2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肺部CT图像病变区域检测方法

韩光辉 刘峡壁 郑光远

韩光辉, 刘峡壁, 郑光远. 肺部CT图像病变区域检测方法. 自动化学报, 2017, 43(12): 2071-2090. doi: 10.16383/j.aas.2017.c160850
引用本文: 韩光辉, 刘峡壁, 郑光远. 肺部CT图像病变区域检测方法. 自动化学报, 2017, 43(12): 2071-2090. doi: 10.16383/j.aas.2017.c160850
HAN Guang-Hui, LIU Xia-Bi, ZHENG Guang-Yuan. Automated Detection of Lesion Regions in Lung Computed Tomography Images: A Review. ACTA AUTOMATICA SINICA, 2017, 43(12): 2071-2090. doi: 10.16383/j.aas.2017.c160850
Citation: HAN Guang-Hui, LIU Xia-Bi, ZHENG Guang-Yuan. Automated Detection of Lesion Regions in Lung Computed Tomography Images: A Review. ACTA AUTOMATICA SINICA, 2017, 43(12): 2071-2090. doi: 10.16383/j.aas.2017.c160850

肺部CT图像病变区域检测方法

doi: 10.16383/j.aas.2017.c160850
基金项目: 

国家自然科学基金 81171407

教育部新世纪优秀人才支持计划 NCET-10-0044

国家自然科学基金 60973059

详细信息
    作者简介:

    韩光辉     北京理工大学计算机学院博士研究生.主要研究方向为医学图像分析, 机器学习.E-mail:hanguanghui@bit.edu.cn

    郑光远     北京理工大学计算机学院博士研究生.主要研究方向为机器学习, 图像处理.E-mail:zhengguangyuan@bit.edu.cn

    通讯作者:

    刘峡壁    北京理工大学计算机学院副教授.主要研究方向为机器学习, 医学图像分析, 多媒体检索, 计算机视觉.本文通信作者.E-mail:liuxiabi@bit.edu.cn

Automated Detection of Lesion Regions in Lung Computed Tomography Images: A Review

Funds: 

National Natural Science Foundation of China 81171407

Program for New Century Excellent Talents in University of China NCET-10-0044

National Natural Science Foundation of China 60973059

More Information
    Author Bio:

        Ph.D. candidate at the School of Computer Science, Beijing Institute of Technology. His research interest covers medical image analysis and machine learning

       Ph.D. candidate at the School of Computer Science, Beijing Institute of Technology. His research interest covers machine learning and image processing

    Corresponding author: LIU Xia-Bi     Associate professor at the School of Computer Science, Beijing Institute of Technology. His research interest covers machine learning, medical image analysis, multimedia retrieval, and computer vision. Corresponding author of this paper
  • 摘要: 肺部CT图像病变区域检测是肺病辅助诊断技术的重要研究内容,其通过自动分析CT图像并输出病变区域的位置和尺寸等信息,帮助放射科医生做出决策,有利于肺病的早期发现与治疗.本文回顾了肺部CT图像中病变区域自动检测方法所取得的进步,并引入一个通用框架表示和描述现有方法,对2012年以来肺部病变区域辅助检测算法进行了系统性分析和性能汇总.最后讨论了目前存在的问题和有待克服的困难,探讨了未来可能的发展方向.
    1)  本文责任编委 张道强
  • 图  1  通用的肺部病变区域检测框架

    Fig.  1  The general framework of lung lesion detection

    图  2  结节增强滤波器

    Fig.  2  The nodule enhancement filter

    图  3  基于纹理分析的精确肺实质分割[23]

    Fig.  3  Accurate segmentation of lung parenchyma based on texture analysis[23]

    表  1  检测算法评价指标

    Table  1  The evaluation index of detection method

    指标名称简要描述使用场景
    敏感度即真阳性率, 表示被正确检测出的阳性比率检测和分类评测
    特异度即真阴性率, 表示被正确识别为阴性的比率分类评测
    假阳性数每个扫描数据集的检测结果中的假阳性个数, PFs/scan检测和分类评测
    假阴性数每个扫描数据集的检测结果中的假阴性个数, FNs/scan分类评测
    $A_{z}$受试者操作特性曲线(ROC)下的面积分类评测
    Dice系数一种集合相似度度量函数, 公式为: $s = \frac{2\left| X \bigcap Y \right |}{\left | X\right| + \left | Y\right |}$分割评测
    Hausdorff距离[105]一种基于对象边缘的、两对象间几何距离的度量方法检测和分割评测
    MAD距离[106]两对象间的平均绝对距离, 同样基于对象边缘进行计算检测和分割评测
    下载: 导出CSV

    表  2  肺部病变区域检测方法的性能比较

    Table  2  The performance comparison of detection methods for lung lesion region

    作者年份数据集敏感度(%)特异度(%)假阳性 $A_z$ DSC响应时间研究对象算法类型
    张永强等[12]2012私有良性:75slices
    恶性: 47slices
    ---- 0.88
    0.83
    4.25s
    4.36s
    结节分割形态结构
    王青竹等[92]2013私有scans: 150
    Slices: 8250; LR: 1098
    97.05-9.210.995--结节检测统计模
    式识别
    Carvalho等[13]2014公开LIDC-IDRI; 800scans85.9197.701.82FP/scan
    0.008FP/slice
    0.8062-13.56min/scan结节检测混合方法
    Camarlinghi等[6]2012公开LIDC; scans: 69;
    nodules: 114
    85-25FP/exam---结节检测混合方法
    高婷等[7]2014私有scans:66; ST:2mm;
    LR: 85; Size: 3 $\sim$ 20mm
    95.29-12.900.85-12.56s结节检测形态学
    孙娟等[86]2014私有slices: 3098.2-8.8--3.76ms/slice结节检测聚类方法
    王凯等[69]2014公开LIDC; scans: 17;
    LR: 30; Size: 3 $\sim$ 30mm
    100-6.7/scan---结节检测形态结构
    申正文等[75]2016私有4DCT;
    两组10相位
    ----0.868
    0.830
    -肿瘤分割跟踪方法
    Camarlinghi等[6]2012公开LIDC; scans: 69
    ST $<$ 2mm; LR: 114
    85-25FP/scan---结节检测混合方法
    Choi等[5]2012公开LIDC; scans:32;LR:76;
    Slices:5453;Size:3 $\sim$ 30mm
    94.1-5.45/scan0.967--结节检测遗传算法
    Elizabeth等[17]2012私有slices: 171492.31-94.92---结节检测区域增长
    Netto等[18]2012私有exams: 29; LR: 4886910.138FP/exam---结节检测聚类方法
    Song等[61]2013私有scans: 23----0.81-结节/肿块概率方法
    Badura等[57]2014公开LIDC-IDRI; LR: 55195.5-9.15---结节分割聚类方法
    Guo等[62]2014私有scans: 7----0.85-肿瘤分割概率方法
    Jacobs等[48]2014公开scans: 318; LR:339;
    Size:5 $\sim$ 33mm
    80-1.0/scan--122s/scan结节检测混合方法
    Santos等[16]2014公开LIDC; scans:28;LR:25290.6851.17/scan---结节检测混合方法
    Wang等[94]2015私有scans:103; nodules:127--4FP/scanFROC:
    0.88
    --结节检测混合方法
    Yong等[70]2014私有scans: 50---- 91.2-肿瘤分割形态结构
    Demir等[91]2015公开LIDC-IDRI; scans: 200
    Slices: 27758
    98.03- 2.45/scan---结节检测统计模
    式识别
    李阳等[79]2013私有scans: 2010095----结节检测统计模
    式识别
    Lassen等[82]2015公开LIDC-IDRI; LR: 59----0.52结节分割混合方法
    Lu等[83]2015公开LIDC; scans:294;LR:63185.2-3.31---结节检测混合方法
    Messay等[21]2015公开LIDC-IDRI; scans:456----77.8结节分割混合方法
    Qiang等[84]2015私有scans: 25; LR: 28088.09-10.32- 89.8-结节分割形态结构
    Setio等[77]2015LP: 23898.3-4.0/scan---结节检测统计模
    式识别
    Erdal等[88]2015公开LIDC; slices:138--- 0.9679--结节检测统计模
    式识别
    Sheeraz等[22]2016公开LIDC; scans: 8495.3199.73----结节检
    测、分类
    统计模
    式识别
    Senthilkumar等[72]2016私有LR: 258884.052.05/scan---肿瘤检测区域增长
    Manikandan等[49]2016私有scans: 106; LR: 80110093 0.38/patient---肿瘤检测数学
    形态学
    Shin等[96]2016公开, 数据来自文献[107-108]--TPR =0.85;
    3FP/scan
    0.95--淋巴结和
    IDL检测
    深度学习
    Dou等[98]2016公开LIDC-IDRI; scans:88892.2-8FP/scan---结节检测深度学习
    Cheng等[99]2016公开LIDC-IDRI;
    良恶性结节:各700
    90.8±5.3 98.1±2.2- 0.984±0.015--结节分类深度学习
    Arnaud等[100]2016公开LIDC-IDRI; scans: 888 90.1-4/scan 0.996--结节检测深度学习
    Bram等[101]2015公开LIDC-IDRI; scans: 86577(上限78)-8FP/scan---结节分类深度学习
    拿来主义
    Francesco等[102]2015公开NELSON; nodules:4026---0.868--结节分类深度学习
    拿来主义
    Thomas等[103]2014私有200002Dimagepatches;
    5个类别
    --误分类率:
    5.3
    ---结节分类深度学习
    半监督
    Song等[73]2016公开LIDC-IDRI; LR: 850;
    私有LR: 121
    96.2-9.1--8s结节, 肿瘤区域增长
    刘峡壁等[109]2015公开LISS; scans: 27170.297.2----9类征
    象分类
    混合方法
    Guo等[46]2016公开LISS; 2D GGO: 45;
    3D GGO 19
    10033.13----GGO分类阈值法
    下载: 导出CSV
  • [1] World Health Organization. Cancer:fact sheet[Online], available:http://www.who.int/mediacentre/factsheets/fs297/en/, May 1, 2017
    [2] Cascio D, Magro R, Fauci F, Iacomi M, Raso G. Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models. Computers in Biology and Medicine, 2012, 42(11):1098-1109 doi: 10.1016/j.compbiomed.2012.09.002
    [3] Saito H, Oshima M, Kiuchi R, Watanabe K, Kitagawa K, Masuda S. Relationship between pleural indentation on computed tomography scans and pleural invasion in small peripheral lung cancer of 2, cm in size or less. Kyobu Geka, 2009, 62(9):767-770 http://www.ncbi.nlm.nih.gov/pmc/articles/instance/3590446/figure/fig1/
    [4] Han G H, Liu X B, Han F F, Santika I, Zhao Y F, Zhao X M, Zhou C W. The LISS-a public database of common imaging signs of lung diseases for computer-aided detection and diagnosis research and medical education. IEEE Transactions on Biomedical Engineering, 2015, 62(2):648-656 doi: 10.1109/TBME.2014.2363131
    [5] Choi W J, Choi T S. Genetic programming-based feature transform and classification for the automatic detection of pulmonary nodules on computed tomography images. Information Sciences, 2012, 212:57-78 doi: 10.1016/j.ins.2012.05.008
    [6] Camarlinghi N, Gori I, Retico A, Bellotti R, Bosco P, Cerello P, Gargano G, Lopez T E, Megna R, Peccarisi M, Fantacci M E. Combination of computer-aided detection algorithms for automatic lung nodule identification. International Journal of Computer Assisted Radiology and Surgery, 2012, 7(3):455-464 doi: 10.1007/s11548-011-0637-6
    [7] 高婷, 龚敬, 王远军, 聂生东, 孙希文.检测肺结节的3维自适应模板匹配.中国图象图形学报, 2014, 19(9):1384-1391 doi: 10.11834/jig.20140916

    Gao Ting, Gong Jing, Wang Yuan-Jun, Nie Sheng-Dong, Sun Xi-Wen. Three dimensional adaptive template matching algorithm for lung nodule detection. Journal of Image and Graphics, 2014, 19(9):1384-1391 doi: 10.11834/jig.20140916
    [8] Hu S C, Bi K S, Ge Q X, Li M C, Xie X, Xiang X. Curvature-based correction algorithm for automatic lung segmentation on chest CT images. Journal of Biological Systems, 2014, 22(1):1-28 doi: 10.1142/S0218339014500016
    [9] Lai J, Wei Q. Automatic lung fields segmentation in CT scans using morphological operation and anatomical information. Bio-medical Materials and Engineering, 2014, 24(1):335-340 http://content.iospress.com/articles/bio-medical-materials-and-engineering/bme815
    [10] Li Q, Sone S, DoiK. Selective enhancement filters for nodules, vessels, and airway walls in two-and three-dimensional CT scans. Medical Physics, 2003, 30(8):2040-2051 doi: 10.1118/1.1581411
    [11] 刘阳. 基于肺部高分辨率CT影像的肺结节识别方法研究[博士学位论文], 东北大学, 中国, 2010.

    Liu Yang. Lung Nodule Recognition Methods Based on Pulmonary High-Resolution CT Images[Ph., D. dissertation], Northeastern University, China, 2010.
    [12] 张永强, 夏顺仁, 陈兴灿, 郝欣.基于CT图像的肺结节分割算法研究.医疗卫生装备, 2012, 33(11):19-22 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ynws201211010&dbname=CJFD&dbcode=CJFQ

    Zhang Yong-Qiang, Xia Shun-Ren, Chen Xing-Can, Hao Xin. Study on segmentation algorithm of pulmonary nodule based on CT images. Chinese Medical Equipment Journal, 2012, 33(11):19-22 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ynws201211010&dbname=CJFD&dbcode=CJFQ
    [13] de Carvalho Filho A O, de Sampaio W B, Silva A C, de Paiva A C, Nunes R A, Gattass M. Automatic detection of solitary lung nodules using quality threshold clustering, genetic algorithm and diversity index. Artificial Intelligence in Medicine, 2014, 60(3):165-177 doi: 10.1016/j.artmed.2013.11.002
    [14] Iqbal S, Iqbal K, Arif F, Shaukat A, Khanum A. Potential lung nodules identification for characterization by variable multistep threshold and shape indices from CT images. Computational and Mathematical Methods in Medicine, 2014, Article ID 241647, DOI:10.1155/2014/241647
    [15] Zhou S J, Cheng Y Z, Tamura S. Automated lung segmentation and smoothing techniques for inclusion of juxtapleural nodules and pulmonary vessels on chest CT images. Biomedical Signal Processing and Control, 2014, 13:62-70 doi: 10.1016/j.bspc.2014.03.010
    [16] Santos A M, de Carvalho Filho A O, Silva A C, de Paiva A C, Nunes R A, Gattass M. Automatic detection of small lung nodules in 3D CT data using Gaussian mixture models, Tsallis entropy and SVM. Engineering Applications of Artificial Intelligence, 2014, 36:27-39 doi: 10.1016/j.engappai.2014.07.007
    [17] Elizabeth D S, Retmin Raj C S, Nehemiah H K, Kannan A. Computer-aided diagnosis of lung cancer based on analysis of the significant slice of chest computed tomography image. IET Image Processing, 2012, 6(6):697-705 doi: 10.1049/iet-ipr.2010.0521
    [18] Netto S M B, Silva A C, Nunes R A, Gattass M. Automatic segmentation of lung nodules with growing neural gas and support vector machine. Computers in Biology and Medicine, 2012, 42(11):1110-1121 doi: 10.1016/j.compbiomed.2012.09.003
    [19] Khan Z F, Kannan A. Intelligent segmentation of medical images using fuzzy bitplane thresholding. Measurement Science Review, 2014, 14(2):94-101 http://www.degruyter.com/dg/viewarticle.fullcontentlink:pdfeventlink/$002fj$002fmsr.2014.14.issue-2$002fmsr-2014-0013$002fmsr-2014-0013.pdf/msr-2014-0013.pdf?format=INT&t:ac=j$002fmsr.2014.14.issue-2$002fmsr-2014-0013$002fmsr-2014-0013.xml
    [20] Özkan H, Osman O, Sahin S, Boz A F. A novel method for pulmonary embolism detection in CTA images. Computer Methods and Programs in Biomedicine, 2014, 113(3):757-766 doi: 10.1016/j.cmpb.2013.12.014
    [21] Messay T, Hardie R C, Tuinstra T R. Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the lung image database consortium and image database resource initiative dataset. Medical Image Analysis, 2015, 22(1):48-62 doi: 10.1016/j.media.2015.02.002
    [22] Akram S, Javed M Y, Akram M U, Qamar U, Hassan A. Pulmonary nodules detection and classification using hybrid features from computerized tomographic images. Journal of Medical Imaging and Health Informatics, 2016, 6(1):252-259 doi: 10.1166/jmihi.2016.1600
    [23] Wang J H, Li F, Li Q. Automated segmentation of lungs with severe interstitial lung disease in CT. Medical Physics, 2009, 36(10):4592-4599 doi: 10.1118/1.3222872
    [24] Wei Y, Shen G, Li J J. A fully automatic method for lung parenchyma segmentation and repairing. Journal of Digital Imaging, 2013, 26(3):483-495 doi: 10.1007/s10278-012-9528-9
    [25] Mansoor A, Bagci U, Xu Z, Foster B, Olivier K N, Elinoff J M, Suffredini A F, Udupa J K, Mollura D J. A generic approach to pathological lung segmentation. IEEE Transactions on Medical Imaging, 2014, 33(12):2293-2310 doi: 10.1109/TMI.2014.2337057
    [26] Park S, Lee S M, Kim N, Seo J B, Shin H. Automatic reconstruction of the arterial and venous trees on volumetric chest CT. Medical Physics, 2013, 40(7):071906-1-071906-13 doi: 10.1118/1.4811203
    [27] Cheng Y Z, Hu X, Wang Y D, Wang J K, Tamura S. Automatic centerline detection of small three-dimensional vessel structures. Journal of Electronic Imaging, 2014, 23(1):013007, DOI: 10.1117/1.JEI.23.1.013007
    [28] Koller T M, Gerig G, Szekely G, Dettwiler D. Multiscale detection of curvilinear structures in 2-D and 3-D image data. In:Proceedings of the 5th International Conference on Computer Vision. Cambridge, USA:IEEE, 1995. 864-869
    [29] Lorenz C, Carlsen I-C, Buzug T M, Fassnacht C, Weese J. Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images. In:Proceedings of the 1st Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery. Grenoble, France:Springer, 1997. 233-242
    [30] Frangi A F, Niessen W J, Hoogeveen R M, Van Walsum T, Viergever M A. Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Transactions on Medical Imaging, 1999, 18(10):946-956 doi: 10.1109/42.811279
    [31] Sato Y, Westin C-F, Bhalerao A, Nakajima S, Shiraga N, Tamura S, Kikinis R. Tissue classification based on 3D local intensity structures for volume rendering. IEEE Transactions on Visualization and Computer Graphics, 2000, 6(2):160-180 doi: 10.1109/2945.856997
    [32] Malladi R, Sethian J A, Vemuri B C. Shape modeling with front propagation:a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(2):158-175 doi: 10.1109/34.368173
    [33] 贾同, 魏颖, 吴成东.基于几何形变模型的三维肺血管图像分割方法.仪器仪表学报, 2010, 31(10):2296-2301 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yqxb201010024&dbname=CJFD&dbcode=CJFQ

    Jia Tong, Wei Ying, Wu Cheng-Dong. 3D lung vessel image segmentation scheme based on geometric active contour model. Chinese Journal of Scientific Instrument, 2010, 31(10):2296-2301 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yqxb201010024&dbname=CJFD&dbcode=CJFQ
    [34] Boskamp T, Rinck D, Link F, Kümmerlen B, Stamm G, Mildenberger P. New vessel analysis tool for morphometric quantification and visualization of vessels in CT and MR imaging data sets. Radiographics, 2004, 24(1):287-297 doi: 10.1148/rg.241035073
    [35] 陈刚, 吕煊, 王志成, 陈宇飞.肺CT图像的血管骨架化方法.计算机科学, 2013, 40(5):274-278 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jsja201305067&dbname=CJFD&dbcode=CJFQ

    Chen Gang, Lv Xuan, Wang Zhi-Cheng, Chen Yu-Fei. Vessel skeletonization method for lung CT images. Computer Science, 40(5):274-278 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jsja201305067&dbname=CJFD&dbcode=CJFQ
    [36] Zhou C, Hadjiiski L M, Sahiner B, Chan H P, Patel S, Cascade P N, Kazerooni E A, Wei J. Computerized detection of pulmonary embolism in 3D computed tomographic (CT) images:vessel tracking and segmentation techniques. In:Proceedings of the 2003 Medical Imaging. San Diego, USA:SPIE, 2003. 1613-1620
    [37] Kawata Y, Niki N, Umetani K, Nakano Y, Ohamatsu H, Moriyama N, Itoh H. Stochastic tracking of small pulmonary vessels in human lung alveolar walls using synchrotron radiation micro CT images. In:Proceedings of the 2013 Medical Imaging:Biomedical Applications in Molecular, Structural, and Functional Imaging. Lake Buena Vista, USA:SPIE, 2013.
    [38] Kitamura Y Z Y, Ito W, Ishikawa H. Data-dependent higher-order clique selection for Artery-Vein segmentation by energy minimization. International Journal of Computer Vision, 2016, 117(2):142-158 doi: 10.1007/s11263-015-0856-3
    [39] Feulner J, Kevin Zhou S, Hammon M, Hornegger J, Comaniciu D. Lymph node detection and segmentation in chest CT data using discriminative learning and a spatial prior. Medical Image Analysis, 2013, 17(2):254-270 doi: 10.1016/j.media.2012.11.001
    [40] Dornheim L, Dornheim J, Rössling I. Complete fully automatic model-based segmentation of normal and pathological lymph nodes in CT data. International Journal of Computer Assisted Radiology and Surgery, 2010, 5(6):565-581 doi: 10.1007/s11548-010-0530-8
    [41] Steger S, Ebert D, Erdt M. Lymph node segmentation in CT slices using dynamic programming. In:Proceedings of the 2011 IEEE International Symposium on Biomedical Imaging:From Nano to Macro. Chicago, USA:IEEE, 2011. 1990-1993
    [42] Wang Y, Beichel R. Graph-based segmentation of lymph nodes in CT data. In:Proceedings of the 6th International Conference on Advances in Visua Computing. Las Vegas, USA:Springer, 2010. 312-321
    [43] Chen Q, Quan F, Xu J J, Rubin D L. Snake model-based lymphoma segmentation for sequential CT images. Computer Methods and Programs in Biomedicine, 2013, 111(2):366-375 doi: 10.1016/j.cmpb.2013.05.019
    [44] 张艳玲, 何鑫驰, 李立.基于最大类间方差与形态学的淋巴结图像分割.计算机科学, 2013, 40(8):296-299 http://edu.wanfangdata.com.cn/Periodical/Detail/jsjkx201308064

    Zhang Yan-Ling, He Xin-Chi, Li Li. Lymph node image segmentation algorithm based on maximal variance between-class and morphology. Computer Science, 2013, 40(8):296-299 http://edu.wanfangdata.com.cn/Periodical/Detail/jsjkx201308064
    [45] Yu P C, Poh C L. Region-based snake with edge constraint for segmentation of lymph nodes on CT images. Computers in Biology and Medicine, 2015, 60:86-91 doi: 10.1016/j.compbiomed.2015.02.011
    [46] Guo K, Liu X B, Soomro N Q, Liu Y. A novel 2D ground-glass opacity detection method through local-to-global multilevel thresholding for segmentation and minimum bayes risk learning for classification. Journal of Medical Imaging and Health Informatics, 2016, 6(5):1193-1201 doi: 10.1166/jmihi.2016.1934
    [47] Moltz J H, Bornemann L, Kuhnigk J M, Dicken V, Peitgen E, Meier S, Bolte H, Fabel M, Bauknecht H-C, Hittinger M, KieSSling A, Pusken M, Peitgen H O. Advanced segmentation techniques for lung nodules, liver metastases, and enlarged lymph nodes in CT scans. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(1):122-134 doi: 10.1109/JSTSP.2008.2011107
    [48] Jacobs C, Van Rikxoort E M, Twellmann T, Scholten E T, De Jong P A, Kuhnigk J M, Oudkerk M, de Koning H J, Prokop M, Schaefer-Prokop C, van Ginneken B. Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images. Medical Image Analysis, 2014, 18(2):374-384 doi: 10.1016/j.media.2013.12.001
    [49] Manikandan T, Bharathi N. Lung cancer detection using fuzzy auto-seed cluster means morphological segmentation and SVM classifier. Journal of Medical Systems, 2016, 40(7):1-9 doi: 10.1007/s10916-016-0539-9.pdf
    [50] Ge Z, Sahiner B, Chan H P, Hadjiiski L M, Cascade P N, Bogot N, Kazerooni E A, Wei J, Zhou C. Computer-aided detection of lung nodules:false positive reduction using a 3D gradient field method and 3D ellipsoid fitting. Medical Physics, 2005, 32(8):2443-2454 doi: 10.1118/1.1944667
    [51] 魏颖, 徐陆, 李翔, 李锐.结合多尺度圆形滤波与MS聚类的疑似结节分割.仪器仪表学报, 2016, 37(1):192-199 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yqxb201601026&dbname=CJFD&dbcode=CJFQ

    Wei Ying, Xu Lu, Li Xiang, Li Rui. Segmentation of suspected nodules by multi-scale circular filtering combined with MS clustering. Chinese Journal of Scientific Instrument, 2016, 37(1):192-199 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yqxb201601026&dbname=CJFD&dbcode=CJFQ
    [52] Kanazawa K, Kawata Y, Niki N, Satoh H, Ohmatsu H, Kakinuma R, Kaneko M, Moriyama N, Eguchi K. Computer-aided diagnosis for pulmonary nodules based on helical CT images. Computerized Medical Imaging and Graphics, 1998, 22(2):157-167 doi: 10.1016/S0895-6111(98)00017-2
    [53] Kubo M, Kubota K, Yamada N, Kawata Y, Niki N, Eguchi K, Ohmatsu H, Kakinuma R, Kaneko M, Kusumoto M, Mori K, Nishiyama H, Moriyama N. CAD system for lung cancer based on low-dose single-slice CT image. In:Proceedings of the 2002 Medical Imaging. San Diego, USA:SPIE, 2002. 1262-1269
    [54] Yamada N, Kubo M, Kawata Y, Niki N, Eguchi K, Omatsu H, Kakinuma R, Kaneko M, Kusumoto M, Nishiyama H. ROI extraction of chest CT images using adaptive opening filter. In:Proceedings of the 2003 Medical Imaging. San Diego, USA:SPIE, 2003. 869-876
    [55] Antonelli M, Frosini G, Lazzerini B, Marcelloni F. A CAD system for lung nodule detection based on an anatomical model and a fuzzy neural network. In:Proceedings of the 2006 Annual Meeting of the North American Fuzzy Information Processing Society. Montreal, Canada:IEEE, 2006. 448-453
    [56] 李翠芳, 聂生东, 王远军, 孙希文, 郑斌.改进的模糊聚类亚实质肺结节3维分割.中国图形学报, 2013, 18(8):1019-1030 http://www.wenkuxiazai.com/doc/a77b8ef9a45177232f60a2e4-2.html

    Li Cui-Fang, Nie Sheng-Dong, Wang Yuan-Jun, Sun Xi-Wen, Zheng Bin. Segmentation of sub-solid pulmonary nodules based on improved fuzzy C-means clustering. Journal of Image and Graphics, 2013, 18(8):1019-1030 http://www.wenkuxiazai.com/doc/a77b8ef9a45177232f60a2e4-2.html
    [57] Badura P, Pietka E. Soft computing approach to 3D lung nodule segmentation in CT. Computers in Biology and Medicine, 2014, 53:230-243 doi: 10.1016/j.compbiomed.2014.08.005
    [58] 宋佳, 聂生东, 王远军, 鲁雯.一种基于三维特征的肺结节概率分割算法.生物医学工程学杂志, 2014, 31(4):771-776 doi: 10.7507/1001-5515.20140144

    Song Jia, Nie Sheng-Dong, Wang Yuan-Jun, Lu Wen. A probability segmentation algorithm for lung nodules based on three-dimensional features. Journal of Biomedical Engineering, 2014, 31(4):771-776 doi: 10.7507/1001-5515.20140144
    [59] Kouzani A Z, Lee S L A, Hu E J. Lung nodules detection by ensemble classification. In:Proceedings of the 2008 IEEE International Conference on Systems, Man, and Cybernetics. Singapore:IEEE, 2008. 324-329
    [60] Bharath A C, Kumar D. An improved bayesian network model based image segmentation in detection of lung cancer. In:Proceedings of the 2014 International Conference on Recent Trends in Information Technology (ICRTIT). Chennai, India:IEEE, 2014. 1-7
    [61] Song Q, Bai J J, Han D F, Bhatia S, Sun W Q, Rockey W, Bayouth J E, Buatti J M, Wu X D. Optimal co-segmentation of tumor in PET-CT images with context information. IEEE Transactions on Medical Imaging, 2013, 32(9):1685-1697 doi: 10.1109/TMI.2013.2263388
    [62] Guo Y, Feng Y M, Sun J, Zhang N, Lin W, Sa Y, Wang P. Automatic lung tumor segmentation on PET/CT images using fuzzy Markov random field model. Computational and Mathematical Methods in Medicine, 2014, 401201, DOI:10.1155/2014/40120
    [63] Farag A A, El-Baz A, Gimel'farb G G, Falk R, Hushek S G. Automatic detection and recognition of lung abnormalities in helical CT images using deformable templates. In:Proceedings of the 2004 International Conference on Medical Image Computing and Computer-Assisted Intervention. Saint-Malo, France:Springer, 2004. 856-864
    [64] Guo L, Zhang Y T, Zhang Z W, Li D Y, Li Y. An improved random walk segmentation on the lung nodules. International Journal of Biomathematics, 2013, 6(6):1350043, DOI: 10.1142/S1793524513500435
    [65] 孙文燕, 董恩清, 曹祝楼, 郑强.一种基于模糊主动轮廓的鲁棒局部分割方法.自动化学报, 2017, 43(4):611-621 http://www.aas.net.cn/CN/abstract/abstract19039.shtml

    Sun Wen-Yan, Dong En-Qing, Cao Zhu-Lou, Zheng Qiang. A robust local segmentation method based on fuzzy-energy based active contour. Acta Automatica Sinica, 2017, 43(4):611-621 http://www.aas.net.cn/CN/abstract/abstract19039.shtml
    [66] 陈侃, 李彬, 田联房.基于模糊速度函数的活动轮廓模型的肺结节分割.自动化学报, 2013, 39(8):1257-1264 http://www.oalib.com/paper/4417598

    Chen Kan, Li Bin, Tian Lian-Fang. A segmentation algorithm of pulmonary nodules using active contour model based on fuzzy speed function. Acta Automatica Sinica, 2013, 39(8):1257-1264 http://www.oalib.com/paper/4417598
    [67] 郑强, 董恩清.窄带主动轮廓模型及在医学和纹理图像局部分割中的应用.自动化学报, 2013, 39(1):21-30 http://www.wenkuxiazai.com/doc/034f2351cfc789eb172dc8ce.html

    Zheng Qiang, Dong En-Qing. Narrow band active contour model for local segmentation of medical and texture images. Acta Automatica Sinica, 2013, 39(1):21-30 http://www.wenkuxiazai.com/doc/034f2351cfc789eb172dc8ce.html
    [68] Li X P, Wang X, Dai Y X, Zhang P B. Supervised recursive segmentation of volumetric CT images for 3D reconstruction of lung and vessel tree. Computer Methods and Programs in Biomedicine, 2015, 122(3):316-329 doi: 10.1016/j.cmpb.2015.08.014
    [69] 王凯, 张煜, 刘哲星, 林炳权, 吴志强, 曹蕾.基于自适应体窗结构分析的肺结节检测方法.南方医科大学学报, 2014, 34(6):759-765 http://www.cqvip.com/QK/91170X/201406/50044641.html

    Wang Kai, Zhang Yu, Liu Zhe-Xing, Lin Bing-Quan, Wu Zhi-Qiang, Cao Lei. Structural analysis based on adaptive window for pulmonary nodule detection. Journal of Southern Medical University, 2014, 34(6):759-769 http://www.cqvip.com/QK/91170X/201406/50044641.html
    [70] Yong J R, Qi S, Van Triest H J, Kang Y, Qian W. Automatic segmentation of juxta-pleural tumors from CT images based on morphological feature analysis. Bio-Medical Materials and Engineering, 2014, 24(6):3137-3144
    [71] 王秋萍, 冯筠, 强永乾, 于楠, 邓蕾, 郭佑民.空洞检测算法自动化检测肺结节内空泡和空洞的可行性.中国医学影像技术, 2014, 30(9):1309-1313 http://www.cnki.com.cn/Article/CJFDTotal-LCFS201411011.htm

    Wang Qiu-Ping, Feng Jun, Qiang Yong-Qian, Yu Nan, Deng Lei, Guo You-Min. Feasibility of automatic detection of cavity and vacuole in pulmonary nodules using cavity detection algorithm. Chinese Journal of Medical Imaging Technology, 2014, 30(9):1309-1313 http://www.cnki.com.cn/Article/CJFDTotal-LCFS201411011.htm
    [72] Krishnamurthy S, Narasimhan G, Rengasamy U. Three-dimensional lung nodule segmentation and shape variance analysis to detect lung cancer with reduced false positives. Proceedings of the Institution of Mechanical Engineers, Part H:Journal of Engineering in Medicine, 2016, 230(1):58-70 doi: 10.1177/0954411915619951
    [73] Song J D, Yang C Y, Fan L, Wang K, Yang F, Liu S Y, Tian J. Lung lesion extraction using a toboggan based growing automatic segmentation approach. IEEE Transactions on Medical Imaging, 2016, 35(1):337-353 doi: 10.1109/TMI.2015.2474119
    [74] Iwao Y, Gotoh T, Kagei S, Iwasawa T, De Sales Guerra Tsuzuki M. Integrated lung field segmentation of injured region with anatomical structure analysis by failure-recovery algorithm from chest CT images. Biomedical Signal Processing and Control, 2014, 12:28-38 doi: 10.1016/j.bspc.2013.10.005
    [75] 申正文, 高圆圆, 张煜.基于星形先验和图割的肺部四维计算机断层扫描肿瘤自动分割.生物医学工程学杂志, 2016, 33(2):295-302 doi: 10.7507/1001-5515.20160050

    Shen Zheng-Wen, Gao Yuan-Yuan, Zhang Yu. Automatic segmentation of four dimensional computed tomography of lung tumor based on star shape prior and graph cuts. Journal of Biomedical Engineering, 2016, 33(2):295-302 doi: 10.7507/1001-5515.20160050
    [76] 范立南, 李道静, 孙申申, 常朝海. Top-hat和Gabor filter在肺结节ROI自动检测中的应用研究.计算机工程与应用, 2012, 48(4):190-192 http://www.wenkuxiazai.com/doc/5495a990524de518964b7dc7.html

    Fan Li-Nan, Li Dao-Jing, Sun Shen-Shen, Chang Chao-Hai. Applied research on automatic detection of lung nodules ROI based on Top-hat and Gabor filter. Computer Engineering and Applications, 2012, 48(4):190-192 http://www.wenkuxiazai.com/doc/5495a990524de518964b7dc7.html
    [77] Setio A A, Jacobs C, Gelderblom J, Van Ginneken B. Automatic detection of large pulmonary solid nodules in thoracic CT images. Medical physics, 2015, 42(10):5642-5653 doi: 10.1118/1.4929562
    [78] Cao L, Wang K, Xing Q Q, Lin B Q, Zhang Y. Auto detection of lung ground-glass opacity nodules based on high-pass filter and Gaussian mixture model. Journal of Medical Imaging and Health Informatics, 2016, 6(2):320-327 doi: 10.1166/jmihi.2016.1700
    [79] 李阳, 史东承, 王珂, 王燕, 魏艳芳.基于图像模式的肺结节识别.吉林大学学报(工学版), 2013, 43(S1):463-467 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jlgy2013s1098&dbname=CJFD&dbcode=CJFQ

    Li Yang, Shi Dong-Cheng, Wang Ke, Wang Yan, Wei Yan-Fang. Lung nodule recognition based on image pattern. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(S1):463-467 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jlgy2013s1098&dbname=CJFD&dbcode=CJFQ
    [80] Tan Y Q, Schwartz L H, Zhao B S. Segmentation of lung lesions on CT scans using watershed, active contours, and Markov random field. Medical Physics, 2013, 40(4):043502, DOI: 10.1118/1.4793409
    [81] Alilou M, Kovalev V, Snezhko E, Taimouri V. A comprehensive framework for automatic detection of pulmonary nodules in lung CT images. Image Analysis and Stereology, 2014, 33(1):13-27 doi: 10.5566/ias.v33.p13-27
    [82] Lassen B C, Jacobs C, Kuhnigk J M, van Ginneken B, van Rikxoort E M. Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans. Physics in Medicine and Biology, 2015, 60(3):Article ID 1307, DOI:10.1088/0031-9155/60/3/1307
    [83] Lu L, Tan Y Q, Schwartz L H, Zhao B S. Hybrid detection of lung nodules on CT scan images. Medical Physics, 2015, 42(9):5042-5054 doi: 10.1118/1.4927573
    [84] Qiang Y, Zhang X H, Ji G H, Zhao J J. Automated lung nodule segmentation using an active contour model based on PET/CT images. Journal of Computational and Theoretical Nanoscience, 2015, 12(8):1972-1976 doi: 10.1166/jctn.2015.4216
    [85] Gonçalves L, Novo J, Campilho A. Hessian based approaches for 3D lung nodule segmentation. Expert Systems with Applications, 2016, 61:1-15 doi: 10.1016/j.eswa.2016.05.024
    [86] 孙娟, 王兵, 杨颖, 田学东.聚类分析在肺结节识别中的应用.计算机应用, 2014, 34(7):2050-2053 doi: 10.11772/j.issn.1001-9081.2014.07.2050

    Sun Juan, Wang Bing, Yang Ying, Tian Xue-Dong. Research on cluster analysis in pulmonary nodule recognition. Journal of Computer Applications, 2014, 34(7):2050-2053 doi: 10.11772/j.issn.1001-9081.2014.07.2050
    [87] 邱实, 汶德胜, 冯筠, 崔莹.一种新策略的肺结节检测算法.电子学报, 2016, 44(6):1413-1419 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxu201606023&dbname=CJFD&dbcode=CJFQ

    Qiu Shi, Wen De-Sheng, Feng Jun, Cui Ying. A new strategy of lung nodules detection algorithm. Acta Electronica Sinica, 2016, 44(6):1413-1419 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxu201606023&dbname=CJFD&dbcode=CJFQ
    [88] Taşci E, Uğur A U. Shape and texture based novel features for automated juxtapleural nodule detection in lung CTs. Journal of Medical Systems, 2015, 39(5):1-13 doi: 10.1007/s10916-015-0231-5.pdf
    [89] Wang Z, Chen S C. New least squares support vector machines based on matrix patterns. Neural Processing Letters, 2007, 26(1):41-56 doi: 10.1007/s11063-007-9041-1
    [90] de Carvalho Filho A O, Silva A C, de Paiva A C, Nunes R A, Gattass M. 3D shape analysis to reduce false positives for lung nodule detection systems. Medical and Biological Engineering and Computing. Berlin:Springer-Verlag, 2016. 1-15
    [91] Demir Ö, Yilmaz Ç A. Computer-aided detection of lung nodules using outer surface features. Bio-Medical Materials and Engineering, 2015, 26(S1):S1213-S1222 doi: 10.3233/BME-151418
    [92] 王青竹, 康文炜, 王斌.三维隐SVM算法设计及在胸CT图像病灶检测中的应用.模式识别与人工智能, 2013, 26(5):460-466 doi: 10.3969/j.issn.1003-6059.2013.05.007

    Wang Qing-Zhu, Kang Wen-Wei, Wang Bin. Design of 3D latent-SVM and application to detection of lesions in chest CT. Pattern Recognition and Artificial Intelligence, 2013, 26(5):460-466 doi: 10.3969/j.issn.1003-6059.2013.05.007
    [93] Brown M S, Goldin J G, Suh R D, McNitt Gray M F, Sayre J W, Aberle D R. Lung micronodules:automated method for detection at thin-section CT-initial experience. Radiology, 2003, 226(1):256-262 doi: 10.1148/radiol.2261011708
    [94] Wang B, Tian X D, Wang Q, Yang Y, Xie H Z, Zhang S Y, Gu L X. Pulmonary nodule detection in CT images based on shape constraint CV model. Medical Physics, 2015, 42(3):1241-1254 doi: 10.1118/1.4907961
    [95] 常亮, 邓小明, 周明全, 武仲科, 袁野, 杨硕, 王宏安.图像理解中的卷积神经网络.自动化学报, 2016, 42(9):1300-1312 doi: 10.16383/j.aas.2016.c150800.html

    Chang Liang, Deng Xiao-Ming, Zhou Ming-Quan, Wu Zhong-Ke, Yuan Ye, Yang Shuo, Wang Hong-An. Convolutional neural networks in image understanding. Acta Automatica Sinica, 2016, 42(9):1300-1312 doi: 10.16383/j.aas.2016.c150800.html
    [96] Shin H C, Roth H R, Gao M C, Lu L, Xu Z Y, Nogues I, Summers R M. Deep convolutional neural networks for computer-aided detection:CNN architectures, dataset characteristics and transfer learning. IEEE Transactions on Medical Imaging, 2016, 35(5):1285-1298 doi: 10.1109/TMI.2016.2528162
    [97] Tajbakhsh N, Shin J Y, Gurudu S R, Hurst R T, Kendall C B, Gotway M B, Liang J M. Convolutional neural networks for medical image analysis:full training or fine tuning? IEEE Transactions on Medical Imaging, 2016, 35(5):1299-1312 doi: 10.1109/TMI.2016.2535302
    [98] Dou Q, Chen H, Yu L Q, Qin J, Heng P A. Multi-level contextual 3D CNNs for false positive reduction in pulmonary nodule detection. IEEE Transactions on Biomedical Engineering, 2016, 64(7):1558-1567 https://www.ncbi.nlm.nih.gov/pubmed/28113302
    [99] Cheng J Z, Ni D, Chou Y H, Qin J, Tiu C M, Chang Y C, Huang S, Shen D G, Chen C M. Computer-aided diagnosis with deep learning architecture:applications to breast lesions in US images and pulmonary nodules in CT scans. Scientific Reports, 2016, 6:Article No. 24454
    [100] Setio A A A, Ciompi F, Litjens G, Gerke P, Jacobs C, Van Riel S J, Wille M M W, Naqibullah M, Sanchez C I, van Ginneken B. Pulmonary nodule detection in CT images:false positive reduction using multi-view convolutional networks. IEEE Transactions on Medical Imaging, 2016, 35(5):1160-1169 doi: 10.1109/TMI.2016.2536809
    [101] Van Ginneken B, Setio A A, Jacobs C, Ciompi F. Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. In:Proceedings of the 12th IEEE International Symposium on Biomedical Imaging (ISBI). New York, USA:IEEE, 2015. 286-289
    [102] Ciompi F, De Hoop B, Van Riel S J, Chung K, Scholten E T, Oudkerk M, de Jong P A, Prokop M, van Ginneken B. Automatic classification of pulmonary Peri-Fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Medical Image Analysis, 2015, 26(1):195-202 doi: 10.1016/j.media.2015.08.001
    [103] Schlegl T, Ofner J, Langs G. Unsupervised pre-training across image domains improves lung tissue classification. In:Proceedings of the 2014 International MICCAI Workshop on Medical Computer Vision. Cambridge, USA:Springer, 2014. 82-93
    [104] Armato S G I I I, Mclennan G, Bidaut L, McNitt-Gray M F, Meyer C R, Reeves A P, Zhao B S, Aberle D R, Henschke C I, Hoffman E A, Kazerooni E A, MacMahon H, van Beek Ed. The lung image database consortium (LIDC) and image database resource initiative (IDRI):a completed reference database of lung nodules on CT scans. Medical Physics, 2011, 38(2):915-931 doi: 10.1118/1.3528204
    [105] Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9):850-863 doi: 10.1109/34.232073
    [106] Chalana V, Linker D T, Haynor D R, Kim Y M. A multiple active contour model for cardiac boundary detection on echocardiographic sequences. IEEE Transactions on Medical Imaging, 1996, 15(3):290-298 doi: 10.1109/42.500138
    [107] Depeursinge A, Vargas A, Platon A, Geissbuhler A, Poletti P A, Müller H. Building a reference multimedia database for interstitial lung diseases. Computerized Medical Imaging and Graphics, 2012, 36(3):227-238 doi: 10.1016/j.compmedimag.2011.07.003
    [108] Seff A, Lu L, Cherry K M, Roth H R, Liu J M, Wang S J, Hoffman J, Turkbey E B, Summers R M. 2D view aggregation for lymph node detection using a shallow hierarchy of linear classifiers. Medical Image Computing and Computer-Assisted Intervention 2014, 17(Pt1):544-552 https://arxiv.org/pdf/1408.3337.pdf
    [109] Liu X B, Ma L, Song L, Zhao Y F, Zhao X M, Zhou C W. Recognizing common CT imaging signs of lung diseases through a new feature selection method based on fisher criterion and genetic optimization. IEEE Journal of Biomedical and Health Informatics, 2015, 19(2):635-647 doi: 10.1109/JBHI.2014.2327811
    [110] Christ P F, Elshaer M E A, Ettlinger F, Tatavarty S, Bickel M, Bilic P, Rempfler M, Armbruster M, Hofmann F, D'Anastasi M, Sommer W H, Ahmadi S A, Menze B H. Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. In:Proceedings of the 2016 International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens, Greece:Springer, 2016. 415-423
    [111] Lipton Z C, Kale D C, Elkan C, Wetzell R. Learning to diagnose with LSTM recurrent neural networks. arXiv:1511. 03677, 2015.
    [112] Hofmanninger J, Langs G. Mapping visual features to semantic profiles for retrieval in medical imaging. In:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA:IEEE, 2015. 457-465
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  4036
  • HTML全文浏览量:  854
  • PDF下载量:  1498
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-29
  • 录用日期:  2017-06-12
  • 刊出日期:  2017-12-20

目录

    /

    返回文章
    返回