rep1&type=pdf
    [13] Zhou X W, Yang C, Yu W C. Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(3):597-610 doi: 10.1109/TPAMI.2012.132
    [14] 沈燕飞, 李锦涛, 朱珍民, 张勇东, 代锋.基于非局部相似模型的压缩感知图像恢复算法.自动化学报, 2015, 41(2):261-272 http://www.aas.net.cn/CN/abstract/abstract18605.shtml

    Shen Yan-Fei, Li Jin-Tao, Zhu Zhen-Min, Zhang Yong-Dong, Dai Feng. Image reconstruction algorithm of compressed sensing based on nonlocal similarity model. Acta Automatica Sinica, 2015, 41(2):261-272 http://www.aas.net.cn/CN/abstract/abstract18605.shtml
    [15] Candés E J. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique, 2008, 346(9-10):589-592 doi: 10.1016/j.crma.2008.03.014
    [16] Baraniuk R. Compressive sensing. In: Proceedings of the 42nd Annual Conference on Information Sciences and Systems. Princeton, NJ, USA: IEEE, 2008. 4-5
    [17] Szabó Z, Lñrincz A. Distributed high dimensional information theoretical image registration via random projections. Digital Signal Processing, 2012, 22(6):894-902 doi: 10.1016/j.dsp.2012.04.018
    [18] Amador J. Random projection and orthonormality for lossy image compression. Image and Vision Computing, 2007, 25(5):754-766 doi: 10.1016/j.imavis.2006.05.018
    [19] Liu L, Fieguth P W. Texture classification from random features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3):574-586 doi: 10.1109/TPAMI.2011.145
    [20] Liu L, Fieguth P W, Clausi D, Kuang G Y. Sorted random projections for robust rotation-invariant texture classification. Pattern Recognition, 2012, 45(6):2405-2418 doi: 10.1016/j.patcog.2011.10.027
    [21] Liu L, Fieguth P W, Hu D W, Wei Y M, Kuang G Y. Fusing sorted random projections for robust texture and material classification. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(3):482-496 doi: 10.1109/TCSVT.2014.2359098
    [22] Johnson W, Lindenstrauss J. Extensions of lipschitz mappings into a Hilbert space. Contemporary Mathematics, 1984, 26:189-206 doi: 10.1090/conm/026
    [23] Diaconis P, Freedman D. Asymptotics of graphical projection pursuit. The Annals of Statistics, 1984, 12(3):793-815 http://cn.bing.com/academic/profile?id=5ece6b6fde4df69c965412100d9e9b9b&encoded=0&v=paper_preview&mkt=zh-cn
    [24] 朱碧婷, 郑世宝.基于高斯混合模型的空间域背景分离法及阴影消除法.中国图象图形学报, 2008, 13(10):1906-1909 doi: 10.11834/jig.20081022

    Zhu Bi-Ting, Zheng Shi-Bao. Space-domain background subtraction and shadow elimination based on Gaussian mixture model. Journal of Image and Graphics, 2008, 13(10):1906-1909 doi: 10.11834/jig.20081022
    [25] Gowreesunker B V, Tewfik A H. Learning sparse representation using iterative subspace identification. IEEE Transactions on Signal Processing, 2010, 58(6):3055-3065 doi: 10.1109/TSP.2010.2044251
    [26] 荆楠, 毕卫红, 胡正平, 王林.动态压缩感知综述.自动化学报, 2015, 41(1):22-37 http://www.aas.net.cn/CN/abstract/abstract18580.shtml

    Jing Nan, Bi Wei-Hong, Hu Zheng-Ping, Wang Lin. A survey on dynamic compressed sensing. Acta Automatica Sinica, 2015, 41(1):22-37 http://www.aas.net.cn/CN/abstract/abstract18580.shtml
    [27] Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 2009, 55(5):2230-2249 doi: 10.1109/TIT.2009.2016006
    [28] He X C, Yung N H C. Corner detector based on global and local curvature properties. Optical Engineering, 2008, 47(5):Article No.057008
    [29] Zhao Y, Hong R C, Jiang J G. Visual summarization of image collections by fast RANSAC. Neurocomputing, 2016, 172:48-52 doi: 10.1016/j.neucom.2014.09.095
    [30] Wang Y, Jodoin P M, Porikli F, Konrad J, Benezeth Y, Ishwar P. CDnet 2014: an expanded change detection benchmark dataset. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Columbus, Ohio, USA: IEEE, 2014. 393-400 https://www.semanticscholar.org/paper/CDnet-2014%3A-An-Expanded-Change-Detection-Benchmark-Wang-Jodoin/45790b5bf6a3ad7c641809035661d14d73d6361b
    [31] Collins R, Zhou X, Teh S K. An open source tracking testbed and evaluation web site. In: Proceedings of the 2005 IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS). Beijing, China: IEEE, 2005. 1-8
    [32] 秦明, 陆耀, 邸慧军, 吕峰.基于误差补偿的复杂场景下背景建模方法.自动化学报, 2016, 42(9):1356-1366 http://www.aas.net.cn/CN/abstract/abstract18924.shtml

    Qin Ming, Lu Yao, Di Hui-Jun, Lv Feng. An error compensation based background modeling method for complex scenarios. Acta Automatica Sinica, 2016, 42(9):1356-1366 http://www.aas.net.cn/CN/abstract/abstract18924.shtml
    [33] Sobral A. BGSLibrary: an openCV C++ background subtraction library. In: Proceedings of the 2013 IX Workshop de Visão Computacional. Rio de Janeiro, Brazil, 2013. 1-6
  • 加载中
  • 图(12) / 表(4)
    计量
    • 文章访问数:  2536
    • HTML全文浏览量:  370
    • PDF下载量:  839
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-01-23
    • 录用日期:  2017-05-06
    • 刊出日期:  2018-07-20

    目录

    /

    返回文章
    返回