2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑资源转移时间的资源受限项目调度问题的算法

陆志强 刘欣仪

陆志强, 刘欣仪. 考虑资源转移时间的资源受限项目调度问题的算法. 自动化学报, 2018, 44(6): 1028-1036. doi: 10.16383/j.aas.2017.c160834
引用本文: 陆志强, 刘欣仪. 考虑资源转移时间的资源受限项目调度问题的算法. 自动化学报, 2018, 44(6): 1028-1036. doi: 10.16383/j.aas.2017.c160834
LU Zhi-Qiang, LIU Xin-Yi. Algorithm for Resource-constrained Project Scheduling Problem With Resource Transfer Time. ACTA AUTOMATICA SINICA, 2018, 44(6): 1028-1036. doi: 10.16383/j.aas.2017.c160834
Citation: LU Zhi-Qiang, LIU Xin-Yi. Algorithm for Resource-constrained Project Scheduling Problem With Resource Transfer Time. ACTA AUTOMATICA SINICA, 2018, 44(6): 1028-1036. doi: 10.16383/j.aas.2017.c160834

考虑资源转移时间的资源受限项目调度问题的算法

doi: 10.16383/j.aas.2017.c160834
基金项目: 

国家自然科学基金 71171130

国家自然科学基金 61473211

详细信息
    作者简介:

    刘欣仪  同济大学硕士研究生.2015年获得同济大学学士学位.主要研究方向为项目调度.E-mail:liuxinyi@tongji.edu.cn

    通讯作者:

    陆志强  同济大学教授.2003年获得法国南特大学博士学位.主要研究方向为物流与供应链管理.本文通信作者.E-mail:zhiqianglu@tongji.edu.cn

Algorithm for Resource-constrained Project Scheduling Problem With Resource Transfer Time

Funds: 

National Natural Science Foundation of China 71171130

National Natural Science Foundation of China 61473211

More Information
    Author Bio:

    Master student at Tongji University. She received her bachelor degree from Tongji University in 2015. Her main research interest is project scheduling

    Corresponding author: LU Zhi-Qiang Professor at Tongji University. He received his Ph. D. degree from Universite De Nanets, France in 2003. His research interest covers logistics and supply chain management. Corresponding author of this paper
  • 摘要: 现有项目调度问题的研究一般假设资源在任务间转移不需要时间,但这一假设与很多实际情况不相符,本文在资源受限项目调度问题(Resource-constrained project scheduling problem,RCPSP)中引入资源转移时间,以最小化项目工期为目标,建立了考虑资源转移时间的资源受限项目调度问题的数学模型.为改善遗传算法在局部搜索能力方面的不足,提出将分支定界法与遗传算法相结合,构造了一种内嵌分支定界寻优搜索的遗传算法,在保证算法全局搜索能力的前提下提升局部精确搜索能力.同时,对于遗传算法,为了适应算法结构提出了一种基于任务绝对顺序的编码策略.数据实验表明,对于小规模问题可获得近似精确解,对于大规模问题相较现有文献所提算法,在算法求解精度上可提升10%.
    1)  本文责任编委 王红卫
  • 图  1  算法流程图

    Fig.  1  Flowchart of the algorithm

    图  2  编码的生成方式

    Fig.  2  The generation of the coding

    图  3  带资源转移时间的资源受限项目调度问题实例

    Fig.  3  An example of the RCPSPTT

    图  4  交叉方式

    Fig.  4  An example of crossover

    图  5  变异方式

    Fig.  5  An example of mutation

    图  6  搜索树示例

    Fig.  6  An example of the search tree

    图  7  条件3示例图

    Fig.  7  An example of condition 3

    图  8  条件4示例图

    Fig.  8  An example of condition 4

    图  9  任务区分示例

    Fig.  9  An example of the classifications of the activities

    图  10  任务关系示例

    Fig.  10  An example of the relationship of the activities

    表  1  不同参数设置下的实验结果对比

    Table  1  Comparison of experimental results under different parameter settings

    算例规模平均值偏差(%)
    $pc=0.8$ $pc=0.6$ $pc=0.6$ $pc=0.8$
    $pm=0.2$ $pm=0.2$ $pm=0.1$ $pm=0.1$
    J300.890.991.440.00
    J601.110.000.080.13
    J900.660.000.130.24
    平均0.870.330.550.12
    下载: 导出CSV

    表  2  不同算法求解小规模算例的实验结果对比

    Table  2  Comparison of different algorithms in small-to-medium size problems

    算例规模组别CPLEX无分支定界的遗传算法内嵌分支定界的遗传算法
    上界均值下界均值时间均值(s)均值时间均值(s)GAP (%)均值时间均值(s)GAP (%)
    J10134.934.986.0035.81.442.5235.217.850.74
    223.423.419.0124.81.305.9823.625.970.85
    337.937.9102.3538.41.311.3238.116.140.53
    平均69.121.353.2719.990.71
    J12162.160.64 035.6064.11.723.2262.720.460.97
    241.339.33 233.4242.31.742.4241.719.100.97
    327.127.130.6928.11.683.6927.324.250.74
    平均2 429.901.713.1121.270.89
    J14162.849.05 898.8064.22.172.2361.735.70-1.75
    232.130.22 335.5433.42.214.0532.539.121.25
    347.146.2950.7348.62.673.1847.739.731.27
    平均3 061.692.353.1538.180.26
    J16178.753.67 200.0077.72.33-1.2775.744.38-3.81
    239.830.16 484.8443.63.089.5542.441.766.53
    359.946.16 509.6061.52.702.6759.856.31-0.17
    平均6 731.482.703.6547.480.85
    J20149.428.87 200.0048.33.12-2.2346.959.68-5.06
    264.441.07 200.0063.03.23-2.1761.159.80-5.12
    368.146.07 200.0067.83.09-0.4465.672.30-3.67
    平均7 200.003.15-1.6163.93-4.62
    下载: 导出CSV

    表  3  不同算法求解大规模算例的实验结果对比

    Table  3  Comparison of different algorithms in large size problems

    算例规模组别启发式算法无分支定界的遗传算法内嵌分支定界的遗传算法
    LFT均值GAP (%)SLACK均值GAP (%)均值时间均值(s)GAP (%)均值时间均值(s)GAP (%)
    J301159.014.80156.913.29140.75.691.59138.563.650.00
    2157.616.65161.919.84136.76.271.18135.177.200.00
    3120.112.77119.312.02109.16.222.44106.5117.810.00
    平均14.7415.056.061.7486.220.00
    J601217.012.55216.012.03196.724.142.02192.8744.970.00
    2152.411.00151.09.98140.426.582.26137.3777.180.00
    3115.88.22114.97.38109.225.772.06107.0798.220.00
    平均10.599.8025.502.11773.460.00
    J901383.811.05386.311.78351.468.891.68345.61 191.980.00
    2199.29.15198.88.93186.868.182.36182.51 952.750.00
    3520.914.38515.913.29462.671.571.58455.41 755.120.00
    平均11.5311.3369.551.871 633.280.00
    下载: 导出CSV
  • [1] Brucker P, Knust S, Schoo A, Thiele O. A branch and bound algorithm for the resource-constrained project scheduling problem. European Journal of Operational Research, 1998, 107(2):272-288 doi: 10.1016/S0377-2217(97)00335-4
    [2] Dorndorf U, Pesch E, Phan-Huy T. A branch-and-bound algorithm for the resource-constrained project scheduling problem. Mathematical Methods of Operations Research, 2000, 52(3):413-439 doi: 10.1007/s001860000091
    [3] Klein R. Bidirectional planning:improving priority rule-based heuristics for scheduling resource-constrained projects. European Journal of Operational Research, 2000, 127(3):619-638 doi: 10.1016/S0377-2217(99)00347-1
    [4] Buddhakulsomsiri J, Kim D S. Priority rule-based heuristic for multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting. European Journal of Operational Research, 2007, 178(2):374-390 doi: 10.1016/j.ejor.2006.02.010
    [5] Valls V, Ballestín F, Quintanilla S. A hybrid genetic algorithm for the resource-constrained project scheduling problem. European Journal of Operational Research, 2008, 185(2):495-508 doi: 10.1016/j.ejor.2006.12.033
    [6] Peteghem V, Vanhoucke M. A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. European Journal of Operational Research, 2010, 201(2):409-418 doi: 10.1016/j.ejor.2009.03.034
    [7] Cho J, Kim Y. A simulated annealing algorithm for resource constrained project scheduling problems. Journal of the Operational Research Society, 1997, 48(7):736-744 doi: 10.1057/palgrave.jors.2600416
    [8] Krüger D, Scholl A. A heuristic solution framework for the resource constrained (multi-)project scheduling problem with sequence-dependent transfer times. European Journal of Operational Research, 2009, 197(2):492-508 doi: 10.1016/j.ejor.2008.07.036
    [9] Krüger D, Scholl A. Managing and modelling general resource transfers in (multi-)project scheduling. OR Spectrum, 2010, 32(2):369-394 doi: 10.1007/s00291-008-0144-5
    [10] 宗砚, 刘琼, 张超勇, 朱海平.考虑资源传递时间的多项目调度问题.计算机集成制造系统, 2011, 17(9):1921-1928 http://www.cnki.com.cn/Article/CJFDTotal-HNCG201503032.htm

    Zong Yan, Liu Qiong, Zhang Chao-Yong, Zhu Hai-Ping. Multi-project scheduling problem with resource transfer time. Computer Integrated Manufacturing Systems, 2011, 17(9):1921-1928 http://www.cnki.com.cn/Article/CJFDTotal-HNCG201503032.htm
    [11] Kolisch R, Sprecher A. PSPLIB——A project scheduling problem library:OR Software-ORSEP Operations Research Software Exchange Program. European Journal of Operational Research, 1996, 96(1):205-216 http://cn.bing.com/academic/profile?id=bed96a8f24c0e94f44eb2d09f21eb077&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  2577
  • HTML全文浏览量:  233
  • PDF下载量:  506
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-23
  • 录用日期:  2017-04-07
  • 刊出日期:  2018-06-20

目录

    /

    返回文章
    返回