-
摘要: 为了得到有效的图像多尺度几何表达,提出一种有效的基于Haar小波变换的平稳Tetrolet变换算法.平稳Tetrolet变换是一种由四个单位正方形通过边连接起来的新的自适应Haar类小波变换,对应的滤波器组简单而有效.与标准二维小波变换相比,平稳Tetrolet变换是一种新型基于四格拼板的多尺度几何变换工具,能够通过多方向选择有效地捕获图像中各向异性特性.本文对平稳Tetrolet变换的分解和重构算法进行了详细描述,对利用平稳Tetrolet变换对图像的分解进行了仿真与分析.实验结果表明,与传统算法相比,提出的算法在保留原始图像边缘和纹理信息的同时,可以有效地取得较好的稀疏表达,能消除Tetrolet变换算法对图像融合存在方块效应的缺陷.
-
关键词:
- 图像处理 /
- 平稳Tetrolet变换 /
- 四格拼板 /
- Haar类小波变换 /
- 方块效应
Abstract: In order to get an efficient image multi-scale geometrical representation, an efficient stationary tetrolet transform algorithm based on haar wavelet transform is proposed. Stationary tetrolet transform is a new adaptive haar-type wavelet transform which is made by connecting four equal-sized squares. The corresponding filter bank algorithm is simple but very effective. Compared with the standard two dimensional wavelet transform, stationary tetrolet transform is a novel tetrominoes based multi-scale geometrical transform tool, which can capture image anisotropic geometrical structures information efficiently by multi-direction selection. In this paper, decomposition and reconstruction algorithms of the stationary tetrolet transform are described in detail, and the simulation and analysis of decomposition of the image using the stationary tetrolet transform are carried out. Experimental results show that compared with traditional algorithms, the proposed algorithm can get better sparse representation and eliminate the blocking artifacts in image fusion resulted from tetrolet transform algorithm. Meanwhile, the significant information of original image like textures and contour detail is well maintained.1) 本文责任编委 胡清华 -
表 1 图 8中不同分解层次的融合图像定量指标
Table 1 Quantitative index of fusion image using different decomposition levels in Fig. 8
不同层次分解 均值 标准差 熵值 平均交叉熵 均方根交叉熵 2层分解 77.419 39.713 6.959 0.3635 0.4455 4层分解 77.408 39.941 6.974 0.2678 0.3283 5层分解 77.356 40.114 6.983 0.2318 0.2843 7层分解 77.287 40.334 6.999 0.2045 0.2509 表 2 不同分解方法的融合图像定量指标
Table 2 Quantitative index of fusion image using different decomposition methods
不同分解方法 均值 标准差 熵值 平均交叉熵 均方根交叉熵 WT 140.273 63.452 7.5993 0.4487 0.4502 SWT 140.318 63.866 7.5959 0.4440 0.4480 CT 140.561 63.226 7.6052 0.4302 0.4325 NSCT 140.356 63.703 7.5910 0.4412 0.4458 DT 140.411 61.289 7.5268 0.4897 0.4974 STT 140.309 63.216 7.6236 0.4462 0.4476 -
[1] 陈勇, 樊强, 帅锋.基于小波分析的图像稀疏保真度评价.电子与信息学报, 2015, 37(9):2055-2061 http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201509004Chen Yong, Fan Qiang, Shuai Feng. Sparse image fidelity evaluation based on wavelet analysis. Journal of Electronics and Information Technology, 2015, 37(9):2055-2061 http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201509004 [2] Meyer F G, Coifman R R. Brushlets:a tool for directional image analysis and image compression. Applied and Computational Harmonic Analysis, 1997, 4(2):147-187 doi: 10.1006/acha.1997.0208 [3] Candés E J, Donoho D L. Ridgelets:a key to higher-dimensional intermittency? Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1999, 357(1760):2495-2509 doi: 10.1098/rsta.1999.0444 [4] Starck J L, Candés E J, Donoho D L. The curvelet transform for image denoising. IEEE Transactions on Image Processing, 2002, 11(6):670-684 doi: 10.1109/TIP.2002.1014998 [5] Donoho D L. Wedgelets:nearly minimax estimation of edges. The Annals of Statistics, 1999, 27(3):859-897 doi: 10.1214/aos/1018031261 [6] Mallat S, Peyré G. A review of bandlet methods for geometrical image representation. Numerical Algorithms, 2007, 44(3):205-234 doi: 10.1007/s11075-007-9092-4 [7] Do M N, Vetterli M. The Contourlet transform:an efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 2005, 14(12):2091-2106 doi: 10.1109/TIP.2005.859376 [8] Velisavljević V, Beferull-Lozano B, Vetterli M, Dragotti P L. Directionlets:anisotropic multidirectional representation with separable filtering. IEEE Transactions on Image Processing, 2006, 15(7):1916-1933 doi: 10.1109/TIP.2006.877076 [9] Velisavljević V, Vetterli M, Beferull-Lozano B, Dragotti P L. Sparse image representation by directionlets. Advances in Imaging and Electron Physics, 2010, 161:147-209 doi: 10.1016/S1076-5670(10)61004-X [10] 张德祥, 张晶晶, 吴小培, 高清维.基于Directionlets变换的偏振图像融合.电子与信息学报, 2011, 33(12):2795-2800 http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201112001Zhang De-Xiang, Zhang Jing-Jing, Wu Xiao-Pei, Gao Qing-Wei. Fusion of polarization image based on directionlets transform. Journal of Electronics and Information Technology, 2011, 33(12):2795-2800 http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201112001 [11] Lu Y X, Gao Q W, Sun D, Xia Y, Zhang D X. SAR speckle reduction using Laplace mixture model and spatial mutual information in the directionlet domain. Neurocomputing, 2015, 173:633-644 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0f3cf356e998c51911fa1bf31045295a [12] Krommweh J. Tetrolet transform:a new adaptive haar wavelet algorithm for sparse image representation. Journal of Visual Communication and Image Representation, 2010, 21(4):364-374 doi: 10.1016/j.jvcir.2010.02.011 [13] Raghuwanshi G, Tyagi V. Texture image retrieval using adaptive tetrolet transforms. Digital Signal Processing, 2016, 48:50-57 doi: 10.1016/j.dsp.2015.09.003 [14] Jain P, Tyagi V. An adaptive edge-preserving image denoising technique using tetrolet transforms. The Visual Computer, 2015, 31(5):657-674 doi: 10.1007/s00371-014-0993-7 [15] 陈原, 张荣, 尹东.基于Tetrolet Packet变换的SAR图像稀疏表示.电子与信息学报, 2012, 34(2):261-267 http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201202002Chen Yuan, Zhang Rong, Yin Dong. SAR image sparse representation based on tetrolet packet transform. Journal of Electronics and Information Technology, 2012, 34(2):261-267 http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201202002 [16] 高继森, 董亚楠, 沈瑜, 张春兰.基于改进Tetrolet变换的图像融合算法研究.计算机科学, 2015, 42(5):320-322 http://d.old.wanfangdata.com.cn/Periodical/jsjkx201505065Gao Ji-Sen, Dong Ya-Nan, Shen Yu, Zhang Chun-Lan. Research of image fusion algorithm based on improved tetrolet transform. Computer Science, 2015, 42(5):320-322 http://d.old.wanfangdata.com.cn/Periodical/jsjkx201505065 [17] 周雨薇, 杨平吕, 陈强, 孙权森.基于MTF和变分的全色与多光谱图像融合模型.自动化学报, 2015, 41(2):342-352 http://www.aas.net.cn/CN/abstract/abstract18613.shtmlZhou Yu-Wei, Yang Ping-Lv, Chen Qiang, Sun Quan-Sen. Pan-sharpening model based on MTF and variational method. Acta Automatica Sinica, 2015, 41(2):342-352 http://www.aas.net.cn/CN/abstract/abstract18613.shtml [18] Krommweh J, Ma J W. Tetrolet shrinkage with anisotropic total variation minimization for image approximation. Signal Processing, 2010, 90(8):2529-2539 doi: 10.1016/j.sigpro.2010.02.022 [19] 沈瑜, 伍忠东, 王小鹏, 董亚楠, 江娜.基于模糊算子的Tetrolet变换图像融合算法.计算机科学与探索, 2015, 9(9):1132-1138 http://d.old.wanfangdata.com.cn/Periodical/jsjkxyts201509014Shen Yu, Wu Zhong-Dong, Wang Xiao-Peng, Dong Ya-Nan, Jiang Na. Tetrolet transform images fusion algorithm based on fuzzy operator. Journal of Frontiers of Computer Science and Technology, 2015, 9(9):1132-1138 http://d.old.wanfangdata.com.cn/Periodical/jsjkxyts201509014 [20] 闫莉萍, 刘宝生, 周东华.一种新的图像融合及性能评价方法.系统工程与电子技术, 2007, 29(4):509-513 doi: 10.3321/j.issn:1001-506X.2007.04.003Yan Li-Ping, Liu Bao-Sheng, Zhou Dong-Hua. Novel image fusion algorithm with novel performance evaluation method. Systems Engineering and Electronics, 2007, 29(4):509-513 doi: 10.3321/j.issn:1001-506X.2007.04.003 [21] 王志明.无参考图像质量评价综述.自动化学报, 2015, 41(6):1062-1079 http://www.aas.net.cn/CN/abstract/abstract18682.shtmlWang Zhi-Ming. Review of no-reference image quality assessment. Acta Automatica Sinica, 2015, 41(6):1062-1079 http://www.aas.net.cn/CN/abstract/abstract18682.shtml [22] 张小利, 李雄飞, 李军.融合图像质量评价指标的相关性分析及性能评估.自动化学报, 2014, 40(2):306-315 http://www.aas.net.cn/CN/abstract/abstract18292.shtmlZhang Xiao-Li, Li Xiong-Fei, Li Jun. Validation and correlation analysis of metrics for evaluating performance of image fusion. Acta Automatica Sinica, 2014, 40(2):306-315 http://www.aas.net.cn/CN/abstract/abstract18292.shtml