-
摘要: 针对细颗粒物PM2.5的浓度预测,本文提出了基于单时间序列数据的动态调整模型.在动态指数平滑算法中,指数平滑次数与参数基于样本数据并借助二分查找进行调整.在动态马尔科夫模型中,马尔科夫链的残差状态数、隐马尔科夫模型的隐状态数、连续样本数和阈值参数都通过训练数据加以调整.动态调整模型将指数平滑法和马尔科夫模型有效结合起来,指数平滑法得到的预测值由马尔科夫模型进行校正,从而提高预测准确度.基于大量实际PM2.5数据进行测试,验证了算法的有效性.并与其他现有的灰色模型、人工神经网络、自回归滑动平均模型、支持向量机等方法进行了对比,表明所提模型能够得到精度更高的预测结果.本文模型不局限于PM2.5数据,还可应用于其他类型的数据预测.Abstract: A prediction model is proposed with dynamic adjustment for single time series of PM2.5 data. In the dynamic exponential smoothing algorithm, the optimal exponent and parameter are determined by sample data and binary search. In the dynamic Markov model, the state number of residual errors from Markov chain, numbers of hidden and observable states, and threshold parameters from hidden Markov model, are all decided dynamically based on training data. The proposed dynamic model combines the two models effectively, and predictions from exponential smoothing are adjusted by Markov model to increase the accuracy. Using a large number of real PM2.5 data, efficiency of the proposed model has been tested. Compared with the existing popular methods, such as gray model, artificial neural networks, auto-regressive moving average, support vector machine, the proposed model can obtain prediction results with the best precision. In addition to PM2.5, the dynamically adjusted prediction model may be used for prediction of other type single time series of data.
-
Key words:
- Air quality index /
- exponential smoothing /
- Markov model /
- dynamic adjustment
-
子空间辨识算法由于能对多输入多输出系统采用统一框架建立状态空间模型,在系统辨识和控制工程领域受到广泛关注 [1]. 有一些子空间算法被提出用于开环辨识工业过程,得到一致估计结果 [2]. 但是,由于过程操作安全性和稳定性的需要,许多工业过程限制在闭环条件下进行辨识实验,由于反馈控制作用的影响,使得过程噪声和输入存在相关性,使得传统开环子空间方法产生辨识偏差 [3]. 闭环系统辨识因此在近年来受到很多关注和探讨 [4],一些闭环子空间辨识算法被相继提出 [5]. 这些算法可被归纳为三类,第一类方法 [6-7]采用辅助变量策略消除噪声影响,保证估计结果的一致性;第二类方法 [8]采用最小二乘法对高阶VARX模型(Vector autoregressive with exogenous inputs model)进行计算得到马尔科夫估计参数,由于VARX模型只包括当前时刻的不可测噪声,该噪声和VARX模型的过去时刻输入无关,从而可保证所得参数的一致性;第三类算法 [9]用噪声预估值代替真实值进行计算保证得到一致估计结果.
基于奇偶空间的闭环子空间辨识算法SIMPCAwc [6]采用过去时刻输入输出数据作为辅助变量来消除噪声,以得到无噪声的输入输出数据,然后从无噪声影响的输入输出数据奇偶空间中提取得到扩展可观测矩阵和下三角形Toeplitz矩阵,从而求得系统矩阵,该方法取得较好辨识精度.然而,文献[7]指出当闭环系统设定点输入激励为不相关白噪声序列时,虽然引入辅助变量与噪声不相关,可以有效地消除噪声,但由于该辅助变量和系统设定点输入激励也不相关,导致从无噪声输入输出数据奇偶空间中提取参数可能同时含有过程模型参数信息和控制器参数信息,因而无法对它们进行区分,从而致使过程模型估计出现偏差.针对SIMPCAwc [6]辨识方法存在的问题,本文通过将输入输出数据正交投影到新息数据的正交补空间来消除噪声,以得到新的无噪声数据矩阵,进而从其对应的奇偶空间中提取得到扩展可观测矩阵和下三角形Toeplitz矩阵. 由于新息数据的正交补空间数据和噪声无关,且同时与系统设定输入激励相关,确保本文方法从新的无噪声奇偶空间中提取的参数只包含过程模型参数,有效地保证估计结果的一致无偏性.由于新息数据为不可测量数据,本文通过模型推导,得到和待辨识状态空间模型等价的VARX模型. 在此基础上,采用最小二乘法对VARX模型进行计算以得到新息的一致估计值. 采用新息一致估计值代替真实值,以完成模型参数估计.为了论证说明本文方法的有效性,严格分析和给出了本文算法保证一致估计的条件.
1. 问题描述
本文研究如下线性离散状态空间过程模型:
$S:\left\{ \begin{align} & x(t+1)=Ax(t)+Bu(t)+w(t) \\ & y(t)=Cx(t)+Du(t)+v(t) \\ \end{align} \right.$
(1) 其中,$x(t)\in {{R}^{{{n}_{x}}}}$,$u(t)\in {{R}^{{{n}_{u}}}}$,$y(t)\in {{R}^{{{n}_{y}}}}$分别为系统状态和过程输入和输出. $v(t)\in {{R}^{{{n}_{y}}}}$和$w(t)\in {{R}^{{{n}_{x}}}}$分别为过程测量噪声. A,B,C,D 分别为相应维数的系统矩阵.本文研究系统在闭环工作条件下,利用系统输入和输出观测数据,辨识对象状态空间(亦称子空间)模型.
由于闭环反馈控制作用的影响,使得过程测量噪声和输入存在相关性,若直接通过模型(1)来辨识系统矩阵,很难消除噪声对辨识结果的不利影响.因此,采用卡尔曼滤波原理 [10],将系统模型(1)等价表示为新息形式
${{S}_{I}}:\left\{ \begin{array}{*{35}{l}} \begin{align} & x(t+1)=Ax(t)+Bu(t)+Ke(t) \\ & y(t)=Cx(t)+Du(t)+e(t) \\ \end{align} \\ \end{array} \right.$
(2) 其中,K为卡尔曼滤波增益,新息$e(t)$为零均值白噪声,当$i<j$时,新息$e(j)$和输入输出$\{u(i),y(i)\}$不相关.
进一步定义$\bar{A}=A-KC$和$\bar{B}=B-KD$,模型(2)可被等价描述为如下预测形式:
${{S}_{P}}:\left\{ \begin{array}{*{35}{l}} \begin{align} & x(t+1)=\bar{A}x(t)+\bar{B}u(t)+Ky(t) \\ & y(t)=Cx(t)+Du(t)+e(t) \\ \end{align} \\ \end{array} \right.$
(3) 其中,假设$\bar{A}$的特征值严格位于单位圆内.
定义过去和将来水平数分别为p和f,过去和将来输入向量分别为$u_p(t)=[u(t-p)^{\textrm T}$ $\cdots$ $u(t-2)^{\textrm T}$ $u(t-1)^{\textrm T}]^{\textrm T}$和$u_f(t)=[u(t)^{\textrm T}$ $\cdots$ $u(t+f-2)^{\textrm T}$ $u(t+f-1)^{\textrm T}]^{\textrm T}$,定义过去和将来输入Hankel 矩阵Up $=$ $[u_p(t)^{\textrm T}$ $\cdots$ $u_p(N)^{\textrm T}]^{\textrm T}$和$U_f=[u_f(t)^{\textrm T}$ $\cdots$ $u_f(N)^{\textrm T}]^{\textrm T}$,输出和新息数据做类似定义.
对式(3)进行迭代可得:
$x(t)={{\bar{A}}^{p}}x(t-p)+{{\bar{L}}_{1}}{{u}_{p}}(t)+{{\bar{L}}_{2}}{{y}_{p}}(t)$
(4) 其中,扩展可观性矩阵分别表示为 $\bar{L}_1=[\bar{A}^{p-1}\bar{B}$ $\cdots$ $\bar{A}\bar{B}$ $\bar{B}]$,$\bar{L}_2=[\bar{A}^{p-1}K$ $\cdots$ $\bar{A}K$ $K]$.初始状态为$x(t$ $-$ $p)$.当p充分大时,$x(t-p)$可被忽略,将式(4)带入式(3})得到等价VARX模型
${{S}_{V}}:y(t)=C{{\bar{L}}_{1}}{{u}_{p}}(t)+C{{\bar{L}}_{2}}{{y}_{p}}(t)+e(t)$
(5) 本文将采用模型(2)和(5)对系统矩阵进行辨识.定义$X_p=[x(t-p)$ $\cdots$ $x(t-p+N-1)]$ 和Xf $=$ $[x(t)$ $\cdots$ $x(t+N-1)]$.通过对式(2)进行迭代可得:
$Y(t)={{\Gamma }_{f}}{{X}_{f}}+{{H}_{f}}{{U}_{f}}+{{G}_{f}}{{E}_{f}}$
(6) 其中,扩展可观测矩阵为$\Gamma_f=[C^{\textrm T}$ $\cdots$ $(CA^{f-1})^{\textrm T}]^{\textrm T}$.下三角形Toeplitz矩阵分别为
$\begin{align} & {{H}_{f}}=\left[ \begin{matrix} D & \cdots & \cdots & 0 \\ CB & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ C{{A}^{f-2}} & \cdots & CB & D \\ \end{matrix} \right] \\ & {{G}_{f}}=\left[ \begin{matrix} 0 & \cdots & \cdots & 0 \\ C & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ C{{A}^{f-2}} & \cdots & C & 0 \\ \end{matrix} \right] \\ \end{align}$
2. 闭环子空间辨识算法和一致性分析
2.1 闭环子空间辨识算法
在式(6)的基础上,通过同时计算扩展可观测矩阵$\Gamma_f$和下三角形Toeplitz矩阵Hf实现对系统矩阵的辨识.首先将输入数据移至式(6)的左侧,得到:
$[I-{{H}_{f}}]{{W}_{f}}={{\Gamma }_{f}}{{X}_{f}}+{{G}_{f}}{{E}_{f}}$
(7) 其中,$W_f=[Y_f^{\textrm T}U_f^{\textrm T}]^{\textrm T}$,对Wp做同样定义.
为求解式(7)得到$\Gamma_f$和Hf的估计值,需要消除未知状态和新息的影响.通过在式(7)的左右侧同时引入$\Gamma_f$的正交补向量$\Gamma_f^{\bot}$,由于$(\Gamma_f^{\bot})^{\textrm T}\Gamma_f=0$
$\left[ {{(\Gamma _{f}^{\bot })}^{\text{T}}}-{{(\Gamma _{f}^{\bot })}^{\text{T}}}{{H}_{f}} \right]{{W}_{f}}={{(\Gamma _{f}^{\bot })}^{\text{T}}}{{G}_{f}}{{E}_{f}}$
(8) 通过将式(8)正交投影到Ef的正交补空间来消除新息噪声,
$\left[ {{(\Gamma _{f}^{\bot })}^{\text{T}}}-{{(\Gamma _{f}^{\bot })}^{\text{T}}}{{H}_{f}} \right]{{W}_{f}}\Pi _{{{E}_{f}}}^{\bot }=0$
(9) 其中,$\Pi_{E_f}^{\bot}=I_N-E_f^{\textrm T}(E_fE_f^{\textrm T})^{-1}E_f$是Ef的正交补.由于$\lim_{N \to \infty }E_f\Pi_{{E}_f}^{\bot}=0$和$\lim_{N \to \infty }R_f\Pi_{{E}_f}^{\bot}=R_f$ $\neq$ $0$.根据文献[7]结论可知,无噪声数据块$W_f\Pi_{E_f}^{\bot}$的奇偶空间只包含过程模型参数信息,不会包括控制器模型参数信息.因此,通过$W_f\Pi_{E_f}^{\bot}$的奇偶空间可得到过程模型参数的一致估计值.
由于新息Ef未知,不能进行模型参数估计.这里利用等价辅助模型(5)计算Ef的估计值$\hat{E}_f$,再采用估计值代替真实值进行后续计算.定义新的过去输入输出Hankel 矩阵$U_p(t,N+f)=[u_p(t)$ $\cdots$ $u_p(N+f)]$,$Y_p(t,N+f)=[y_p(t)$ $\cdots$ $y_p(N+f)]$,新息数据做同样定义.定义$W_p(t,N+f)=$ $[U_p^{\textrm T}(t,$ $N+f)$ $Y_p^{\textrm T}(t,N+f)]^{\textrm T}$ 和$Y(t,N+f)=$ $[y(t)$ $\cdots$ $y(N+f)]$.同时定义 $\theta= [C\bar{L}_1$ $C\bar{L}_2]$.采用最小二乘法对式(5)进行计算,可得:
$\hat{\theta }=Y(t,N+f)W_{p}^{\dagger }(t,N+f)$
(10) 其中,
$\begin{align} & W_{p}^{\dagger }(t,N+f)= \\ & W_{p}^{\text{T}}(t,N+f){{[{{W}_{p}}(t,N+f)W_{p}^{\text{T}}(t,N+f)]}^{-1}} \\ \end{align}$
由于估计值$\hat{\theta}$和真实值的误差为
$\Delta \theta =\hat{\theta }-\theta =E(t,N+f)W_{p}^{\dagger }(t,N+f)$
(11) 其中,
$E(t,N+f)=[e(t)\cdots (N+f)]$
由于$\lim_{N \to \infty }E(t,N+f)W_p^{\textrm T}(t,N+f)=0$,若$\lim_{N \to \infty }W_p(t,N+f)W_p^{\textrm T}(t,N+f)>0$ (可作为默认成立条件),则$\hat{\theta}$是一致估计值.
将一致估计值$\hat{\theta}$带入估计值$\hat{Y}(t,N+f)$,可以得到一致估计值$\hat{E}(t,N+f)$ (证明见 第2.2节).
$\begin{align} & \hat{E}(t,N+f)=Y(t,N+f)-\hat{Y}(t,N+f)= \\ & Y(t,N+f)-\hat{\theta }{{W}_{p}}(t,N+f)= \\ & Y(t,N+f)[{{I}_{N+f}}-W_{p}^{\dagger }(t,N+f){{W}_{p}}(t,N+f)]= \\ & Y(t,N+f)\Pi _{{{W}_{p}}(t,N+f)}^{\bot } \\ \end{align}$
(12) 其中,
$\begin{align} & \Pi _{{{W}_{p}}(t,N+f)}^{\bot }={{I}_{N+f}}-W_{p}^{\text{T}}(t,N+f)\times \\ & {{\left[ {{W}_{p}}(t,N+f)W_{p}^{\text{T}}(t,N+f) \right]}^{-1}}{{W}_{p}}(t,N+f) \\ \end{align}$
定义
$\Pi _{{{W}_{p}}(t,N+f)}^{\bot }=[{{\beta }_{1}}\cdots {{\beta }_{N+f}}]$
(13) 则未来噪声Hankel矩阵的一致估计值可通过以下方式重构得到:
${{{\hat{E}}}_{f}}=Y(t,N+f)\left[ \begin{matrix} {{\beta }_{1}} & \cdots & {{\beta }_{N}} \\ {{\beta }_{2}} & \cdots & {{\beta }_{N+1}} \\ \vdots & \ddots & \vdots \\ {{\beta }_{f}} & \cdots & {{\beta }_{f+N}} \\ \end{matrix} \right]$
(14) 进一步将Ef用其一致估计值代替,可得一致估计值$W_f\Pi_{\hat{E}_f}^{\bot}$.通过SVD分解得到:
$\begin{align} & {{W}_{f}}\Pi _{{{{\hat{E}}}_{f}}}^{\bot }= \\ & \left[ {{{\hat{U}}}_{1}}\hat{U}_{1}^{\bot } \right]\left[ \begin{matrix} {{{\hat{\Sigma }}}_{1}} & 0 \\ {{{\hat{\Sigma }}}_{2}} & 0 \\ \end{matrix} \right]\left[ \begin{matrix} \begin{matrix} \hat{V}_{1}^{\text{T}} \\ {{(\hat{V}_{1}^{\bot })}^{\text{T}}} \\ \end{matrix} \\ \end{matrix} \right]={{{\hat{U}}}_{1}}{{{\hat{\Sigma }}}_{1}}\hat{V}_{1}^{\text{T}} \\ \end{align}$
(15) 其中,$\hat{U}_1$是$W_f\Pi_{\hat{E}_f}^{\bot}$的前$n_x+fn_u$个特征向量,则$[(\Gamma_f^{\bot})^{\textrm T}-(\Gamma_f^{\bot})^{\textrm T}H_f]$的一致估计值如下(证明见第2.2节):
$\left[ {{(\hat{\Gamma }_{f}^{\bot })}^{\text{T}}}-{{(\hat{\Gamma }_{f}^{\bot })}^{\text{T}}}{{{\hat{H}}}_{f}} \right]={{(\hat{U}_{1}^{\bot })}^{\text{T}}}$
(16) 定义$\hat{U}_1^{\bot}=[P_1^{\textrm T}P_2^{\textrm T}]^{\textrm T}$,其中,$P_1=\hat{U}_1^{\bot}(1:fn_y$,$:)$,$P_2=\hat{U}_1^{\bot}(1+fn_y:end,:)$ (Matlab表示).可得:
$\hat{\Gamma }_{f}^{\bot }={{P}_{1}}$
(17) $-{{(\hat{\Gamma }_{f}^{\bot })}^{\text{T}}}{{{\hat{H}}}_{f}}=P_{2}^{\text{T}}$
(18) 由于$(\Gamma_f^{\bot})^{\bot}=\Gamma_f$,根据式(17),可得:
${{{\hat{\Gamma }}}_{f}}={{(\hat{\Gamma }_{f}^{\bot })}^{\bot }}={{I}_{f{{n}_{y}}}}-{{P}_{1}}{{(P_{1}^{\text{T}}{{P}_{1}})}^{-1}}P_{1}^{\text{T}}$
(19) 为了得到Hf的估计值,做如下定义:
$-P_{1}^{\text{T}}=[{{\phi }_{1}}\cdots {{\phi }_{f}}]$
(20) $P_{2}^{\text{T}}=[{{\varphi }_{1}}\cdots {{\varphi }_{f}}]$
(21) 其中,${{\phi }_{i}}\in {{R}^{(i{{n}_{y}}-{{n}_{x}})\times {{n}_{y}}}},{{\varphi }_{i}}\in {{R}^{(i{{n}_{y}}-{{n}_{x}})\times {{n}_{u}}}}$.
将式(20)和式(21)带入式(18),可得:
$\left[ \begin{matrix} {{\phi }_{1}} & \cdots & {{\phi }_{f-1}} & {{\phi }_{f}} \\ {{\phi }_{2}} & \cdots & {{\phi }_{f}} & 0 \\ \vdots & \vdots & \ddots & \vdots \\ {{\phi }_{f}} & 0 & \cdots & 0 \\ \end{matrix} \right]{{H}_{f1}}=\left[ \begin{matrix} {{\varphi }_{1}} \\ \phi {{i}_{2}} \\ \vdots \\ {{\phi }_{f}} \\ \end{matrix} \right]$
(22) 其中,$H_{f1}=[D^{\textrm T}(CB)^{\textrm T}\cdots(CA^{f-2}B)^{\textrm T}]$.
采用最小二乘法可得$H_{f1}$的一致估计如下:
${{{\hat{H}}}_{f1}}={{\left[ \begin{matrix} {{\phi }_{1}} & \cdots & {{\phi }_{f-1}} & {{\phi }_{f}} \\ {{\phi }_{2}} & \cdots & {{\phi }_{f}} & 0 \\ \vdots & \vdots & \ddots & \vdots \\ {{\phi }_{f}} & 0 & \cdots & 0 \\ \end{matrix} \right]}^{\dagger }}\left[ \begin{matrix} {{\varphi }_{1}} \\ \phi {{i}_{2}} \\ \vdots \\ {{\phi }_{f}} \\ \end{matrix} \right]$
(23) 系统矩阵估计值$\hat{A}$和$\hat{C}$可直接从$\hat{\Gamma}$中提取,即
$\hat{C}=\hat{\Gamma }(1:{{n}_{y}},1:{{n}_{x}})$
(24) $\hat{A}={{{\hat{\Gamma }}}^{\dagger }}(1+{{n}_{y}}:f{{n}_{y}},1:{{n}_{x}})\hat{\Gamma }(1:(f-1){{n}_{y}},1:{{n}_{x}})$
(25) 由于
${{H}_{f1}}=\left[ \begin{matrix} {{I}_{{{n}_{y}}}} & 0 \\ 0 & \Gamma (1:(f-1){{n}_{y}},1:{{n}_{x}}) \\ \end{matrix} \right]\left[ \begin{matrix} \begin{matrix} D \\ B \\ \end{matrix} \\ \end{matrix} \right]$
(26) 系统矩阵估计值$\hat{B}$和$\hat{D}$可采用最小二乘法从$\hat{H}_{f1}$中计算得到:
$\left[ \begin{matrix} \begin{matrix} {\hat{D}} \\ {\hat{B}} \\ \end{matrix} \\ \end{matrix} \right]={{\left[ \begin{matrix} {{I}_{{{n}_{y}}}} & 0 \\ 0 & \hat{\Gamma }(1:(f-1){{n}_{y}},1:{{n}_{x}}) \\ \end{matrix} \right]}^{\dagger }}{{{\hat{H}}}_{f1}}$
(27) 本文基于新息估计和正交投影的闭环子空间辨识方法(Closed-loop subspace identification method using innovation estimation and orthogonal projection,CSIMIEOP)可总结如下:
步骤 1. 由式(10)求解$\hat{\theta}$,再由式(12)计算$\hat{E}(t,N+f)$,采用式(14)构造$\hat{E}_f$.
步骤 2. 通过SVD分解对式(15)进行计算.
步骤 3. 通过式(19})和式(23)计算估计值$\hat{\Gamma}$和$\hat{H}_{f1}$.
步骤 4. 通过式(24),式(25)和式(27)求解系统矩阵$\hat{A}$,$\hat{B}$,$\hat{C}$ 和 $\hat{D}$.
2.2 闭环一致条件分析
由第2.1节闭环子空间辨识算法可知,本文采用新息估计和正交投影消除噪声,得到一致估计结果. 辨识结果是否一致取决于$\hat{E}(t,N+f)$ 和$[(\hat{\Gamma}_f^{\bot})^{\textrm T}$ $-$ $(\hat{\Gamma}_f^{\bot})^{\textrm T}\hat{H}_f]$是否一致,本文对它们的一致估计条件进行分析和说明,给出如下定理.
定理 1. 若$$\lim_{N \to \infty }W_p(t,N+f)W_p^{\textrm T}(t,N+f)>0$$ 则$\hat{E}(t,N+f)$ 为一致估计值.
证明. 由式(12)可知,估计值$\hat{E}(t,N+f)$和真实值的误差为
$\begin{align} & \Delta E(t,N+f)=\hat{E}(t,N+f)-E(t,N+f)= \\ & Y(t,N+f)\Pi _{{{W}_{p}}(t,N+f)}^{\bot }-E(t,N+f)= \\ & [Y(t,N+f)-\hat{Y}(t,N+f)]-E(t,N+f)= \\ & [\theta -\hat{\theta }]{{W}_{p}}(t,N+f)= \\ & \Delta \theta {{W}_{p}}(t,N+f)= \\ & E(t,N+f){{W}_{p}}{{(t,N+f)}^{\dagger }}{{W}_{p}}(t,N+f) \\ \end{align}$
(28) 由于
$\underset{N\to \infty }{\mathop{\lim }}\,E(t,N+f)W_{p}^{\text{T}}(t,N+f)=0$
若
$\underset{N\to \infty }{\mathop{\lim }}\,{{W}_{p}}(t,N+f)W_{p}^{\text{T}}(t,N+f)>0$
则
$\underset{N\to \infty }{\mathop{\lim }}\,\Delta E(t,N+f)=0$
从而可知$\hat{E}(t,N+f)$为一致估计值.
定理 2. 若系统可控可观,且$E_fE_f^{\textrm T}>0$ 和
$\bar{E}\left\{ \left[ \begin{matrix} {{u}_{p}}(t) \\ {{u}_{f}}(t) \\ {{e}_{p}}(t) \\ {{e}_{f}}(t) \\ \end{matrix} \right]{{\left[ \begin{matrix} {{u}_{p}}(t) \\ {{u}_{f}}(t) \\ {{e}_{p}}(t) \\ {{e}_{f}}(t) \\ \end{matrix} \right]}^{\text{T}}} \right\}>0$
则$[(\hat{\Gamma}_f^{\bot})^{\textrm T} -(\hat{\Gamma}_f^{\bot})^{\textrm T}\hat{H}_f]$为一致估计值.
证明. 令$\Omega =\left[ \begin{matrix} {{\Gamma }_{f}} & {{H}_{f}} \\ 0 & I \\ \end{matrix} \right]$,由式(9)可知:
$\Omega \left[ \begin{matrix} \begin{matrix} {{U}_{f}} \\ {{X}_{f}} \\ \end{matrix} \\ \end{matrix} \right]\left[ \begin{matrix} {{I}_{N}}-E_{f}^{\text{T}}{{({{E}_{f}}E_{f}^{\text{T}})}^{-1}}{{E}_{f}} \\ \end{matrix} \right]$
(29) 由式(29)可得:
$\begin{array}{l} \mathop {\lim }\limits_{N \to 0} {W_f}\Pi _{{{\hat E}_f}}^ \bot W_f^{\rm{T}} = \\ \Omega \left[ {\begin{array}{*{20}{c}} \begin{array}{l} {U_f}\\ {X_f} \end{array} \end{array}} \right]\left[ {{I_N} - E_f^{\rm{T}}{{({E_f}E_f^{\rm{T}})}^{ - 1}}{E_f}} \right]{\left[ {\begin{array}{*{20}{c}} \begin{array}{l} {U_f}\\ {X_f} \end{array} \end{array}} \right]^{\rm{T}}}{\Omega ^{\rm{T}}} = \\ \Omega \left\{ {{R_1} - {R_2}{{({E_f}E_f^{\rm{T}})}^{ - 1}}R_2^{\rm{T}}} \right\}{\Omega ^{\rm{T}}} \end{array}$
(30) 其中,
$\begin{array}{l} {R_1} = \left[ {\begin{array}{*{20}{c}} {{U_f}{X_f}} \end{array}} \right]{\left[ {\begin{array}{*{20}{c}} {{U_f}{X_f}} \end{array}} \right]^{\rm{T}}}\\ = \bar E\left\{ {\left[ {\begin{array}{*{20}{c}} {{u_f}(t)}\\ {x(t)} \end{array}} \right]{{\left[ {\begin{array}{*{20}{c}} {{u_f}(t)}\\ {x(t)} \end{array}} \right]}^{\rm{T}}}} \right\}\\ {R_2} = \left[ {\begin{array}{*{20}{c}} \begin{array}{l} {U_f}\\ {X_f} \end{array} \end{array}} \right]E_f^{\rm{T}} = \bar E\left\{ {\left[ {\begin{array}{*{20}{c}} {{u_f}(t)}\\ {x(t)} \end{array}} \right]e_f^{\rm{T}}(t)} \right\} \end{array}$
若系统为可控可观系统,则$\Omega$为满秩矩阵
${\rm{rank}}(\Omega ) = {n_x} + f{n_u}$
(31) 由于新息为平稳零均值白噪声系列,可知$E_fE_f^{\rm T}$ $>$ $0$,据文献[11]定理2可知,式(31)中第2项的秩可通过如下计算得到:
$\text{rank}\left\{ \bar{E}\left\{ \left[ \begin{matrix} {{u}_{f}}(t) \\ x(t) \\ {{e}_{f}}(t) \\ \end{matrix} \right]{{\left[ \begin{matrix} {{u}_{f}}(t) \\ x(t) \\ {{e}_{f}}(t) \\ \end{matrix} \right]}^{\text{T}}} \right\} \right\}-f{{n}_{y}}$
(32) 进一步将式(4)带入式(32),可得:
$\begin{align} & \bar{E}\left\{ \left[ \begin{matrix} {{u}_{f}}(t) \\ x(t) \\ {{e}_{f}}(t) \\ \end{matrix} \right]{{\left[ \begin{matrix} {{u}_{f}}(t) \\ x(t) \\ {{e}_{f}}(t) \\ \end{matrix} \right]}^{\text{T}}} \right\}= \\ & \Upsilon \bar{E}\left\{ \left[ \begin{matrix} {{u}_{p}}(t) \\ {{u}_{f}}(t) \\ {{e}_{p}}(t) \\ {{e}_{f}}(t) \\ \end{matrix} \right]{{\left[ \begin{matrix} {{u}_{p}}(t) \\ {{u}_{f}}(t) \\ {{e}_{p}}(t) \\ {{e}_{f}}(t) \\ \end{matrix} \right]}^{\text{T}}} \right\}{{\Upsilon }^{\text{T}}} \\ \end{align}$
(33) 其中,$\Upsilon =\left[ \begin{matrix} 0 & {{I}_{p{{n}_{u}}}} & 0 & 0 \\ {{L}_{1}} & 0 & {{L}_{1}} & 0 \\ 0 & 0 & 0 & {{I}_{p{{n}_{y}}}} \\ \end{matrix} \right]$.
由于系统为可控可观测系统,采用文献[11]定理2可知$\Upsilon$为满秩矩阵.同时如果 式(33)第2项为正定满秩矩阵,根据文献[12]给定的秩条件可得:
$\begin{align} & \text{rank}\left\{ \overline{\text{E}}\left\{ \left[ \begin{matrix} {{u}_{f}}(t) \\ x(t) \\ {{e}_{f}}(t) \\ \end{matrix} \right]{{\left[ \begin{matrix} {{u}_{f}}(t) \\ x(t) \\ {{e}_{f}}(t) \\ \end{matrix} \right]}^{\text{T}}} \right\} \right\}= \\ & f({{n}_{u}}+{{n}_{y}})+{{n}_{x}} \\ \end{align}$
(34) 因此,矩阵(32)为满秩矩阵.
$\text{rank}\left( \left[ {{R}_{1}}-{{R}_{2}}{{({{E}_{f}}E_{f}^{\text{T}})}^{-1}}R_{2}^{\text{T}} \right] \right)=f{{n}_{u}}+{{n}_{x}}$
(35) 由式(30)、式(32)和式(35)可知\vskip0.1mm\noindent
$\text{rank}\left( \underset{N\to 0}{\mathop{\lim }}\,{{W}_{f}}\Pi _{{{{\hat{E}}}_{f}}}^{\bot }W_{f}^{\text{T}} \right)=f{{n}_{u}}+{{n}_{x}}$
(36) 则
$\begin{align} & \text{rank}\left( \underset{N\to 0}{\mathop{\lim }}\,{{W}_{f}}\Pi _{{{{\hat{E}}}_{f}}}^{\bot } \right)= \\ & \text{rank}\left( \underset{N\to 0}{\mathop{\lim }}\,{{W}_{f}}\Pi _{{{{\hat{E}}}_{f}}}^{\bot }W_{f}^{\text{T}} \right)=f{{n}_{u}}+{{n}_{x}} \\ \end{align}$
(37) 由以上秩条件可知,$\lim_{N \to \infty }W_f\Pi_{\hat{E}_f}^{\bot}$的非零特征向量个数为$f(n_u+n_y)-n_x-fn_u=fn_y-n_x$.因此$\lim_{N \to \infty }\hat{U}_1^{\bot}$ 是$\lim_{N \to \infty }W_f\Pi_{\hat{E}_f}^{\bot}$的零特征向量.则
$\underset{N\to 0}{\mathop{\lim }}\,\hat{U}_{1}^{\bot }{{W}_{f}}\Pi _{{{{\hat{E}}}_{f}}}^{\bot }=0$
(38) 由于${\rm rank}(\Gamma_f^{\bot})=fn_y-n_x$ [13],因此
$\text{rank}\left( [{{(\Gamma _{f}^{\bot })}^{\text{T}}}-{{(\Gamma _{f}^{\bot })}^{\text{T}}}{{H}_{f}}] \right)=f{{n}_{y}}-{{n}_{x}}$
(39) 同时,由于
$\underset{N\to 0}{\mathop{\lim }}\,\left[ {{(\Gamma _{f}^{\bot })}^{\text{T}}}-{{(\Gamma _{f}^{\bot })}^{\text{T}}}{{H}_{f}} \right]{{W}_{f}}\Pi _{{{{\hat{E}}}_{f}}}^{\bot }=0$
(40) 所以$[(\Gamma_f^{\bot})^{\textrm T}-(\Gamma_f^{\bot})^{\textrm T}H_f]$和$\lim_{N \to \infty }\hat{U}_1^{\bot}$满足
$\begin{align} & rowspace\left( [{{(\Gamma _{f}^{\bot })}^{\text{T}}}-{{(\Gamma _{f}^{\bot })}^{\text{T}}}{{H}_{f}}] \right)= \\ & rowspace\left( \underset{N\to 0}{\mathop{\lim }}\,\hat{U}_{1}^{\bot } \right) \\ \end{align}$
(41) 因此,$[(\hat{\Gamma}_f^{\bot})^{\textrm T} -(\hat{\Gamma}_f^{\bot})^{\textrm T}\hat{H}_f]=(\hat{U}_1^{\bot})^{\textrm T}$,由于$\hat{E}_f$是一致估计值,可知$(\hat{U}_1^{\bot})^{\textrm T}$为一致估计值,则$[(\hat{\Gamma}_f^{\bot})^{\textrm T}$ $-$ $(\hat{\Gamma}_f^{\bot})^{\textrm T}\hat{H}_f]$为一致估计值.
由于$[(\hat{\Gamma}_f^{\bot})^{\textrm T} -(\hat{\Gamma}_f^{\bot})^{\textrm T}\hat{H}_f]$为一致估计值,根据平移变换法求取系统矩阵的一致不变性,可知系统矩阵估计值也为一致估计值.
2.3 闭环一致条件合理性分析
第2.2节定理2的两个假设条件涉及未知新息信息,以上假设是否合理,将直接决定本文方法能否取得一致估计结果.
由于模型(1)可表示为模型(2),则新息的协方差可表示为$\bar{E}[e(t)e^{\textrm T}(t)]=CP^{\textrm T}C+R_3$ (具体表述可参考文献[10]第5章),其中P为半正定矩阵,对于系统噪声有$R_3=\bar{E}[v(t)v^{\textrm T}(t)]>0$,则$\bar{E}[e(t)e^{\textrm T}(t)]$ $>$ $0$,可知$E_fE_f^{\textrm T}>0$.
对于假设2,由于
$\begin{align} & \underset{N\to 0}{\mathop{\lim }}\,{{W}_{p}}(t,N+f)W_{p}^{\text{T}}(t,N+f)= \\ & \bar{E}\left\{ \left[ \begin{matrix} {{u}_{p}}(t) \\ {{y}_{p}}(t) \\ \end{matrix} \right]{{\left[ \begin{matrix} {{u}_{p}}(t) \\ {{y}_{p}}(t) \\ \end{matrix} \right]}^{\text{T}}} \right\} \\ \end{align}$
(42) 进一步,由式(2)可知
$\begin{align} & {{y}_{p}}(t)={{\Gamma }_{p}}[{{L}_{1}}u_{p}^{\text{T}}(t-p)+{{L}_{2}}e_{p}^{\text{T}}(t-p)]+ \\ & {{H}_{p}}{{u}_{p}}(t)+{{{\bar{G}}}_{p}}{{e}_{p}}(t) \\ \end{align}$
(43) 其中,扩展可观性矩阵分别表示为 ${L}_1=[{A}^{p-1}{B}$ $\cdots$ ${A}{B}$ ${B}]$,${L}_2=[{A}^{p-1}K$ $\cdots$ ${A}K$ $K]$,下三角形Toeplitz矩阵为
${{H}_{f}}=\left[ \begin{matrix} I & \cdots & \cdots & 0 \\ C & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ C{{A}^{f-2}} & \cdots & C & I \\ \end{matrix} \right]$
将式(43)带入式(42),可得:
$\begin{align} & \bar{E}\left[ \begin{matrix} {{u}_{p}}(t) \\ {{y}_{p}}(t) \\ \end{matrix} \right]{{\left[ \begin{matrix} {{u}_{p}}(t) \\ {{y}_{p}}(t) \\ \end{matrix} \right]}^{\text{T}}}= \\ & \Xi \bar{E}\left[ \begin{matrix} {{u}_{p}}(t-p) \\ {{u}_{p}}(t) \\ {{e}_{p}}(t-p) \\ {{e}_{f}}(t) \\ \end{matrix} \right]{{\left[ \begin{matrix} {{u}_{p}}(t-p) \\ {{u}_{p}}(t) \\ {{e}_{p}}(t-p) \\ {{e}_{f}}(t) \\ \end{matrix} \right]}^{\text{T}}}{{\Xi }^{\text{T}}} \\ \end{align}$
(44) 其中,$\Xi=\left[\begin{array}{cccc} 0&I_{pn_u}&0&0\\Gamma_{P}L_1&H_p&\Gamma_{P}L_2&\bar{G}_p \end{array}\right]$.
若系统可控可观,由文献[11]定理2可知,${\rm rank}\left(\Xi\right) =p(n_u+n_y)$,$\Xi$是满秩矩阵,则式(42)正定的充分必要条件为式(44)中第2项正定,由于变量p和f可取任何值,则假设2成立的充分必要条件为$\lim_{N \to \infty }W_{p+f}W_{p+f}^{\textrm T}>0$.可通过验证$\lim_{N \to \infty }W_{p+f}W_{p+f}^{\textrm T}>0$来确定假设2是否成立.即若$\lim_{N \to \infty }W_{p+f}W_{p+f}^{\textrm T}>0$,则假设2成立.
3. 仿真研究
考虑文献[6]中研究的闭环系统
$y(t)-0.9y(t-1)=u(t-1)+e(t)+0.9e(t-1)$
(45) 其中,反馈控制结构为$u(t)=- 0.6y(t)+r(t)$.过程噪声设置为方差为0.2的白噪声序列.
对系统设定输入激励$r(k)$为单位方差白噪声序列和相关序列两种情况进行研究. 其中相关序列设为$r(t)=(1+0.8q^{-1}+0.6q^{-2})r_0(t)$,$r_0(t)$为单位方差白噪声序列. 过去和未来水平数均设置为10.在不同数据长度$N\in[200,8 000]$的情况下进行1 000次Monte Carlo仿真. 本文方法的辨识结果与SIMPCAwc算法 [6]进行比较,当$r(t)$为单位方差白噪声系列时,系统极点(真实值为0.9)的估计平均值如图 1所示,系统极点的估计标准方差如图 2 所示.当系统设定输入$r(t)$为相关系列时,系统极点的平均值如图 3所示,系统极点的估计标准方差如图 4所示.
从以上结果可以看出,当系统设定输入为单位方差白噪声系列时,SIMPCAwc算法得出有偏估计结果;只有当系统设定输入激励为相关序列时,SIMPCAwc算法才能保证无偏估计结果.本文CSIMIEOP算法对系统设定输入激励为无关序列和相关序列时均可得到一致无偏结果,并且估计精度优于SIMPCAwc算法.
4. 结论
本文提出一种基于新息估计和正交投影的闭环子空间辨识算法,对系统设定点输入激励为白噪声无关序列和相关序列的情况均可得到一致无偏估计结果,并且相对于近期有关文献给出的方法如SIMPCAwc算法 [6],能进一步提高辨识精度.同时,严格分析和证明了本文算法保证一致估计的条件.最后通过仿真实例验证了本文方法的有效性和优越性.
-
表 1 二分查找得到的$X_1$序列最优$\alpha$与RMSE
Table 1 The optimal parameter $\alpha$ and related RMSE from binary search for sequence $X_1$
指数平滑法 最小RMSE 最优α 一次 4.4455 0.9050 二次 4.4040 0.6900 三次 4.0641 0.7350 表 2 三种指数平滑法对5组序列数据的预测效果
Table 2 Performances of 3 ES methods for 5 sequences
序列 一次 二次 三次 最优 X1 4.4455 4.4040 4.0641 三次 X2 8.5289 9.4706 9.1253 一次 X3 11.7953 11.2577 11.7502 二次 X4 5.6960 4.7106 4.1102 三次 X5 36.2899 36.2919 34.4010 三次 表 3 基于5组序列数据的马尔科夫链$n_{\rm MC}$最优值
Table 3 The optimal $n_{\rm MC}$ values of MC for 5 sequences
序列 最小RMSE 最优nMc X1 7.2398 7 X2 8.2994 7 X3 8.2055 7 X4 2.4731 7 X5 20.4794 7 表 4 隐马尔科夫模型预测的5组序列数据的最优$C_t$和$I_t$值
Table 4 The optimal $C_t$ and $I_t$ values of HMM prediction for 5 sequences
序列 Ct It RMSE X1 0.13 0.93 4.4000 X2 0.26 0.91 19.9012 X3 0.13 0.82 20.9012 X4 0.13 1.00 6.0537 X5 0.26 0.75 28.7373 表 5 三种隐马尔科夫模型对5组数据的预测效果
Table 5 Performances of 3 kinds of HMM methods for 5 sequences
序列 3H3S9O 3H4S27O 4H3S16O 最优算法 X1 3.9309 3.8443 5.5246 3H4S27O X2 8.2849 26.8030 27.2460 3H3S9O X3 17.0960 17.4780 21.7550 3H3S9O X4 5.6534 7.5703 8.8407 3H3S9O X5 42.5348 43.9865 54.6437 3H3S9O 表 6 针对100组序列数据的平均评估值
Table 6 Averaged evaluation criteria of 100 sequences
序列 ES MC HMM ESMC ESHMM 平均RMSE 12.6745 17.0434 12.4850 17.8595 10.1843 平均AME 10.3838 13.1197 9.9381 14.0072 8.8336 平均PAEE 3.2151 5.6512 3.4993 6.6281 2.5090 表 7 与现有4种算法的预测误差比较
Table 7 The comparison of prediction errors with 4 existing algorithms
序列 ANN SVM ARMA GM ESHMM 平均RMSE 23.7594 18.4532 15.7469 13.9438 10.1843 平均AME 17.7772 14.3728 10.3086 10.9673 8.8336 平均PAEE 5.6802 3.7900 4.0373 3.8927 2.5090 -
[1] Chan Y, Xia L, Ren Y, Chen Y T. Multi-scale modelling on PM2.5 encapsulation inside doubly-layered graphene. IET Micro and Nano Letters, 2015, 10(12):696-699 doi: 10.1049/mnl.2015.0218 [2] Zhan H L, Li Q, Zhao K, Zhang L W, Zhang Z W, Zhang C L, Xiao L Z. Evaluating PM2.5 at a construction site using terahertz radiation. IEEE Transactions on Terahertz Science and Technology, 2015, 5(6):1028-1034 doi: 10.1109/TTHZ.2015.2477596 [3] Rajasegarar S, Havens T C, Karunasekera S, Leckie C, Bezdek J C, Jamriska M, Gunatilaka A, Skvortsov A, Palaniswami M. High-resolution monitoring of atmospheric pollutants using a system of low-cost sensors. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7):3823-3832 doi: 10.1109/TGRS.2013.2276431 [4] Shaban K B, Kadri A, Rezk E. Urban air pollution monitoring system with forecasting models. IEEE Sensors Journal, 2016, 16(8):2598-2606 doi: 10.1109/JSEN.2016.2514378 [5] Díaz-Robles L, Ortega J C, Fu J S, Reed G D, Chow J C, Watson J G, Moncada-Herrera J A. A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas:the case of Temuco, Chile. Atmospheric Environment, 2008, 42(35):8331-8340 doi: 10.1016/j.atmosenv.2008.07.020 [6] Stadlober E, Hörmann S, Pfeiler B. Quality and performance of a PM10 daily forecasting model. Atmospheric Environment, 2008, 42(6):1098-1109 doi: 10.1016/j.atmosenv.2007.10.073 [7] Macaira P M, Sousa R C, Oliveira F L C. Forecasting brazil's electricity consumption with pegels exponential smoothing techniques. IEEE Latin America Transactions, 2016, 14(3):1252-1258 doi: 10.1109/TLA.2016.7459606 [8] Taylor J W, Roberts M B. Forecasting frequency-corrected electricity demand to support frequency control. IEEE Transactions on Power Systems, 2016, 31(3):1925-1932 doi: 10.1109/TPWRS.2015.2444665 [9] Jamal W, Das S, Oprescu I A, Maharatna K. Prediction of synchrostate transitions in EEG signals using Markov chain models. IEEE Signal Processing Letters, 2015, 22(2):149-152 doi: 10.1109/LSP.2014.2352251 [10] Lawlor S, Rabbat M G. Time-varying mixtures of Markov chains:an application to road traffic modeling. IEEE Transactions on Signal Processing, 2017, 65(12):3152-3167 doi: 10.1109/TSP.2017.2684747 [11] Razin Y S, Pluckter K, Ueda J, Feigh K. Predicting task intent from surface electromyography using layered hidden Markov models. IEEE Robotics and Automation Letters, 2017, 2(2):1180-1185 doi: 10.1109/LRA.2017.2662741 [12] Soualhi A, Clerc G, Razik H, El Badaoui M, Guillet F. Hidden Markov models for the prediction of impending faults. IEEE Transactions on Industrial Electronics, 2016, 63(5):3271-3281 doi: 10.1109/TIE.2016.2535111 [13] Samet H, Mojallal A. Enhancement of electric arc furnace reactive power compensation using Grey-Markov prediction method. IET Generation, Transmission and Distribution, 2014, 8(9):1626-1636 doi: 10.1049/iet-gtd.2013.0698 [14] Chen L, Tian B B, Lin W L, Ji B, Li J Z, Pan H H. Analysis and prediction of the discharge characteristics of the lithium-ion battery based on the Grey system theory. IET Power Electronics, 2015, 8(12):2361-2369 doi: 10.1049/iet-pel.2015.0182 [15] de Lima G R T, Stephany S, de Paula E R, Batista I S, Abdu M A. Prediction of the level of ionospheric scintillation at equatorial latitudes in Brazil using a neural network. Space Weather, 2015, 13(8):446-457 doi: 10.1002/2015SW001182 [16] Nagulan S, Selvaraj J, Arunachalam A, Sivanandam K. Performance of artificial neural network in prediction of heave displacement for non-buoyant type wave energy converter. IET Renewable Power Generation, 2017, 11(1):81-84 doi: 10.1049/iet-rpg.2015.0416 [17] Moshkbar-Bakhshayesh K, Ghofrani M B. Development of a robust identifier for NPPs transients combining ARIMA model and EBP algorithm. IEEE Transactions on Nuclear Science, 2014, 61(4):2383-2391 doi: 10.1109/TNS.2014.2329055 [18] Wei M, Kim K. Intrusion detection scheme using traffic prediction for wireless industrial networks. Journal of Communications and Networks, 2012, 14(3):310-318 doi: 10.1109/JCN.2012.6253092 [19] 吴奇, 严洪森, 王斌.基于鲁棒小波ν——支持向量机的产品销售预测模型.自动化学报, 2009, 35(7):1227-1232 http://www.aas.net.cn/CN/abstract/abstract13511.shtmlWu Qi, Yan Hong-Sen, Wang Bin. Product sales forecasting model based on robust wavelet ν-support vector machine. Acta Automatica Sinica, 2009, 35(7):1227-1232 http://www.aas.net.cn/CN/abstract/abstract13511.shtml [20] Liu Y Q, Sun Y, Infield D, Zhao Y, Han S, Yan J. A hybrid forecasting method for wind power ramp based on orthogonal test and support vector machine (OT-SVM). IEEE Transactions on Sustainable Energy, 2017, 8(2):451-457 doi: 10.1109/TSTE.2016.2604852 [21] Gupta S, Kambli R, Wagh S, Kazi F. Support-vector-machine-based proactive cascade prediction in smart grid using probabilistic framework. IEEE Transactions on Industrial Electronics, 2015, 62(4):2478-2486 doi: 10.1109/TIE.2014.2361493 期刊类型引用(12)
1. 王亚军,白翱,张博,郭超. 基于TOGAF的工艺知识全生命周期管理架构研究. 知识管理论坛. 2024(06): 519-532 . 百度学术
2. 刘拥民,罗皓懿,谢铁强. 基于XGBoost-ARIMA方法的PM_(2.5)质量浓度预测模型的研究及应用. 安全与环境学报. 2023(01): 211-221 . 百度学术
3. 张旭,张亮,金博,张红哲. 基于不确定性的多元时间序列分类算法研究. 自动化学报. 2023(04): 790-804 . 本站查看
4. 缪燕子,王志铭,李守军,代伟. 基于背景值和结构相容性改进的多维灰色预测模型. 自动化学报. 2022(04): 1079-1090 . 本站查看
5. 徐任超,阎威武,王国良,杨健程,张曦. 基于周期性建模的时间序列预测方法及电价预测研究. 自动化学报. 2020(06): 1136-1144 . 本站查看
6. 李晓理,张博,杨旭. 基于图像混合核的列生成PM_(2.5)预测. 工程科学学报. 2020(07): 922-929 . 百度学术
7. 杨博帆,张琳,张搏,宋亚飞,丁尔启. 动态多模型指数平滑法融合的在线预测方法. 系统工程与电子技术. 2020(09): 2013-2021 . 百度学术
8. 乔俊飞,丁海旭,李文静. 基于WTFMC算法的递归模糊神经网络结构设计. 自动化学报. 2020(11): 2367-2378 . 本站查看
9. 郝广涛,林清华,李晓梅. 超短期负荷预测中指数平滑法平滑系数的确定方法. 莆田学院学报. 2020(05): 80-86 . 百度学术
10. 杨亚莉,李智伟,钟卫军. 基于二向注意力循环神经网络的PM_(2.5)浓度预测. 空军工程大学学报(自然科学版). 2020(06): 101-106 . 百度学术
11. 慕凯,张祥,余士龙,李俊,李宇,戴笑俊. 滑动加权马尔科夫模型在降水量预测中的应用. 气象水文海洋仪器. 2019(04): 34-36 . 百度学术
12. 周强,肖强宏,王浩然,高乐乐. 基于BEADS-ESMC组合算法的三相光伏并网逆变柜触点红外温度预测方法. 变频器世界. 2018(11): 72-78 . 百度学术
其他类型引用(16)
-