2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于通用背景-联合估计(UB-JE)的说话人识别方法

汪海彬 郭剑毅 毛存礼 余正涛

汪海彬, 郭剑毅, 毛存礼, 余正涛. 基于通用背景-联合估计(UB-JE)的说话人识别方法. 自动化学报, 2018, 44(10): 1888-1895. doi: 10.16383/j.aas.2017.c170051
引用本文: 汪海彬, 郭剑毅, 毛存礼, 余正涛. 基于通用背景-联合估计(UB-JE)的说话人识别方法. 自动化学报, 2018, 44(10): 1888-1895. doi: 10.16383/j.aas.2017.c170051
WANG Hai-Bin, GUO Jian-Yi, MAO Cun-Li, YU Zheng-Tao. Speaker Recognition Based on Universal Background-Joint Estimation (UB-JE). ACTA AUTOMATICA SINICA, 2018, 44(10): 1888-1895. doi: 10.16383/j.aas.2017.c170051
Citation: WANG Hai-Bin, GUO Jian-Yi, MAO Cun-Li, YU Zheng-Tao. Speaker Recognition Based on Universal Background-Joint Estimation (UB-JE). ACTA AUTOMATICA SINICA, 2018, 44(10): 1888-1895. doi: 10.16383/j.aas.2017.c170051

基于通用背景-联合估计(UB-JE)的说话人识别方法

doi: 10.16383/j.aas.2017.c170051
基金项目: 

国家自然科学基金 61472168

国家自然科学基金 61262041

国家自然科学基金 61562052

详细信息
    作者简介:

    汪海彬  昆明理工大学硕士研究生.主要研究方向为语音信号处理, 语音识别.E-mail:thankswhb@163.com

    毛存礼  昆明理工大学副教授.2014年获得昆明理工大学博士学位.主要研究方向为自然语言处理, 信息检索.E-mail:maocunli@163.com

    余正涛  昆明理工大学教授.2005年获得北京理工大学博士学位.主要研究方向为自然语言处理, 机器翻译, 信息检索.E-mail:ztyu@hotmail.com

    通讯作者:

    郭剑毅  昆明理工大学教授.1990年获得西安交通大学硕士学位.主要研究方向为自然语言处理, 信息抽取, 知识获取.本文通信作者.E-mail:gjade86@hotmail.com

Speaker Recognition Based on Universal Background-Joint Estimation (UB-JE)

Funds: 

National Natural Science Foundation of China 61472168

National Natural Science Foundation of China 61262041

National Natural Science Foundation of China 61562052

More Information
    Author Bio:

     Master student at Kunming University of Science and Technology. His research interest covers speech signal process and speech recognition

     Associate professor at Kunming University of Science and Technology. He received his Ph. D. degree from Kunming University of Science and Technology in 2014. His research interest covers natural language process and information retrieval

     Professor at Kunming University of Science and Technology. He received his Ph. D. degree from Beijing Institute of Technology in 2005. His research interest covers natural language process, machine translation, and information retrieval

    Corresponding author: GUO Jian-Yi  Professor at Kunming University of Science and Technology. She received her master degree from Xi0an Jiaotong University in 1990. Her research interest covers natural language process, information extraction, and knowledge acquisition. Corresponding author of this paper
  • 摘要: 在说话人识别中,有效的识别方法是核心.近年来,基于总变化因子分析(i-vector)方法成为了说话人识别领域的主流,其中总变化因子空间的估计是整个算法的关键.本文结合常规的因子分析方法提出一种新的总变化因子空间估计算法,即通用背景—联合估计(Universal background-joint estimation algorithm,UB-JE)算法.首先,根据高斯混合—通用背景模型(Gaussian mixture model-universal background model,GMM-UBM)思想提出总变化矩阵通用背景(UB)算法;其次,根据因子分析理论结合相关文献提出了一种总变化矩阵联合估计(JE)算法;最后,将两种算法相结合得到通用背景—联合估计(UB-JE)算法.采用TIMIT和MDSVC语音数据库,结合i-vector方法将所提的算法与传统算法进行对比实验.结果显示,等错误率(Equal error rate,EER)和最小检测代价函数(Minimum detection cost function,MinDCF)分别提升了8.3%与6.9%,所提方法能够提升i-vector方法的性能.
    1)  本文责任编委 吴玺宏
  • 图  1  i-vector说话人识别系统

    Fig.  1  i-vector speaker recognition system

    图  2  GMM均值超向量的形成过程

    Fig.  2  The formation process of GMM mean super vector

    图  3  总变化因子的常规估计算法和UB算法(虚线框)比较

    Fig.  3  Comparison of conventional estimation algorithm of total variation factor with UB (dashed frame)

    图  4  通用背景-联合估计算法(虚线框)

    Fig.  4  Diagram of universal background-joint estimation algorithm (dashed frame)

    图  5  不同语音库中各算法性能对比

    Fig.  5  Performance comparison of algorithms on different speech corpus

    图  6  不同算法在四种语音库中的性能对比

    Fig.  6  Performance comparison of different algorithms on four speech corpus

    表  1  实验所用语音库

    Table  1  The corpus used in the experiment

    类型 TIMIT MDSVC MDSVC长句
    male female male female
    UBM 3 860 1 620 2 808 2376 136
    T 3 860 1 620 2 808 2 376 136
    训练GSV 630 270 1 150 850 1 500 1 500
    测试 70 30 92 68 120 120
    下载: 导出CSV

    表  2  MinDCF10参数设定

    Table  2  MinDCF10 parameter setting

    $C_{\rm Miss} $ $C_{\rm FalseAlarm} $ $P_{\rm Target} $
    1 1 0.001
    下载: 导出CSV

    表  3  GMM-UBM、传统算法估计$T$、本文所提出算法估计$T$以及PLDA在TIMIT语音库上的性能对比

    Table  3  Performance comparison of GMM-UBM, the traditional algorithm to estimate $T$, the proposed algorithms to estimate $T$, and the PLDA on TIMIT corpora

    算法 EER (%) MinDCF10
    GMM-UBM 6.26 0.076
    传统算法估计$T$ 4.76 0.025
    通用背景估计$T$ 4.28 0.021
    联合估计$T$ 4.01 0.020
    通用背景-联合估计$T$ 3.76 (21 %) 0.019 (24 %)
    PLDA 3.94 0.022
    下载: 导出CSV

    表  4  GMM-UBM、传统算法估计$T$、本文所提出算法估计$T$以及PLDA在MDSVC语音库上的性能对比

    Table  4  Performance comparison of GMM-UBM, the traditional algorithm to estimate $T$, the proposed algorithms to estimate $T$, and the PLDA on MDSVC corpora

    算法 EER (%) MinDCF10
    GMM-UBM 7.57 0.072
    传统算法估计$T$ 4.96 0.027
    通用背景估计$T$ 4.92 0.026
    联合估计$T$ 4.71 0.024
    通用背景-联合估计$T$ 4.67 (5.8 %) 0.023 (14.8 %)
    PLDA 4.67 0.024
    下载: 导出CSV

    表  5  GMM-UBM、传统算法估计$T$、本文所提出算法估计$T$以及PLDA在TIMIT + MDSVC语音库上的性能对比

    Table  5  Performance comparison of GMM-UBM, the traditional algorithm to estimate $T$, the proposed algorithms to estimate $T$, and the PLDA on TIMIT mixed MDSVC corpora

    算法 EER (%) MinDCF10
    GMM-UBM 8.33 0.071
    传统算法估计$T$ 5.41 0.029
    通用背景估计$T$ 5.19 0.028
    联合估计$T$ 5.11 0.028
    通用背景-联合估计$T$ 4.96 (8.3 %) 0.027 (6.9 %)
    PLDA 5.01 0.025
    下载: 导出CSV

    表  6  GMM-UBM、传统算法估计$T$、本文所提出算法估计$T$以及PLDA在MDSVC长句语音库上的性能对比

    Table  6  Performance comparison of GMM-UBM, the traditional algorithm to estimate $T$, the proposed algorithms to estimate $T$, and the PLDA on MDSVC long sentence corpora

    算法 EER (%) MinDCF10
    GMM-UBM 6.58 0.067
    传统算法估计$T$ 4.45 0.022
    通用背景估计$T$ 3.96 0.021
    联合估计$T$ 3.73 0.021
    通用背景-联合估计$T$ 3.72 (16.40 %) 0.020 (9.09 %)
    PLDA 3.88 0.021
    下载: 导出CSV

    表  7  通用背景-联合估计算法在不同语音库中的性能对比

    Table  7  Performance comparison of universal background-joint estimation algorithm on different speech corpus

    语音库 EER (%) MinDCF10
    TIMIT 3.76 0.019
    MDSVC 4.67 0.023
    TIMIT + MDSVC 4.96 0.027
    MDSVC长句 3.72 0.020
    下载: 导出CSV
  • [1] Reynolds D A. An overview of automatic speaker recognition technology. In: Proceedings of the 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Orlando, FL, USA: IEEE, 2002. IV-4072-IV-4075
    [2] Kinnunen T, Li H Z. An overview of text-independent speaker recognition:from features to supervectors. Speech Communication, 2010, 52(1):12-40 doi: 10.1016/j.specom.2009.08.009
    [3] Reynolds D A, Quatieri T F, Dunn R B. Speaker verification using adapted Gaussian mixture models. Digital Signal Processing, 2000, 10(1-3):19-41 doi: 10.1006/dspr.1999.0361
    [4] Cumani S, Laface P. Large-scale training of pairwise support vector machines for speaker recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(11):1590-1600 doi: 10.1109/TASLP.2014.2341914
    [5] Yessad D, Amrouche A. SVM based GMM supervector speaker recognition using LP residual signal. In: Proceedings of the 2012 International Conference on Image and Signal Processing. Agadir, Morocco: Springer, 2012. 579-586
    [6] Kenny P, Boulianne G, Ouellet P, Dumouchel P. Speaker and session variability in gmm-based speaker verification. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(4):1448-1460 doi: 10.1109/TASL.2007.894527
    [7] Kenny P, Boulianne G, Ouellet P, Dumouchel P. Joint factor analysis versus eigenchannels in speaker recognition. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(4):1435-1447 doi: 10.1109/TASL.2006.881693
    [8] Dehak N. Discriminative and Generative Approaches for Long-and Short-Term Speaker Characteristics Modeling: Application to Speaker Verification[Ph. D. dissertation], École de Technologie Supérieure, Montreal, QC, Canada, 2009.
    [9] Dehak N, Kenny P J, Dehak R, Dumouchel P, Ouellet P. Front-end factor analysis for speaker verification. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(4):788-798 doi: 10.1109/TASL.2010.2064307
    [10] Dehak N, Dehak R, Kenny P, Brummer N, Ouellet P, Dumouchel P. Support vector machines versus fast scoring in the low-dimensional total variability space for speaker verification. In: Proceedings of the 10th Annual Conference of the International Speech Communication Association. Brighton, UK: DBLP, 2009. 1559-1562
    [11] Cumani S, Laface P. I-vector transformation and scaling for PLDA based speaker recognition. In: Proceedings of the 2016 Odyssey Speaker and Language Recognition Workshop. Bilbao, Spain: IEEE, 2016. 39-46
    [12] Rouvier M, Bousquet P M, Ajili M, Kheder W B, Matrouf D, Bonastre J F. LIA system description for NIST SRE 2016. In: Proceedings of the 2016 International Speech Communication Association. San Francisco, USA: Elsevier, 2016.
    [13] Xu Y, McLoughlin I, Song Y, Wu K. Improved i-vector representation for speaker diarization. Circuits, Systems, and Signal Processing, 2016, 35(9):3393-3404 doi: 10.1007/s00034-015-0206-2
    [14] Fine S, Navratil J, Gopinath R A. Enhancing GMM scores using SVM "hints". In: Proceedings of the 7th European Conference on Speech Communication and Technology. Aalborg, Denmark: DBLP, 2001. 1757-1760
    [15] Campbell W M, Sturim D E, Reynolds D A. Support vector machines using GMM supervectors for speaker verification. IEEE Signal Processing Letters, 2006, 13(5):308-311 doi: 10.1109/LSP.2006.870086
    [16] 何亮, 史永哲, 刘加.联合因子分析中的本征信道空间拼接方法.自动化学报, 2011, 37(7):849-856 http://www.aas.net.cn/CN/abstract/abstract17496.shtml

    He Liang, Shi Yong-Zhe, Liu Jia. Eigenchannel space combination method of joint factor analysis. Acta Automatica Sinica, 2011, 37(7):849-856 http://www.aas.net.cn/CN/abstract/abstract17496.shtml
    [17] 郭武, 李轶杰, 戴礼荣, 王仁华.说话人识别中的因子分析以及空间拼接.自动化学报, 2009, 35(9):1193-1198 http://www.aas.net.cn/CN/abstract/abstract13565.shtml

    Guo Wu, Li Yi-Jie, Dai Li-Rong, Wang Ren-Hua. Factor analysis and space assembling in speaker recognition. Acta Automatica Sinica, 2009, 35(9):1193-1198 http://www.aas.net.cn/CN/abstract/abstract13565.shtml
    [18] Jankowski C, Kalyanswamy A, Basson S, Spitz J. NTIMIT: a phonetically balanced, continuous speech, telephone bandwidth speech database. In: Proceedings of the 1990 International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Albuquerque, NM, USA: IEEE, 1990, 1: 109-122
    [19] Woo R H, Park A, Hazen T J. The MIT mobile device speaker verification corpus: data collection and preliminary experiments. In: Proceedings of the 2016 IEEE Odyssey: the Speaker and Language Recognition Workshop. San Juan, Puerto Rico: IEEE, 2006. 1-6
    [20] Young S, Evermann G, Gales M, Hain T, Liu X Y, Moore G, Odell J, Ollason D, Povey D, Valtchev V, Woodland P. The HTK Book (for HTK Version 3. 4). Cambridge: Cambridge University Engineering Department, 2006.
    [21] NIST Speaker Recognition Evaluation[Online], available: http://www.itl.nist.gov/iad/mig/tests/sre/2010/index.html, April 21, 2010
    [22] Chen L P, Lee K A, Ma B, Li H Z, Dai L R. Adaptation of PLDA for multi-source text-independent speaker verification. In: Proceedings of the 2017 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). New Orleans, USA: IEEE, 2017. 5380-5384
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  1794
  • HTML全文浏览量:  256
  • PDF下载量:  636
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-20
  • 录用日期:  2017-08-08
  • 刊出日期:  2018-10-20

目录

    /

    返回文章
    返回