2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

针对PM2.5单时间序列数据的动态调整预测模型

张熙来 赵俭辉 蔡波

富月, 杜琼. 一类工业运行过程多模型自适应控制方法. 自动化学报, 2018, 44(7): 1250-1259. doi: 10.16383/j.aas.2017.c160763
引用本文: 张熙来, 赵俭辉, 蔡波. 针对PM2.5单时间序列数据的动态调整预测模型. 自动化学报, 2018, 44(10): 1790-1798. doi: 10.16383/j.aas.2017.c170026
FU Yue, DU Qiong. Multi-model Adaptive Control Method for a Class of Industrial Operational Processes. ACTA AUTOMATICA SINICA, 2018, 44(7): 1250-1259. doi: 10.16383/j.aas.2017.c160763
Citation: ZHANG Xi-Lai, ZHAO Jian-Hui, CAI Bo. Prediction Model With Dynamic Adjustment for Single Time Series of PM2.5. ACTA AUTOMATICA SINICA, 2018, 44(10): 1790-1798. doi: 10.16383/j.aas.2017.c170026

针对PM2.5单时间序列数据的动态调整预测模型

doi: 10.16383/j.aas.2017.c170026
基金项目: 

中央高校基本科研业务费专项资金 2042016GF0023

中国空间技术研究院创新基金 CAST2014

湖北省科技支撑计划 2014BAA149

详细信息
    作者简介:

    张熙来  武汉大学计算机学院硕士研究生.2016年获武汉大学计算机学院学士学位.主要研究方向为模式识别, 自然语言处理.E-mail:runningman_hamei@163.com

    蔡波  武汉大学计算机学院副教授.2003年获武汉大学博士学位.主要研究方向为模式识别, 计算机图形学, 虚拟现实技术.E-mail:bo_cai@yeah.net

    通讯作者:

    赵俭辉  武汉大学计算机学院副教授.2004年获新加坡南洋理工大学博士学位.主要研究方向为模式识别, 计算机图形图像, 图像处理.本文通信作者.E-mail:jianhuizhao@whu.edu.cn

Prediction Model With Dynamic Adjustment for Single Time Series of PM2.5

Funds: 

Fundamental Research Funds for the Central Universities 2042016GF0023

China Academy of Space Technology CAST2014

Hubei Support Plan for Science and Technology 2014BAA149

More Information
    Author Bio:

     Master student at the School of Computer, Wuhan University. She received her bachelor degree from Wuhan University in 2016. Her research interest covers pattern recognition and natural language processing

     Associate professor at the School of Computer, Wuhan University. He received his Ph. D. degree from Wuhan University in 2003. His research interest covers pattern recognition, computer graphics, and virtual reality technology

    Corresponding author: ZHAO Jian-Hui  Associate professor at the School of Computer, Wuhan University. He received his Ph. D. degree from Nanyang Technological University, Singapore in 2004. His research interest covers pattern recognition, computer graphics, and image processing. Corresponding author of this paper
  • 摘要: 针对细颗粒物PM2.5的浓度预测,本文提出了基于单时间序列数据的动态调整模型.在动态指数平滑算法中,指数平滑次数与参数基于样本数据并借助二分查找进行调整.在动态马尔科夫模型中,马尔科夫链的残差状态数、隐马尔科夫模型的隐状态数、连续样本数和阈值参数都通过训练数据加以调整.动态调整模型将指数平滑法和马尔科夫模型有效结合起来,指数平滑法得到的预测值由马尔科夫模型进行校正,从而提高预测准确度.基于大量实际PM2.5数据进行测试,验证了算法的有效性.并与其他现有的灰色模型、人工神经网络、自回归滑动平均模型、支持向量机等方法进行了对比,表明所提模型能够得到精度更高的预测结果.本文模型不局限于PM2.5数据,还可应用于其他类型的数据预测.
  • 工业过程运行反馈控制包括底层回路关键被控变量的反馈控制和上层运行指标的反馈控制, 也就是说, 工业过程运行反馈控制不仅包括保证过程控制系统关键被控变量的跟踪控制, 而且还要选择合适的关键被控变量设定值, 实现运行指标目标值的跟踪[1].如图 1所示, 传统的工业过程运行反馈控制过程中, 关键被控变量的设定值$ {Y^*} = y_j^*$, $j=1, 2$, $\cdots$, $n$由工序作业班的运行工程师根据运行指标目标值${R^*} = R_i^*$, $j=1, 2, \cdots, m$和多年积累的人工操作经验, 并结合各种运行工况信息人为给出.为实现工业运行过程的自动控制, 自上世纪80年代末以来, 很多学者开展了工业运行过程控制方法的研究.文献[2]基于分层递阶控制的架构和多层优化理论, 提出了反馈优化控制的思想.文献[3]通过离线选择与工业过程经济效益相关的被控变量的设定值, 提出了自优化控制的概念.文献[4]将底层回路控制与过程运行优化相结合, 提出了具有两层结构的实时优化(Real time optimization, RTO)控制方法, 上层采用静态模型优化经济性能指标, 产生底层控制回路的设定值, 通过底层控制器使被控变量跟踪设定值, 从而尽可能使过程运行在经济指标目标值附近.文献[5]将RTO与模型预测控制相结合, 提出了具有三层结构的运行反馈控制方法.此外, 还有一些基于神经网络、模糊推理、案例推理等智能技术的运行反馈控制方法, 例如文献[6]将案例推理、规则推理以及神经网络相结合, 提出了工业运行过程的混合智能控制方法; 文献[7]将神经网络与模糊推理相结合, 提出了一种设定值的混合监控方法.

    图 1  传统的运行反馈控制过程
    Fig. 1  The operation of the traditional feedback control process

    上述运行反馈控制方法均假设底层过程控制可以跟踪运行控制给出的设定值, 没有考虑底层跟踪设定值的动态误差对整个运行过程优化和控制的影响.为解决这一问题, 文献[8-9]提出了使运行指标实际值与目标值偏差和控制回路输出与设定值跟踪误差的二次性能指标极小化的运行反馈控制方法.文献[10]提出了运行反馈解耦控制方法.上述方法均假设运行层的模型由底层关键被控变量与运行指标之间的静态模型精确描述.实际上, 运行指标反映产品在加工过程中的质量、效率、消耗等, 与底层控制回路的被控变量之间往往具有动态特性, 并且很难用精确的数学模型描述.

    本文针对一类运行层为未知动态模型的工业运行过程, 提出一种新的多模型自适应控制方法.最早的多模型自适应控制方法通过线性模型和基于神经网络的非线性模型之间的切换不仅可以保证自适应系统有界输入和有界输出(Bound-input and bound-output, BIBO)稳定, 而且可以改善系统的跟踪性能[11], 但该方法只适用于单输入、单输出系统, 并且是在系统的未建模动态全局有界这一假设下实现的.文献[12]将上述方法推广到多变量系统, 提出了基于多模型与神经网络的多变量自适应控制方法, 放松了文献[11]对系统未建模动态全局有界的假设.文献[13-14]提出了多变量强耦合系统的多模型自适应解耦控制方法.文献[15]提出了参数跳变系统的多模型自适应控制方法.文献[16]提出了具有未知执行器非线性的多变量自适应控制方法.

    上述多模型自适应控制方法都是针对底层被控对象设计的.这些方法采用带死区的投影算法对未知参数进行在线辨识.投影算法收敛速度慢, 对参数初值十分灵敏, 实际使用中只有当参数初值接近真值时, 才具有良好的收敛效果, 因此投影算法对过程的先验知识要求较高, 不适合应用于动态未知的工业运行过程.相比较, 递推最小二乘算法具有较快的收敛速度, 对参数初值不灵敏.本文提出的运行过程多模型自适应控制方法采用带死区的递推最小二乘方法对未知参数进行在线辨识.理论分析和仿真实验验证了所提方法的有效性.

    工业运行过程动态模型由上层运行层的动态模型和底层被控对象的动态模型两部分组成.在本文中, 为了将问题简化, 底层被控对象由如下离散时间线性状态空间模型描述.

    $ x(k+1)=\bar{A}x(k)+\bar{B}u(k) $

    (1a)

    $ y(k)=\bar{C}x(k) $

    (1b)

    其中, $x\in{\bf R}^n$为被控对象状态, $u\in{\bf R}^m$为被控对象的控制输入, $y\in{\bf R}^m$是被控对象的测量输出, $\overline{A}$ $\in$ ${\bf R}^{n\times n}$, $\overline{B}\in{\bf R}^{n\times m}$, $\overline{C}\in{\bf R}^{m\times n}$为时不变矩阵.针对底层被控对象(1)设计极点配置控制器.

    $ u(k)=-Kx(k)+L{{y}^{*}}(k) $

    (2)

    其中, $y^{*}(k)$为底层回路设定值, $K\in{\bf R}^{m\times n}$, $L$ $\in$ ${\bf R}^{m\times m}$为时不变矩阵.

    为获得控制器参数矩阵$K$和$L$, 将式(2)代入式(1)得到闭环系统方程为

    $ x(k+1)=(\bar{A}-\bar{B}K)x(k)+\bar{B}L{{y}^{*}}(k) $

    (3a)

    $ y(k)=\bar{C}x(k) $

    (3b)

    为使闭环系统稳定, 并实现稳态跟踪, 应选择控制器参数矩阵和满足:

    1) 矩阵$\overline{A}-\overline{B}K$稳定;

    2) $\lim\nolimits_{z\rightarrow1}\overline{C}(zI_{n}-(\overline{A}-\overline{B}K))^{-1}\overline{B}L=I_{m}$, $L=$ $\lim\nolimits_{z\rightarrow1}(\overline{C}(zI_{n}- (\overline{A}-\overline{B}K))^{-1}\overline{B})^{-1}$.

    由于上层运行层动态模型是底层关键被控变量与运行指标之间的函数, 它的输出与底层控制系统输出相关.在本文中, 考虑运行层模型为如下带有未建模动态的动态模型.

    $ r(k+1)=Mr(k)+Ny(k)+\nu (k) $

    (4)

    其中, $r(k)$为运行过程输出, 即运行过程的工艺指标, $\nu(k)\in {\bf R}^m$为外部干扰或未建模动态, $M$, $N$ $\in$ ${\bf R}^{m\times m}$为时不变矩阵.工业过程运行控制系统涉及到底层关键被控变量的反馈控制和上层运行指标的反馈控制, 为充分考虑底层跟踪设定值的动态误差对整个运行过程控制的影响, 运行过程动态模型可看作是由底层基础反馈控制系统(3)和运行层动态模型(4)构成的广义模型.

    $ x(k+1)=\widetilde{A}x(k)+\widetilde{B}{{y}^{*}}(k) $

    (5a)

    $ r(k+1)=Mr(k)+\widetilde{C}x(k)+\nu (k) $

    (5b)

    其中, $\widetilde{A}=\bar{A}-\bar{B}K$, $\widetilde{B}=\bar{B}L, $ $\widetilde{C}=N\bar{C}, $满足${{\widetilde{C}}^{\text{T}}}\widetilde{C}$可逆.

    假设 1. 未建模动态$\nu(k)$的差分项或变化率全局有界, 即对任意的$k > 0$, $\|\nu(k)-\nu(k-2)\|\leq\Gamma$, 其中, $\Gamma$为正常数.

    本文的目标是将设定值$y^{*}(k)$看作控制输入, 确定一个多模型自适应控制器, 当其应用于不确定的运行过程(5)时, 闭环运行过程的输入、输出信号有界, 即闭环系统BIBO稳定, 并且运行过程输出$r(k)$尽可能跟踪事先指定的运行指标目标值$r^{*}(k)$的变化.由于未建模动态的存在, 单独使用线性控制器即使能保证闭环运行过程BIBO稳定, 也很难满足一定的跟踪性能.本文将基于带死区的递推最小二乘算法的线性鲁棒自适应控制器和具有未建模动态补偿的非线性自适应控制器与切换机制相结合, 提出的多模型自适应控制器不仅能够保证闭环运行过程BIBO稳定, 而且可使其具有良好的跟踪性能.

    为进行控制器设计, 首先需要将广义模型(5)转化成差分方程形式, 为此引入后移算子$z^{-1}$, 于是式(5)可以重新整理为

    $ A({{z}^{-1}})r(k+2)=B{{y}^{*}}(k)+C({{z}^{-1}})\nu (k+1) $

    (6)

    其中,

    $ A({{z}^{-1}})=\widetilde{C}[{{I}_{n}}-\widetilde{A}{{z}^{-1}}]{{({{\widetilde{C}}^{\text{T}}}\widetilde{C})}^{-1}}{{\widetilde{C}}^{\text{T}}}({{I}_{m}}-M{{z}^{-1}}) $

    $ B=\widetilde{C}\widetilde{B} $

    $ C({z^{ - 1}}) = \widetilde C[{I_n} - \widetilde A{z^{ - 1}}]{({\widetilde C^{\rm{T}}}\widetilde C)^{ - 1}}{\widetilde C^{\rm{T}}} $

    下面针对模型(6)设计一步超前控制器.引入如下一步超前最优性能指标:

    $ J(k) = {\left\| {T({z^{ - 1}})r(k + 2) - R({z^{ - 1}}){r^*}(k + 2)} \right\|^2} $

    (7)

    其中, $r^{*}(k)=[r^{*}_{1}(k), r^{*}_{2}(k), \cdots, r^{*}_{m}(k)]^{\rm T}\in{\bf R}^m$为已知有界的运行指标目标值, $T(z^{-1})\in{\bf R}^{m\times m}$为稳定的对角加权多项式矩阵, 满足$T(0)$非奇异; $R(z^{-1})$ $\in$ ${\bf R}^{m\times m}$为对角加权多项式矩阵.引入方程

    $ T({z^{ - 1}}) = H({z^{ - 1}})A({z^{ - 1}}) + {z^{ - 2}}G({z^{ - 1}}) $

    (8)

    为使$H(z^{-1})$和$G(z^{-1})$为唯一解或最小阶解, 由文献[17]可知, $H(z^{-1})$和$G(z^{-1})$都为1阶多项式矩阵, $T(z^{-1})$的阶次小于或等于3.易知, $H(0)=T(0)$.将式(6)两边乘$H(z^{-1})$并利用式(8), 得

    $ \begin{array}{l} T({z^{ - 1}})r(k + 2) = G({z^{ - 1}})r(k) + \\ \;\;\;\;\;\;H({z^{ - 1}})B{y^*}(k) + H({z^{ - 1}})C({z^{ - 1}})\nu (k + 1) \end{array} $

    (9)

    定义时滞-差分算子$\Delta=1-z^{-2}$, 则式(9)转化为

    $ \begin{array}{l} T({z^{ - 1}})r(k + 2) = G({z^{ - 1}})\Delta r(k) + \\ \;\;\;\;\;H({z^{ - 1}})B\Delta {y^*}(k) + T({z^{ - 1}})r(k) + \rho (k) \end{array} $

    (10)

    其中, $\rho(k)=H(z^{-1})C(z^{-1})[\nu(k+1)-\nu(k-1)]$.于是, 使性能指标(7)最小的一步超前最优控制$y^{*}(k)$通过下式计算.

    $ \begin{array}{l} G({z^{ - 1}})\Delta r(k) + H({z^{ - 1}})B\Delta {y^*}(k) + \rho (k) = \\ \;\;\;\;\;\;R({z^{ - 1}}){r^*}(k + 2) - T({z^{ - 1}})r(k) \end{array} $

    (11)

    将式(11)代入模型(6), 得到运行过程闭环方程

    $ T({z^{ - 1}})r(k + 2) = R({z^{ - 1}}){r^*}(k + 2) $

    (12)

    由式(12)可知, 若选择$R(z^{-1})=T(z^{-1})$, 则可消除运行过程的跟踪误差.

    由于外部干扰或未建模动态往往是未知的, 当不考虑它对运行过程闭环系统的影响时, 可采用下面的线性控制器方程求取控制输入$y^{*}(k)$.

    $ \begin{array}{l} G({z^{ - 1}})\Delta r(k) + H({z^{ - 1}})B\Delta {y^*}(k) = \\ \;\;\;\;\;\;R({z^{ - 1}}){r^*}(k + 2) - T({z^{ - 1}})r(k) \end{array} $

    (13)

    运行过程的动态模型往往是未知的, 因此需要采用自适应方法在线获得控制器参数, 当组成$A(z^{-1})$, $B$, $C(z^{-1})$的参数阵未知时, 式(10)可看作控制器参数辨识方程, 为此记$\phi(k)=T(z^{-1})r(k)$, $G(z^{-1})$ $=G_0+G_1(z^{-1})$, $Q(z^{-1})=H(z^{-1})B=$ $Q_0 +Q_1(z^{-1})$, 并定义数据向量和参数矩阵分别为$\varphi(k)$ $=[\Delta r^{\rm T}(k), \Delta r^{\rm T}(k-1), \Delta {y^{*}}^{\rm T}(k)$, $\Delta {y^{*}}^{\rm T}(k-1)]^{\rm T}$和$\theta=[G_0, G_1, Q_0, Q_1]^{\rm T}$, 则控制器参数辨识方程(10)可以写为

    $ \phi (k + 2) = {\theta ^{\rm{T}}}\varphi (k) + \phi (k) + \rho (k) $

    (14)

    线性控制器方程(13)可重新写为

    $ \theta^{\rm T}\varphi(k)=R(z^{-1})r^{*}(k+2)-T(z^{-1})r(k) $

    (15)

    对于未知的参数矩阵$\theta$, 采用带死区的递推最小二乘方法进行在线辨识.

    $ \hat \theta (k) = {\rm{proj}}\{ {\hat \theta ^ + }(k)\} $

    (16a)

    $ \begin{array}{l} {{\hat \theta }^ + }(k) = \hat \theta (k - 2){\mkern 1mu} + \\ \;\;\;\;\;\;\;\;\;\;\;\frac{{\lambda (k)P(k - 2)\varphi (k - 2){e^{\rm{T}}}(k)}}{{1 + {\varphi ^{\rm{T}}}(k - 2)P(k - 2)\varphi (k - 2)}} \end{array} $

    (16b)

    $ \begin{array}{l} P(k) = P(k - 2) - \\ \;\;\;\;\;\;\;\;\;\;\frac{{\lambda (k)P(k - 2)\varphi (k - 2){\varphi ^{\rm{T}}}(k - 2)P(k - 2)}}{{1 + {\varphi ^{\rm{T}}}(k - 2)P(k - 2)\varphi (k - 2)}} \end{array} $

    (16c)

    $ e(k) = \phi (k) - \hat \phi (k) $

    (16d)

    $ \hat \phi (k) = {\hat \theta ^{\rm{T}}}(k - 2)\varphi (k - 2) + \phi (k - 2) $

    (16e)

    $ \lambda \left( k \right) = \left\{ \begin{array}{l} \frac{1}{2}, \;\;如果\left\| {e\left( k \right)} \right\|>2E\\ 0, \;\;否则 \end{array} \right. $

    (16f)

    $ {\rm{proj}}\left\{ {{{\hat \theta }^ + }\left( k \right)} \right\} = \left\{ \begin{array}{l} {{\hat \theta }^ + }\left( k \right), \;\;\;\;\;\;\;\;\;\;\;\;\;\hat Q_0^ + \left( k \right)非奇异\\ {\left[ { \ldots , {Q_{\min }}, \ldots } \right]^{\rm{T}}}, \;\;\;否则 \end{array} \right. $

    (16g)

    其中, $[\varphi(0), \widehat{\theta}(0), P(0)]$为初始条件, $P(0)>0$为正定矩阵, $E$为$\rho(k)$的已知上界, $\widehat{\theta}(k)= [\widehat{G}_0(k)$, $\widehat{G}_1(k)$, $\widehat{Q}_0(k), \widehat{Q}_1(k)]^{\rm T}$为$k$时刻未知参数矩阵$\theta$的估计, $\widehat{\theta}^{+}(k)=[\widehat{G}_0(k), \widehat{G}_1(k), \widehat{Q}_0^{+}(k), \widehat{Q}_1(k)]^{\rm T}$, ${\rm proj}\{\cdot\}$为一投影算子, 满足式(16g).

    由式(15)及确定性等价原则可知, 线性鲁棒自适应控制器为

    $ {\hat \theta ^{\rm{T}}}(k)\varphi (k) = R({z^{ - 1}}){r^*}(k + 2) - T({z^{ - 1}})r(k) $

    (17)

    引理 1. 定义函数

    $ V(k) = {\rm{tr}}\left[ {{{\widetilde \theta }^{\rm{T}}}(k){P^{ - 1}}(K)\widetilde \theta (k)} \right] $

    则带死区的递推最小二乘辨识算法(16)具有如下性质:

    1)

    $ \begin{array}{l} V(k) - V(k - 2) \le \\ \;\;\;\; - \frac{{3\lambda (k){{\left\| {e(k)} \right\|}^2}}}{{8[1 + {\varphi ^{\rm{T}}}(k - 2)P(k - 2)\varphi (k - 2)]}} - \\ \;\;\;\;\frac{{\lambda (k)[{{\left\| {e(k)} \right\|}^2} - 4{E^2}]}}{{4\{ 1 + [1 - \lambda (k)]{\varphi ^{\rm{T}}}(k - 2)P(k - 2)\varphi (k - 2)\} }} \end{array} $

    2)

    $ \mathop {\lim }\limits_{k \to \infty } \left\| {\hat \theta (k) - \hat \theta (k - 2)} \right\| = 0 $

    证明. 见附录A.

    定理 1. 运行过程动态模型(5)或(6)满足假设1, 则当线性鲁棒自适应控制算法(16)应用于式(6)时, 闭环运行过程全局李雅普诺夫稳定, 并且广义跟踪误差满足${\lim _{k \to \infty }}\lambda (k)[{\left\| {\bar e(k)} \right\|^2} - 4{E^2}] = 0$, 其中, $\bar e(k): = T({z^{ - 1}})r(k) - R({z^{ - 1}}){r^*}(k)$.

    证明.  由引理1的1)可知,

    $ \mathop {\lim }\limits_{k \to \infty } \frac{{\lambda (k)[{{\left\| {e(k)} \right\|}^2} - 4{E^2}]}}{{4\{ 1 + [1 - \lambda (k)]{\varphi ^{\rm{T}}}(k - 2)P(k - 2)\varphi (k - 2)\} }} = 0 $

    (18)

    由于$\overline{e}(k):=T(z^{-1})r(k)-R(z^{-1})r^*{(k)}$及$T(z^{-1})$的稳定性, 存在正常数$c_1$, $c_2$, $c_3$, $c_4$满足

    $ \begin{array}{l} |{r_i}(k)| \le {c_1} + {c_2}\mathop {\max }\limits_{_{\scriptstyle0 \le \tau \le t\atop \scriptstyle1 \le i \le m}} |{{\bar e}_i}(\tau )|, \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;i = 1, 2, \cdots , m \end{array} $

    (19)

    $ \begin{array}{l} |y_i^*(k - 2)| \le {c_3} + {c_4}\mathop {\max }\limits_{_{\scriptstyle0 \le \tau \le t\atop \scriptstyle1 \le i \le m}} |{r_i}(\tau )|, \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;i = 1, 2, \cdots , m \end{array} $

    (20)

    $ \begin{array}{l} X(k - 2) = \\ \;\;\;{[{r^{\rm{T}}}(k - 2), {r^{\rm{T}}}(k - 3), {y^*}^{\rm{T}}(k - 2), {y^*}^{\rm{T}}(k - 3)]^{\rm{T}}} \end{array} $

    则存在正常数$c_5$, $c_6$满足

    $ \left\| {X(k - 2)} \right\| \le {c_5} + {c_6}\mathop {\max }\limits_{0 \le \tau \le t} \left\| {\bar e(\tau )} \right\| $

    (21)

    由式(16d)可知,

    $ e(k)=T(z^{-1})r(k)-R(z^{-1})r^{*}(k)=\overline{e}(k) $

    (22)

    因此, 由式(21)和式(22)可知

    $ \left\| {X(k - 2)} \right\| \le {c_5} + {c_6}\mathop {\max }\limits_{0 \le \tau \le t} \left\| {e(\tau )} \right\| $

    (23)

    由式(23)可知, 单独采用线性鲁棒自适应控制算法时, 系统输入和输出信号的有界性由$e(k)$的有界性决定.下面假设$e(k)$无界.由式(16f)可知, 存在时刻$K_0>0$, 当$k>K_0$时, $\left\| {\mathit{e}(\mathit{k})} \right\| > {\rm{2}}E$并且$\lambda(k)$ $=$ $1/2$, 即式(18)的分子是一个正实序列.于是存在一单调递增序列$\left\| {\mathit{e}({\mathit{k}_n})} \right\|$, 使得

    $ {\lim _{k \to \infty }}\left\| {e({k_n})} \right\| = \infty $

    由式(23)可知

    $ \begin{array}{l} \frac{{\lambda ({k_n})[{{\left\| {e({k_n})} \right\|}^2} - 4{E^2}]}}{{41 + [1 - \lambda ({k_n})]{\varphi ^{\rm{T}}}({k_n} - 2)P({k_n} - 2)\varphi ({k_n} - 2)}} \ge \\ \frac{{\lambda ({k_n})[{{\left\| {e({k_n})} \right\|}^2} - 4{E^2}]}}{{81 + [1 - \lambda ({k_n})][{{({c_5} + {c_6}\left\| {e({k_n})} \right\|)}^2}]\left\| {P({k_n} - 2)} \right\|}} \end{array} $

    由于$\left\| {\mathit{P}({\mathit{k}_n} - {\rm{2}})} \right\|$为递减序列, 因此,

    $ \left\| {P({k_n} - 2)} \right\| \le \left\| {P(0)} \right\| $

    因此

    $ \begin{array}{l} \mathop {\lim }\limits_{k \to \infty } \frac{{\lambda ({k_n})[{{\left\| {e({k_n})} \right\|}^2} - 4{E^2}]}}{{41 + [1 - \lambda ({k_n})]{\varphi ^{\rm{T}}}({k_n} - 2)P({k_n} - 2)\varphi ({k_n} - 2)}} \ge \\ \;\;\;\;\;\frac{1}{{8{c_6}\left\| {P(0)} \right\|}} > 0 \end{array} $

    这与式(18)矛盾.故假设不成立, $e(k)$有界, 从而采用线性鲁棒自适应控制算法时, 闭环系统BIBO稳定.

    注释 1. 单独使用线性鲁棒自适应控制器能够保证闭环运行过程全局李亚普洛夫稳定, 但是无法使运行过程具有良好的跟踪性能.为了改善运行过程的跟踪性能, 同时不影响其稳定性, 我们将线性鲁棒自适应控制器、基于神经网络的非线性控制器以及切换机制相结合, 提出一种新的多模型自适应控制方法.

    下面考虑多模型自适应控制问题, 为将问题简化, 采用两个模型, 多模型切换系统如图 2所示.

    图 2  多模型自适应控制系统结构
    Fig. 2  The structure of multi-model adaptive control system

    图 2中, 线性估计模型定义为

    $ \widehat{\phi}_1(k)=\widehat{\theta}_1^{\rm T}(k-2)\varphi(k-2)+\phi(k-2) $

    (24)

    其中, $\widehat{\theta}_1(k)=[\widehat{G}_{1, 0}(k), \widehat{G}_{1, 1}(k), \widehat{Q}_{1, 0}(k), \widehat{Q}_{1, 1}(k)]^{\rm T}$为$k$时刻的基于线性模型(24)的估计, 采用式(16)在线辨识, 线性辨识误差为

    $ {e_1}(k) = \phi (k) - {\hat \phi _1}(k) $

    (25)

    通过下式计算控制输入$y^*(k)$, 作为基于线性模型的控制器$y^*_1(k)$.

    $ \hat \theta _1^{\rm{T}}(k)\varphi (k) = R({z^{ - 1}}){r^*}(k + 2) - T({z^{ - 1}})r(k) $

    (26)

    非线性估计模型定义为

    $ {\hat \phi _2}(k) = \hat \theta _2^{\rm{T}}(k - 2)\varphi (k - 2) + \phi (k - 2) + \hat \rho (k - 2) $

    (27)

    其中,$\widehat{\theta}_2(k)=[\widehat{G}_{2, 0}(k), \widehat{G}_{2, 1}(k), \widehat{Q}_{2, 0}(k), \widehat{Q}_{2, 1}(k)]^{\rm T}$为$k$时刻$\theta$的基于非线性模型(27)的估计; $\widehat{\rho}(k)$为$\rho^*(k)$的神经网络估计, 其中, $\rho^*(k):=\Delta\phi(k+2)-\widehat{\theta}_2(k)^{\rm T}\varphi(k)$, 即

    $ \widehat{\rho}(k)=NN[\widehat{W}(k), \varphi(k)] $

    (28)

    其中, $NN[\cdot]$表示神经网络结构; $\varphi(k)$为神经网络的输入向量; $\widehat{W}(k)$为$k$时刻理想权阵$W^*$的估计.与文献[12]类似, 除了要求参数阵的估计$\widehat{\theta}_2(k)$和权阵的估计$\widehat{W}(k)$有界, $\widehat{Q}_{2, 0}(k)$非奇异, 并未对$\widehat{\theta}_2(k)$的辨识算法和神经网络的结构以及权阵校正算法进行任何限制, 即

    $ \widehat{\theta}_2(k), \widehat{W}(k);~~\widehat{Q}_{2, 0}(k)~\text{非奇异}, ~ \forall k $

    (29)

    非线性辨识误差为

    $ e_2(k)=\phi(k)-\widehat{\phi}_2(k) $

    (30)

    因此, 根据式(10)和确定性等价原则, 通过下式计算控制输入$y^*(k)$, 作为基于非线性模型的控制器$y^*_2(k)$.

    $ \begin{array}{l} {{\hat \theta }_2}(k)\varphi (k) + \hat \rho (k) = R({z^{ - 1}}){r^*}(k + 2){\mkern 1mu} - \\ \;\;\;\;\;\;\;\;T({z^{ - 1}})r(k) \end{array} $

    (31)

    切换准则为

    $ \begin{array}{l} {J_j}\left( k \right) = \sum\limits_{i = 2}^k {\frac{{{\lambda _j}(k)[{{\left\| {{e_j}(k)} \right\|}^2} - 4{E^2}]}}{{4\{ 1 + [1 - {\lambda _j}(k)]{\varphi ^{\rm{T}}}(k - 2)P(k - 2)\varphi (k - 2)\} }} + } \\ {c_0}\sum\limits_{l = k - N - 1}^k {\left( {\frac{1}{2} - {\lambda _j}(l){{\left\| {{e_j}(l)} \right\|}^2}} \right)} \end{array} $

    (32)

    $ {\lambda _j}\left( k \right) = \left\{ \begin{array}{l} \frac{1}{2}, \;\;若\left\| {{e_j}(k)} \right\|>2E\\ 0, \;\;否则 \end{array} \right. $

    (33)

    其中, $N$是一个正整数, $c_0$是一个大于等于0的预先确定的常数.

    每一时刻$k$, 比较$J_1(k)$和$J_2(k)$, 求出最小的$J^*(k)$, 选择与$J^*(k)$对应的自适应控制器$y_i^*(k)$, 并将其应用于运行过程.

    定理 2. 运行过程动态模型(6)满足假设1, 则当基于多模型自适应控制算法(24)~ (33)用于运行过程(6)时, 闭环切换系统BIBO稳定.此外, 对于任意给定的正数$\varepsilon$, 存在时刻$K$, 当$k>K$时, 系统的广义跟踪误差满足$\left\| {\bar e(k)} \right\| \le 2E + \varepsilon $.

    证明. 由引理1可知,

    $ \mathop {\lim }\limits_{k \to \infty } \frac{{{\lambda _1}(k)[{{\left\| {{e_1}(k)} \right\|}^2} - 4{E^2}]}}{{4\{ 1 + [1 - {\lambda _1}(k)]{\varphi ^{\rm{T}}}(k - 2)P(k - 2)\varphi (k - 2)\} }} = 0 $

    (34)

    由式(24)和式(25)可知,

    $ \begin{array}{l} {e_1}(k) = \phi (k) - {{\hat \phi }_1}(k) = \\ \;\;\;\;\;\;\;\;\;\;\Delta \phi (k) - \hat \theta _1^{\rm{T}}(k - 2)\varphi (k - 2) = \\ \;\;\;\;\;\;\;\;\;T({z^{ - 1}})r(k) - T({z^{ - 1}})r(k - 2) - \\ \;\;\;\;\;\;\;\;\hat \theta _1^{\rm{T}}(k - 2)\varphi (k - 2) \end{array} $

    (35)

    由式(27)和式(30)可知

    $ \begin{array}{l} {e_2}(k) = \phi (k) - {{\hat \phi }_2}(k) = \\ \;\;\;\;\;\;\Delta \phi (k) - \hat \theta _2^{\rm{T}}(k - 2)\varphi (k - 2) - \hat \rho (k - 2) = \\ \;\;\;\;\;\;T({z^{ - 1}})r(k) - T({z^{ - 1}})r(k - 2) - \\ \;\;\;\;\;\;\hat \theta _2^{\rm{T}}(k - 2)\varphi (k - 2) - \hat \rho (k - 2) \end{array} $

    (36)

    于是, 根据确定性等价原则, 每一时刻

    $ \bar{e}(k)=e_1(k)~ \mbox{或}~e_2(k) $

    (37)

    由于每一时刻, 系统辨识误差$e(k)=e_1(k)$或$e_2(k)$, 故由式(21)可知, 存在正常数$c_7$, $c_8$满足

    $ \left\| {X(k - 2)} \right\| \le {c_7} + {c_8}\mathop {\max }\limits_{0 \le \tau \le k} \left\| {e(\tau )} \right\| $

    (38)

    由式(33)可知, 切换函数$J_j(k)$ $(j=1, 2)$的第2项是有界的.因此由引理1可知, $J_1(k)$有界.对于$J_2(k)$有两种情况.

    1) $J_2(k)$无界.由于$J_1(k)$有界, 因此存在时刻$K_1$使得当$k\geq K_1$时有$J_1(k)\leq J_2(k)$.故根据切换机制, 当$k\geq K_1+1$时, 系统辨识误差$e(k)=e_1(k)$满足

    $ \mathop {\lim }\limits_{k \to \infty } \frac{{{\lambda _1}(k)[{{\left\| {e(k)} \right\|}^2} - 4{E^2}]}}{{4\{ 1 + [1 - {\lambda _1}(k)]{\varphi ^{\rm{T}}}(k - 2)P(k - 2)\varphi (k - 2)\} }} = 0 $

    (39)

    其中,

    $ \lambda \left( k \right) = \left\{ \begin{array}{l} \frac{1}{2}, \;\;若\left\| {e(k)} \right\|>2E\\ 0, \;\;否则 \end{array} \right. $

    2) $J_2(k)$有界.由切换准则式(32)可知, $e_2(k)$满足

    $ \mathop {\lim }\limits_{k \to \infty } \frac{{{\lambda _2}(k)[{{\left\| {{e_2}(k)} \right\|}^2} - 4{E^2}]}}{{4\{ 1 + [1 - {\lambda _2}(k)]{\varphi ^{\rm{T}}}(k - 2)P(k - 2)\varphi (k - 2)\} }} \to 0 $

    故系统辨识误差$e(k)=e_1(k)$或$e_2(k)$满足式(39).

    其余部分的证明类似于定理1.

    由式(39)和$X(k-2)$的有界性可知,

    $ \mathop {\lim }\limits_{k \to \infty } \lambda (k)\left[ {{{\left\| {e(k)} \right\|}^2} - 4{E^2}} \right] $

    即, 对任意小的正数$\varepsilon$, 存在时刻$K$, 当$k>K$时,

    $ \left\| {e(k)} \right\| \le 2E + \varepsilon $

    (40)

    注释2. 由式(39)可知, 非线性辨识误差

    $ {e_2}(k) = {\rho ^*}(k - 2) - \hat \rho (k - 2) $

    (41)

    适当选择神经网络结构和参数, 可以保证$\left\| {{\rho ^*}(k} \right.$ $-$ $\left. {2) - \hat \rho (k - 2)} \right\|<\varepsilon $.因此若运行过程选择非线性自适应控制器$y_2^*(k)$作为输入信号, 则由式(35)和式(36)可知, 广义跟踪误差$\left\| {\bar e(k)} \right\|<\varepsilon $满足.

    为验证本文所提方法的有效性, 首先考虑如下底层被控对象模型

    $ \begin{array}{l} x(k + 1) = \left( {\begin{array}{*{20}{c}} {1.5}&6\\ 6&4 \end{array}} \right)x(k) + \\ \;\;\;\;\;\;\;\;\;\left( {\begin{array}{*{20}{c}} { - 4.2623}&{ - 3.8254}\\ {8.3534}&{6.1711} \end{array}} \right)u(k)\\ y(k) = \left( {\begin{array}{*{20}{c}} {0.1546}&{ - 0.012}\\ { - 0.0099}&{0.2281} \end{array}} \right)x(k) \end{array} $

    (42)

    其中, $x=[x_1, x_2]^{\rm T}$, $y=[y_1, y_2]^{\rm T}$, $u=[u_1, u_2]^{\rm T}$.为使底层闭环系统稳定, 并实现稳态跟踪, 选择如下极点配置控制器

    $ u(t)=-Kx(t)+Ly^*(t) $

    (43)

    其中, $y^*(t)=[y_1^*, y_2^*]^{\rm T}$为底层回路设定值, 由后面的运行控制给出.

    $ \begin{array}{l} K = \left( {\begin{array}{*{20}{c}} {7.1487}&{15.3085}\\ { - 8.8017}&{ - 19.0044} \end{array}} \right)\\ \;\;L = \left( {\begin{array}{*{20}{c}} { - 14.5}&{30.25}\\ { - 20.6}&{ - 35.6} \end{array}} \right) \end{array} $

    (44)

    假设运行层动态模型为

    $ \begin{array}{l} r(k + 1) = \left( {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right)r(k) + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {\begin{array}{*{20}{c}} { - 1.2893}&{ - 0.0678}\\ {0.2798}&{ - 4.3693} \end{array}} \right)y(k) + \nu (k) \end{array} $

    (45)

    其中,

    $ r(k) = {[{r_1}, {r_2}]^{\rm{T}}} $

    $ \begin{array}{l} \nu (k) = \left( {\begin{array}{*{20}{c}} {{\nu _1}}\\ {{\nu _2}} \end{array}} \right) = 0.01 \times \\ \;\;\;\;\;\;\;\;\;\;\left( {\begin{array}{*{20}{c}} {{\rm{sin}}({\rm{1 + }}y_{\rm{1}}^{{\rm{*2}}}(k{\rm{ - 1}}){\rm{ + }}r_{\rm{1}}^{\rm{2}}(k{\rm{ - 1}}){\rm{ + }}}\\ {r_2^2(k) - \frac{{{r_1}(k - 1) + {r_2}(k)}}{{1 + y_1^{*2}(k - 1) + r_1^2(k - 1) + r_2^2(k)}})}\\ {{\rm{sin}}({\rm{1 + }}y_{\rm{2}}^{{\rm{*2}}}(k{\rm{ - 1}}){\rm{ + }}r_{\rm{1}}^{\rm{2}}(k{\rm{ - 1}}){\mkern 1mu} {\rm{ + }}}\\ {r_2^2(k) - \frac{{{r_1}(k) + {r_2}(k - 1)}}{{1 + y_2^{*2}(k - 1) + r_1^2(k) + r_2^2(k - 1)}})} \end{array}} \right) \end{array} $

    则由式(5)可知, 运行过程广义对象模型为

    $ \begin{array}{l} x(k + 1) = \left( {\begin{array}{*{20}{c}} { - 1.7}&{ - 1.45}\\ {0.6}&{ - 6.6} \end{array}} \right)x(k) + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {\begin{array}{*{20}{c}} {17}&{7.25}\\ { - 6}&{33} \end{array}} \right){y^*}(k)\\ r(k + 1) = \left( {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right)r(k) + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {\begin{array}{*{20}{c}} { - 0.2}&0\\ 0&{ - 1} \end{array}} \right)x(k) + \nu (k) \end{array} $

    (46)

    选择加权多项式矩阵

    $ \begin{array}{l} T({z^{ - 1}}) = R({z^{ - 1}}) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\left( \begin{array}{l} - 5 - 0.1{z^{ - 1}}\;\;\;\;\;\;\;\;\;0\\ \;\;\;\;\;\;0\;\;\;\;\;\;\;\;\; - 1 - 0.1{z^{ - 1}} \end{array} \right) \end{array} $

    运行指标目标值为

    $ {r^*}(k) = \left( \begin{array}{l} \;\;\;\;\;\;\;\;\;\;\;\;\;0.5\\ 0.5{\rm{sign}}\left( {\cos \left( {k \times \frac{\pi }{{50}}} \right)} \right) \end{array} \right) $

    易知, 控制器真实参数阵为

    $ \theta = \left( {{\theta _0}\;\;\;\;\;{\theta _1}} \right) $

    其中,

    $ \begin{array}{l} {\theta _0} = ( - 6.53, - 10.556, 1.43, 10.556, 17, 7.25, \\ \;\;\;\;\;\;\;\; - 2.86, - 52.78{)^{\rm{T}}} \end{array} $

    $ \begin{array}{l} {\theta _1} = (21.6, - 36.53, - 21.6, 35.43, - 6, 33, \\ \;\;\;\;\;\;\;43.2, - 177.15{)^{\rm{T}}} \end{array} $

    本仿真实验中, 我们假设它是未知的, 并根据先验知识选择待辨识控制器初始参数阵为

    $ \begin{array}{l} \\ \begin{array}{*{20}{l}} {\hat \theta (0) = {{\left( {\begin{array}{*{20}{c}} { - 4}&{ - 7}&0&4&{19}&3&{ - 1}&{ - 35}\\ {16}&{ - 31}&{ - 15}&{30}&{ - 2}&{29}&{35}&{ - 160} \end{array}} \right)}^{\rm{T}}}} \end{array} \end{array} $

    选择单隐层线性输出的静态BP网对$\rho^*(k)$进行估计, 其隐元数为20, 学习率为0.1;选择$c=1$, $N$ $=$ $2$.

    图 3为单独采用线性鲁棒自适应控制方法时运行过程的运行指标目标值$r^*(k)$和运行过程输出$r(k)$.从图 3可以看出, 虽然该控制器可以使运行过程稳定, 但跟踪效果很差. 图 4为采用本文所提的多模型自适应控制方法时运行过程的运行指标目标值$r^*(k)$、运行过程输出$r(k)$和运行过程控制输入, 即底层设定值$y^*(k)$.与图 3相比, 图 4中的跟踪效果明显改善. 图 5为$\widehat{\theta}_1(k)$中16个参数的在线变化曲线. 图 6为底层极点配置控制系统的跟踪曲线.为进行比较, 仍以上述矩阵为控制器初始参数阵, 采用文献[12]提出的基于投影算法的多模型自适应控制方法对运行过程进行仿真, 运行过程跟踪结果如图 7所示.相应的$\widehat{\theta}_1(k)$中各参数的在线变化曲线如图 8所示.由图 4图 7可知, 采用本文提出的基于最小二乘算法的多模型自适应控制方法时, 即使控制器初始参数阵离控制器真实参数阵较远, 仍具有有良好的跟踪效果.两相比较, 基于投影算法的多模型自适应控制方法对初始参数阵非常灵敏, 当初始参数阵远离控制器真实参数阵时, 控制效果较差.比较图 5图 8可以看出, 最小二乘算法与投影算法相比具有更快的收敛速度.

    图 3  采用基于递推最小二乘算法的线性鲁棒自适应控制方法时, 运行过程的输出及运行指标目标值
    Fig. 3  Outputs of the operation process and theirs operation targets when the linear robust adaptive control method based on recursive least square algorithm is used
    图 4  采用基于递推最小二乘算法的多模型自适应控制方法时, 运行过程的输出、运行指标目标值及控制输入
    Fig. 4  Outputs of the operation process, theirs operation targets and control inputs when the proposed multi-model adaptive control method based on recursive least square algorithm is used
    图 5  采用基于递推最小二乘算法的多模型自适应控制方法时, $\widehat{\theta}_1(k)$中16个参数的在线变化曲线
    Fig. 5  Online curves of 16 parameters in $\widehat{\theta}_1(k)$ when the proposed multi-model adaptive control method based on recursive least square algorithm is used
    图 6  底层极点配置控制系统的跟踪曲线
    Fig. 6  Tracking curves of the underlying pole assignment control system
    图 7  采用基于投影算法的多模型自适应控制方法时, 运行过程的输出和运行指标目标值
    Fig. 7  Outputs of the operation process and theirs operation targets when the multi-model adaptive control method based on projection algorithm is used
    图 8  采用基于投影算法的多模型自适应控制方法时, $\widehat{\theta}_1(k)$中16个参数的在线变化曲线
    Fig. 8  Online curves of 16 parameters in $\widehat{\theta}_1(k)$ when the multi-model adaptive control method based on projection algorithm is used

    工业运行过程应考虑底层跟踪设定值的动态误差对整个运行过程优化和控制的影响.现有的工业运行控制方法假设运行层为已知的线性静态模型.本文针对一类运行层为未知线性动态模型的工业运行过程, 提出了一种基于递推最小二乘算法的多模型自适应控制方法.通过理论分析和仿真比较, 验证了与现有的多模型自适应控制方法相比, 本文提出方法可以应用于工业运行过程, 并具有良好的跟踪效果.

    工业过程运行控制是近年来控制领域比较热门的研究方向之一, 现有的方法针对的被控对象主要是线性的, 并且主要集中在理论研究上.在实际的工业过程控制中, 非线性动态无可避免, 当两层结构中的被控对象都是非线性时, 如何设计控制器, 如何将理论的研究成果进行实际应用具有一定的挑战.

    证明. 当$\widehat{Q}_0^+(k)$非奇异时, $\widehat{\theta}(k)$与$\widehat{\theta}^+(k)$相等.由式(16d)和式(16e)可知,

    $ e(k) = [{\theta ^{\rm{T}}} - {\hat \theta ^{\rm{T}}}(k - 1)]\varphi (k - 2) + \rho (k - 2) $

    (A1)

    $ L(k)=\frac{P(k-2)\varphi(k-2)}{1+\varphi^{\rm T}(k-2)P(k-2)\varphi(k-2)} $

    (A2)

    由式(16b)、式(16c)以及式(A1)和式(A2)可知,

    $ \begin{array}{l} P(k) = P(k - 2) - \lambda (k)L(k){\varphi ^{\rm{T}}}(k - 2)P(k - 2) \Rightarrow \\ P(k) = [I - \lambda (k)L(k){\varphi ^{\rm{T}}}(k - 2)]P(k - 2) \Rightarrow \\ P(k){P^{ - 1}}(k - 2) = I - \lambda (k)L(k){\varphi ^{\rm{T}}}(k - 2) \end{array} $

    (A3)

    $ \begin{array}{l} \widetilde \theta (k) = \widetilde \theta (k - 2) + \lambda (k)L(k){e^{\rm{T}}}(k) = \\ \;\;\;\;\;\;\;\;\;\;[I - \lambda (k)L(k){\varphi ^{\rm{T}}}(k - 2)]\widetilde \theta (k - 2) + \\ \;\;\;\;\;\;\;\;\;\;\lambda (k)L(k){\rho ^{\rm{T}}}(k - 2) = \\ \;\;\;\;\;\;\;\;\;\;P(k){P^{ - 1}}(k - 2)\widetilde \theta (k - 2) + \\ \;\;\;\;\;\;\;\;\;\lambda (k)L(k){\rho ^{\rm{T}}}(k - 2) \end{array} $

    (A4)

    由式(A4)可知,

    $ \begin{array}{l} {P^{ - 1}}(k)\widetilde \theta (k) - {P^{ - 1}}(k - 2)\widetilde \theta (k - 2) = \\ \;\;\;\;\;\;\lambda (k){P^{ - 1}}(k)L(k){\rho ^{\rm{T}}}(k - 2) \end{array} $

    (A5)

    由于$\varphi^{\rm T}(k-2)P(k-2)\varphi(k-2)\times I=\varphi(k-2)\varphi^{\rm T}(k-2)P(k-2)$, 因此由式(16c)可知

    $ \begin{array}{l} \frac{{{P^{ - 1}}(k)P(k - 2)\varphi (k - 2)}}{{1 + {\varphi ^{\rm{T}}}(k - 2)P(k - 2)\varphi (k - 2)}} = \\ \;\;\;\;\frac{{\varphi (k - 2)}}{{1 + [1 - \lambda (k)]{\varphi ^{\rm{T}}}(k - 2)P(k - 2)\varphi (k - 2)}} \end{array} $

    (A6)

    令$Q(k):=\varphi^{\rm T}(k-2)P(k-2)\varphi(k-2)$, 则

    $ \begin{array}{l} V(k) - V(k - 2) = \\ \;\;\;\;\;\;\;{\rm{tr}}\{ - \frac{{\lambda (k)[e(k){e^{\rm{T}}}(k) - 4\rho (k - 2){\rho ^{\rm{T}}}(k - 2)]}}{{4[1 + [1 - \lambda (k)]Q(k)]}} - \\ \;\;\;\;\;\;\;\left. {\frac{{3\lambda (k)e(k){e^{\rm{T}}}(k)[1 + Q(k)[1 - \frac{{4\lambda (k)}}{3}]]}}{{4[1 + [1 - \lambda (k)]Q(k)][1 + Q(k)]}}} \right\} \end{array} $

    (A7)

    由于

    $ \frac{1+Q(k)\left[1-\frac{4\lambda(k)}{3}\right]}{1+[1-\lambda(k)]Q(k)}\geq \frac{1}{2} $

    (A8)

    因此

    $ \begin{array}{l} V(k) - V(k - 2) \le \\ \;\;\;\;\;{\rm{tr}}\{ - \frac{{\lambda (k)[e(k){e^{\rm{T}}}(k){\rm{ - 4}}\rho (k{\rm{ - 2}}){\rho ^{\rm{T}}}(k{\rm{ - 2}})]}}{{{\rm{4}}[{\rm{1 + }}[{\rm{1 - }}\lambda (k)]Q(k)]}} - \\ \;\;\;\;\;\frac{{3\lambda (k)e(k){e^{\rm{T}}}(k)}}{{8[1 + Q(k)]}}\} \le \\ \;\;\;\;\; - \frac{{\lambda (k)[{{\left\| {e(k)} \right\|}^2} - 4{E^2}]}}{{4[1 + [1 - \lambda (k)]Q(k)]}} - \frac{{3\lambda (k){{\left\| {e(k)} \right\|}^2}}}{{8[1 + Q(k)]}} \end{array} $

    (A9)

    因此, 引理1中1)得证.由式(16b)可知,

    $ \begin{array}{l} {\varphi ^{\rm{T}}}(k - 2)[\hat \theta (k) - \hat \theta (k - 2)] = \\ \;\;\;\;\;\;\frac{{\lambda (k){\varphi ^{\rm{T}}}(k - 2)P(k - 2)\varphi (k - 2){e^{\rm{T}}}(k)}}{{1 + {\varphi ^{\rm{T}}}(k - 2)P(k - 2)\varphi (k - 2)}} \end{array} $

    (A10)

    因此

    $ \begin{array}{l} {\varphi ^{\rm{T}}}(k - 2)[\hat \theta (k) - \hat \theta (k - 2)][\hat \theta (k) - \\ \;\;\;\;\;\;\;\hat \theta (k - 2){]^{\rm{T}}}\varphi (k - 2) \le \\ \;\;\;\;\;\;\;\frac{{\lambda (k){\varphi ^{\rm{T}}}(k - 2)P(k - 2)\varphi (k - 2){e^{\rm{T}}}(k)e(k)}}{{1 + {\varphi ^{\rm{T}}}(k - 2)P(k - 2)\varphi (k - 2)}} \end{array} $

    (A11)

    $ {\left\| {\hat \theta (k) - \hat \theta (k - 2)} \right\|^2} \le \frac{{\lambda (k)\left\| {P(k - 2)} \right\|{e^{\rm{T}}}(k)e(k)}}{{1 + {\varphi ^{\rm{T}}}(k - 2)P(k - 2)\varphi (k - 2)}} $

    (A12)

    由引理1中的1)及$\| P(k-2)\|$的有界性, 可知2)成立.当$\widehat{Q}_0^+(k)$非奇异时, 记.由式(16g)可知${\left\| {{\theta ^ + }(k) - \theta } \right\|^2}$, 因此$V^+(k)\leq V(k)$, 故引理1\linebreak仍旧成立.


  • 本文责任编委 郭戈
  • 图  1  序列$X_1$指数平滑不同$\alpha$值的预测误差

    Fig.  1  ES prediction errors with different $\alpha$ values for sequence $X_1$

    图  2  不同$N_{\rm ES}$值的序列$X_4$指数平滑法预测误差

    Fig.  2  ES prediction errors with different $N_{\rm ES}$ values for sequence $X_4$

    图  3  马尔科夫链的$n_{\rm MC}$个状态

    Fig.  3  The $n_{\rm MC}$ states of Markov chain

    图  4  不同$n_{\rm MC}$值的序列$X_2$马尔科夫链预测误差

    Fig.  4  MC prediction errors with different $n_{\rm MC}$ values for sequence $X_2$

    图  5  HMM的9种观察状态

    Fig.  5  The 9 observable states of HMM

    图  6  不同$I_t$值和$C_t$值的序列$X_3$预测误差

    Fig.  6  Prediction errors of different $I_t$ and $C_t$ values for sequence $X_3$

    图  7  指数平滑法和马尔科夫模型组合的预测算法

    Fig.  7  The combined prediction algorithm from exponential smoothing and Markov model

    图  8  若干城市${\rm PM}2.5$监测点分布示意图

    Fig.  8  Distribution of ${\rm PM}2.5$ stations in several cities

    图  9  预测值与实际值的${\rm PM}2.5$散点图

    Fig.  9  Scatter plot of predicted versus observed ${\rm PM}2.5$

    图  10  基于5种算法的武汉、北京、天津、郑州${\rm PM}2.5$预测误差

    Fig.  10  Prediction errors of ${\rm PM}2.5$ in Wuhan, Beijing, Tianjin, and Zhengzhou from 5 algorithms

    表  1  二分查找得到的$X_1$序列最优$\alpha$与RMSE

    Table  1  The optimal parameter $\alpha$ and related RMSE from binary search for sequence $X_1$

    指数平滑法 最小RMSE 最优α
    一次 4.4455 0.9050
    二次 4.4040 0.6900
    三次 4.0641 0.7350
    下载: 导出CSV

    表  2  三种指数平滑法对5组序列数据的预测效果

    Table  2  Performances of 3 ES methods for 5 sequences

    序列 一次 二次 三次 最优
    X1 4.4455 4.4040 4.0641 三次
    X2 8.5289 9.4706 9.1253 一次
    X3 11.7953 11.2577 11.7502 二次
    X4 5.6960 4.7106 4.1102 三次
    X5 36.2899 36.2919 34.4010 三次
    下载: 导出CSV

    表  3  基于5组序列数据的马尔科夫链$n_{\rm MC}$最优值

    Table  3  The optimal $n_{\rm MC}$ values of MC for 5 sequences

    序列 最小RMSE 最优nMc
    X1 7.2398 7
    X2 8.2994 7
    X3 8.2055 7
    X4 2.4731 7
    X5 20.4794 7
    下载: 导出CSV

    表  4  隐马尔科夫模型预测的5组序列数据的最优$C_t$和$I_t$值

    Table  4  The optimal $C_t$ and $I_t$ values of HMM prediction for 5 sequences

    序列 Ct It RMSE
    X1 0.13 0.93 4.4000
    X2 0.26 0.91 19.9012
    X3 0.13 0.82 20.9012
    X4 0.13 1.00 6.0537
    X5 0.26 0.75 28.7373
    下载: 导出CSV

    表  5  三种隐马尔科夫模型对5组数据的预测效果

    Table  5  Performances of 3 kinds of HMM methods for 5 sequences

    序列 3H3S9O 3H4S27O 4H3S16O 最优算法
    X1 3.9309 3.8443 5.5246 3H4S27O
    X2 8.2849 26.8030 27.2460 3H3S9O
    X3 17.0960 17.4780 21.7550 3H3S9O
    X4 5.6534 7.5703 8.8407 3H3S9O
    X5 42.5348 43.9865 54.6437 3H3S9O
    下载: 导出CSV

    表  6  针对100组序列数据的平均评估值

    Table  6  Averaged evaluation criteria of 100 sequences

    序列 ES MC HMM ESMC ESHMM
    平均RMSE 12.6745 17.0434 12.4850 17.8595 10.1843
    平均AME 10.3838 13.1197 9.9381 14.0072 8.8336
    平均PAEE 3.2151 5.6512 3.4993 6.6281 2.5090
    下载: 导出CSV

    表  7  与现有4种算法的预测误差比较

    Table  7  The comparison of prediction errors with 4 existing algorithms

    序列 ANN SVM ARMA GM ESHMM
    平均RMSE 23.7594 18.4532 15.7469 13.9438 10.1843
    平均AME 17.7772 14.3728 10.3086 10.9673 8.8336
    平均PAEE 5.6802 3.7900 4.0373 3.8927 2.5090
    下载: 导出CSV
  • [1] Chan Y, Xia L, Ren Y, Chen Y T. Multi-scale modelling on PM2.5 encapsulation inside doubly-layered graphene. IET Micro and Nano Letters, 2015, 10(12):696-699 doi: 10.1049/mnl.2015.0218
    [2] Zhan H L, Li Q, Zhao K, Zhang L W, Zhang Z W, Zhang C L, Xiao L Z. Evaluating PM2.5 at a construction site using terahertz radiation. IEEE Transactions on Terahertz Science and Technology, 2015, 5(6):1028-1034 doi: 10.1109/TTHZ.2015.2477596
    [3] Rajasegarar S, Havens T C, Karunasekera S, Leckie C, Bezdek J C, Jamriska M, Gunatilaka A, Skvortsov A, Palaniswami M. High-resolution monitoring of atmospheric pollutants using a system of low-cost sensors. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7):3823-3832 doi: 10.1109/TGRS.2013.2276431
    [4] Shaban K B, Kadri A, Rezk E. Urban air pollution monitoring system with forecasting models. IEEE Sensors Journal, 2016, 16(8):2598-2606 doi: 10.1109/JSEN.2016.2514378
    [5] Díaz-Robles L, Ortega J C, Fu J S, Reed G D, Chow J C, Watson J G, Moncada-Herrera J A. A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas:the case of Temuco, Chile. Atmospheric Environment, 2008, 42(35):8331-8340 doi: 10.1016/j.atmosenv.2008.07.020
    [6] Stadlober E, Hörmann S, Pfeiler B. Quality and performance of a PM10 daily forecasting model. Atmospheric Environment, 2008, 42(6):1098-1109 doi: 10.1016/j.atmosenv.2007.10.073
    [7] Macaira P M, Sousa R C, Oliveira F L C. Forecasting brazil's electricity consumption with pegels exponential smoothing techniques. IEEE Latin America Transactions, 2016, 14(3):1252-1258 doi: 10.1109/TLA.2016.7459606
    [8] Taylor J W, Roberts M B. Forecasting frequency-corrected electricity demand to support frequency control. IEEE Transactions on Power Systems, 2016, 31(3):1925-1932 doi: 10.1109/TPWRS.2015.2444665
    [9] Jamal W, Das S, Oprescu I A, Maharatna K. Prediction of synchrostate transitions in EEG signals using Markov chain models. IEEE Signal Processing Letters, 2015, 22(2):149-152 doi: 10.1109/LSP.2014.2352251
    [10] Lawlor S, Rabbat M G. Time-varying mixtures of Markov chains:an application to road traffic modeling. IEEE Transactions on Signal Processing, 2017, 65(12):3152-3167 doi: 10.1109/TSP.2017.2684747
    [11] Razin Y S, Pluckter K, Ueda J, Feigh K. Predicting task intent from surface electromyography using layered hidden Markov models. IEEE Robotics and Automation Letters, 2017, 2(2):1180-1185 doi: 10.1109/LRA.2017.2662741
    [12] Soualhi A, Clerc G, Razik H, El Badaoui M, Guillet F. Hidden Markov models for the prediction of impending faults. IEEE Transactions on Industrial Electronics, 2016, 63(5):3271-3281 doi: 10.1109/TIE.2016.2535111
    [13] Samet H, Mojallal A. Enhancement of electric arc furnace reactive power compensation using Grey-Markov prediction method. IET Generation, Transmission and Distribution, 2014, 8(9):1626-1636 doi: 10.1049/iet-gtd.2013.0698
    [14] Chen L, Tian B B, Lin W L, Ji B, Li J Z, Pan H H. Analysis and prediction of the discharge characteristics of the lithium-ion battery based on the Grey system theory. IET Power Electronics, 2015, 8(12):2361-2369 doi: 10.1049/iet-pel.2015.0182
    [15] de Lima G R T, Stephany S, de Paula E R, Batista I S, Abdu M A. Prediction of the level of ionospheric scintillation at equatorial latitudes in Brazil using a neural network. Space Weather, 2015, 13(8):446-457 doi: 10.1002/2015SW001182
    [16] Nagulan S, Selvaraj J, Arunachalam A, Sivanandam K. Performance of artificial neural network in prediction of heave displacement for non-buoyant type wave energy converter. IET Renewable Power Generation, 2017, 11(1):81-84 doi: 10.1049/iet-rpg.2015.0416
    [17] Moshkbar-Bakhshayesh K, Ghofrani M B. Development of a robust identifier for NPPs transients combining ARIMA model and EBP algorithm. IEEE Transactions on Nuclear Science, 2014, 61(4):2383-2391 doi: 10.1109/TNS.2014.2329055
    [18] Wei M, Kim K. Intrusion detection scheme using traffic prediction for wireless industrial networks. Journal of Communications and Networks, 2012, 14(3):310-318 doi: 10.1109/JCN.2012.6253092
    [19] 吴奇, 严洪森, 王斌.基于鲁棒小波ν——支持向量机的产品销售预测模型.自动化学报, 2009, 35(7):1227-1232 http://www.aas.net.cn/CN/abstract/abstract13511.shtml

    Wu Qi, Yan Hong-Sen, Wang Bin. Product sales forecasting model based on robust wavelet ν-support vector machine. Acta Automatica Sinica, 2009, 35(7):1227-1232 http://www.aas.net.cn/CN/abstract/abstract13511.shtml
    [20] Liu Y Q, Sun Y, Infield D, Zhao Y, Han S, Yan J. A hybrid forecasting method for wind power ramp based on orthogonal test and support vector machine (OT-SVM). IEEE Transactions on Sustainable Energy, 2017, 8(2):451-457 doi: 10.1109/TSTE.2016.2604852
    [21] Gupta S, Kambli R, Wagh S, Kazi F. Support-vector-machine-based proactive cascade prediction in smart grid using probabilistic framework. IEEE Transactions on Industrial Electronics, 2015, 62(4):2478-2486 doi: 10.1109/TIE.2014.2361493
  • 期刊类型引用(10)

    1. 宋红超,王昕,王振雷. 基于切换的非线性多模型二阶段广义预测控制. 控制理论与应用. 2024(11): 2147-2156 . 百度学术
    2. 赵建国,杨春雨. 复杂工业过程非串级双速率组合分散运行优化控制. 自动化学报. 2023(01): 172-184 . 本站查看
    3. 王建琴. 基于协同过滤算法的医院财务工作轮岗流程智能控制模型. 微型电脑应用. 2022(06): 54-56 . 百度学术
    4. 陈尉. INFIT系统在火电机组辅助调频控制中的应用. 工业控制计算机. 2021(01): 26-27+30 . 百度学术
    5. 陈铁锋,杜文. 基于距离度量的火电机组协调系统软切换预测控制. 热能动力工程. 2021(03): 87-92+121 . 百度学术
    6. 王素珍,刘建锋. 改进型BP神经网络的非线性多模型自适应控制. 电光与控制. 2021(08): 1-5 . 百度学术
    7. 李军,黄卫剑,万文军,刘哲. 一种新型反馈控制器的研究与应用. 控制理论与应用. 2020(02): 411-422 . 百度学术
    8. 陈钊,乔侨. 分层结构多模型预测控制在630MW火电机组协调系统中的应用. 工业控制计算机. 2020(10): 4-6+10 . 百度学术
    9. 王岩,王昕,王振雷. 一类时变系统的多模型切换动态调节控制算法. 控制理论与应用. 2020(12): 2501-2510 . 百度学术
    10. 唐伟强,龙文堃,孙丽娟,黄小丽. 基于聚类方法和神经网络的非线性系统多模型自适应控制. 系统工程与电子技术. 2019(09): 2100-2106 . 百度学术

    其他类型引用(7)

  • 加载中
  • 图(10) / 表(7)
    计量
    • 文章访问数:  2280
    • HTML全文浏览量:  436
    • PDF下载量:  601
    • 被引次数: 17
    出版历程
    • 收稿日期:  2017-01-18
    • 录用日期:  2017-05-11
    • 刊出日期:  2018-10-20

    目录

    /

    返回文章
    返回