[1]
|
Szegedy C, Toshev A, Erhan D. Deep neural networks for object detection. In:Proceedings of the 2013 Advances in Neural Information Processing Systems (NIPS). Harrahs and Harveys, Lake Tahoe, USA:MIT Press, 2013. 2553-2561
|
[2]
|
Felzenszwalb P F, Girshick R B, McAllester D, Ramanan D. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1627-1645 doi: 10.1109/TPAMI.2009.167
|
[3]
|
黄凯奇, 任伟强, 谭铁牛.图像物体分类与检测算法综述.计算机学报, 2014, 37(6):1225-1240 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201406001.htmHuang Kai-Qi, Ren Wei-Qiang, Tan Tie-Niu. A review on image object classification and detection. Chinese Journal of Computers, 2014, 37(6):1225-1240 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201406001.htm
|
[4]
|
Zhang X, Yang Y H, Han Z G, Wang H, Gao C. Object class detection:a survey. ACM Computing Surveys (CSUR), 2013, 46(1):Article No. 10 http://dl.acm.org/citation.cfm?id=2522978
|
[5]
|
Dalal N, Triggs B. Histograms of oriented gradients for human detection. In:Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). San Diego, CA, USA:IEEE, 2005, 1:886-893
|
[6]
|
Uijlings J R R, van de Sande K E A, Gevers T, Smeulders A W M. Selective search for object recognition. International Journal of Computer Vision, 2013, 104(2):154-171 doi: 10.1007/s11263-013-0620-5
|
[7]
|
Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN:towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149 doi: 10.1109/TPAMI.2016.2577031
|
[8]
|
He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, Nevada, USA:IEEE, 2016. 770-778
|
[9]
|
Lampert C H, Blaschko M B, Hofmann T. Beyond sliding windows:object localization by efficient subwindow search. In:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Anchorage, Alaska, USA:IEEE, 2008. 1-8
|
[10]
|
An S J, Peursum P, Liu W Q, Venkatesh S. Efficient algorithms for subwindow search in object detection and localization. In:Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami, Florida, USA:IEEE, 2009. 264-271
|
[11]
|
Wei Y C, Tao L T. Efficient histogram-based sliding window. In:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA, USA:IEEE, 2010. 3003-3010
|
[12]
|
Van de Sande K E A, Uijlings J R R, Gevers T, Smeulders A W M. Segmentation as selective search for object recognition. In:Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV). Barcelona, Spain:IEEE, 2011. 1879-1886
|
[13]
|
Shotton J, Blake A, Cipolla R. Multiscale categorical object recognition using contour fragments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(7):1270-1281 doi: 10.1109/TPAMI.2007.70772
|
[14]
|
Leibe B, Leonardis A, Schiele B. Robust object detection with interleaved categorization and segmentation. International Journal of Computer Vision, 2008, 77(1-3):259-289 doi: 10.1007/s11263-007-0095-3
|
[15]
|
Arbelaez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5):898-916 doi: 10.1109/TPAMI.2010.161
|
[16]
|
Shotton J, Winn J, Rother C, Criminisi A. TextonBoost:joint appearance, shape and context modeling for multi-class object recognition and segmentation. In:Proceedings of the 9th European Conference on Computer Vision (ECCV). Berlin, Heidelberg, Germany:Springer, 2006. 1-15
|
[17]
|
Verbeek J, Triggs B. Region classification with Markov field aspect models. In:Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Minneapolis, Minnesota, USA:IEEE, 2007. 1-8
|
[18]
|
Cheng M M, Zhang Z M, Lin W Y, Torr P. BING:binarized normed gradients for objectness estimation at 300fps. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, USA:IEEE, 2014. 3286-3293
|
[19]
|
Zitnick C L, Dollár P. Edge boxes:locating object proposals from edges. In:Proceedings of the 13th European Conference on Computer Vision (ECCV). Zurich, Switzerland:Springer, 2014. 391-405
|
[20]
|
Hosang J, Benenson R, Schiele B. How good are detection proposals, really? arXiv:1406.6962, 2014.
|
[21]
|
Szegedy C, Reed S, Erhan D, Anguelov D, Ioffe S. Scalable, high-quality object detection. arXiv:1412.1441, 2014.
|
[22]
|
Erhan D, Szegedy C, Toshev A, Anguelov D. Scalable object detection using deep neural networks. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, Ohio, USA:IEEE, 2014. 2155-2162
|
[23]
|
Kuo W C, Hariharan B, Malik J. Deepbox:learning objectness with convolutional networks. In:Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile:IEEE, 2015. 2479-2487
|
[24]
|
Ghodrati A, Diba A, Pedersoli M, Tuytelaars T, Van Gool L. Deepproposal:hunting objects by cascading deep convolutional layers. In:Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile:IEEE, 2015. 2578-2586
|
[25]
|
Gidaris S, Komodakis N. Locnet:improving localization accuracy for object detection. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016. 789-798
|
[26]
|
Lawrence G R. Machine Perception of Three-dimensional Solids[Ph.D. dissertation], Massachusetts Institute of Technology, USA, 1963.
|
[27]
|
Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6):679-698 doi: 10.1109/TPAMI.1986.4767851
|
[28]
|
Marr D, Hildreth E. Theory of edge detection. Proceedings of the Royal Society B:Biological Sciences, 1980, 207(1167):187-217 doi: 10.1098/rspb.1980.0020
|
[29]
|
Pellegrino F A, Vanzella W, Torre V. Edge detection revisited. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2004, 34(3):1500-1518 doi: 10.1109/TSMCB.2004.824147
|
[30]
|
Harris C, Stephens M. A combined corner and edge detector. In:Proceedings of the 4th Alvey Vision Conference. Manchester, UK:University of Sheffield Printing Unit, 1988. 147-151
|
[31]
|
Rosten E, Porter R, Drummond T. Faster and better:a machine learning approach to corner detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1):105-119 doi: 10.1109/TPAMI.2008.275
|
[32]
|
Lowe D G. Object recognition from local scale-invariant features. In:Proceedings of the 7th IEEE International Conference on Computer Vision (ICCV). Kerkyra, Greece:IEEE, 1999, 2:1150-1157
|
[33]
|
Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2):91-110 doi: 10.1023/B:VISI.0000029664.99615.94
|
[34]
|
Papageorgiou C P, Oren M, Poggio T. A general framework for object detection. In:Proceedings of the 6th International Conference on Computer Vision (ICCV). Bombay, India:IEEE, 1998. 555-562
|
[35]
|
Ojala T, Pietikäinen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In:Proceedings of the 12th IAPR International Conference on Pattern Recognition, Conference A:Computer Vision and Image Processing. Jerusalem, Israel, Palestine:IEEE, 1994, 1:582-585
|
[36]
|
Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 1996, 29(1):51-59 doi: 10.1016/0031-3203(95)00067-4
|
[37]
|
Yan J J, Lei Z, Yi D, Li S Z. Multi-pedestrian detection in crowded scenes:a global view. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, Rhode Island, USA:IEEE, 2012. 3124-3129
|
[38]
|
Yan J J, Zhang X C, Lei Z, Liao S C, Li S Z. Robust multi-resolution pedestrian detection in traffic scenes. In:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Portland, Oregon, USA:IEEE, 2013. 3033-3040
|
[39]
|
Yan J J, Zhang X C, Lei Z, Yi D, Li S Z. Structural models for face detection. In:Proceedings of the 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). Shanghai, China:IEEE, 2013. 1-6
|
[40]
|
Zhu X X, Ramanan D. Face detection, pose estimation, and landmark localization in the wild. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, Rhode Island, USA:IEEE, 2012. 2879-2886
|
[41]
|
Yang Y, Ramanan D. Articulated pose estimation with flexible mixtures-of-parts. In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, USA:IEEE, 2011. 1385-1392
|
[42]
|
Yan J J, Lei Z, Wen L Y, Li S Z. The fastest deformable part model for object detection. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, Ohio, USA:IEEE, 2014. 2497-2504
|
[43]
|
Lazebnik S, Schmid C, Ponce J. Beyond bags of features:spatial pyramid matching for recognizing natural scene categories. In:Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). New York, NY, USA:IEEE, 2006. 2169-2178
|
[44]
|
Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, Ohio, USA:IEEE, 2014. 580-587
|
[45]
|
Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z H, Karpathy A, Khosla A, Bernstein M, Berg A C, Fei-Fei L. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 2015, 115(3):211-252 doi: 10.1007/s11263-015-0816-y
|
[46]
|
Everingham M, Van Gool L, Williams C K I, Winn J, Zisserman A. The PASCAL visual object classes (VOC) challenge. International Journal of Computer Vision, 2010, 88(2):303-338 doi: 10.1007/s11263-009-0275-4
|
[47]
|
Xiao J X, Hays J, Ehinger K A, Oliva A, Torralba A. Sun database:large-scale scene recognition from abbey to zoo. In:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA, USA:IEEE, 2010. 3485-3492
|
[48]
|
Lin T Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick C L. Microsoft COCO:common objects in context. In:Proceedings of the 13th European Conference on Computer Vision (ECCV). Zurich, Switzerland:Springer, 2014. 740-755
|
[49]
|
Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323(6088):533-536 doi: 10.1038/323533a0
|
[50]
|
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553):436-444 doi: 10.1038/nature14539
|
[51]
|
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786):504-507 doi: 10.1126/science.1127647
|
[52]
|
Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7):1527-1554 doi: 10.1162/neco.2006.18.7.1527
|
[53]
|
Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks. In:Proceedings of the 19th International Conference on Neural Information Processing Systems. Cambridge, MA, USA:MIT Press, 2006. 153-160
|
[54]
|
LeCun Y, Chopra S, Hadsell R, Ranzato M, Huang F. A tutorial on energy-based learning. Predicting Structured Data. Cambridge, MA, USA:MIT Press, 2006.
|
[55]
|
Lee H, Ekanadham C, Ng A Y. Sparse deep belief net model for visual area V2. In:Proceedings of the 2007 Advances in Neural Information Processing Systems (NIPS). Vancouver, British Columbia, Canada:MIT Press, 2007. 873-880
|
[56]
|
Hinton G, Deng L, Yu D, Dahl G E, Mohamed A R, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath T N, Kingsbury B. Deep neural networks for acoustic modeling in speech recognition:the shared views of four research groups. IEEE Signal Processing Magazine, 2012, 29(6):82-97 doi: 10.1109/MSP.2012.2205597
|
[57]
|
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In:Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA:MIT Press, 2012. 1097-1105
|
[58]
|
Girshick R. Fast R-CNN. In:Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile:IEEE, 2015. 1440-1448
|
[59]
|
Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11):2278-2324 doi: 10.1109/5.726791
|
[60]
|
Vincent P, Larochelle H, Bengio Y, Manzagol P A. Extracting and composing robust features with denoising Autoencoders. In:Proceedings of the 25th IEEE International Conference on Machine Learning (ICML). Helsinki, Finland:IEEE, 2008. 1096-1103
|
[61]
|
Masci J, Meier U, Cireşan D, Schmidhuber J. Stacked convolutional auto-encoders for hierarchical feature extraction. In:Proceedings of the 21th International Conference on Artificial Neural Networks. Berlin, Heidelberg, Germany:Springer, 2011. 52-59
|
[62]
|
Zeiler M D, Fergus R. Visualizing and understanding convolutional networks. In:Proceedings of the 13th European Conference on Computer Vision (ECCV). Zurich, Switzerland:Springer, 2014. 818-833
|
[63]
|
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014.
|
[64]
|
Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, Massachusetts, USA:IEEE, 2015. 1-9
|
[65]
|
Szegedy C, Ioffe S, Vanhoucke V, Alemi A. Inception-v4, Inception-ResNet and the impact of residual connections on learning. arXiv:1602.07261, 2016.
|
[66]
|
Ioffe S, Szegedy C. Batch normalization:accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167, 2015.
|
[67]
|
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. arXiv:1512.00567, 2015.
|
[68]
|
He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. In:Proceedings of the 2014 European Conference on Computer Vision (ECCV). Zurich, Switzerland:Springer, 2014. 346-361
|
[69]
|
Bell S, Lawrence Zitnick C, Bala K, Girshick R. Inside-outside net:detecting objects in context with skip pooling and recurrent neural networks. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016. 2874-2883
|
[70]
|
Yang F, Choi W, Lin Y Q. Exploit all the layers:fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016. 2129-2137
|
[71]
|
Shrivastava A, Gupta A, Girshick R. Training region-based object detectors with online hard example mining. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016. 761-769
|
[72]
|
Sung K K. Learning and Example Selection for Object and Pattern Detection[Ph.D. dissertation], Massachusetts Institute of Technology, USA, 1996.
|
[73]
|
Kong T, Yao A B, Chen Y R, Sun F C. HyperNet:towards accurate region proposal generation and joint object detection. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016. 845-853
|
[74]
|
Dai J F, Li Y, He K M, Sun J. R-FCN:object detection via region-based fully convolutional networks. In:Proceedings of the 2016 Advances in Neural Information Processing Systems (NIPS). Barcelona, Spain:MIT Press, 2016. 379-387
|
[75]
|
Kim K H, Hong S, Roh B, Cheon Y, Park M. PVANET:deep but lightweight neural networks for real-time object detection. arXiv:1608.08021, 2016.
|
[76]
|
Shang W L, Sohn K, Almeida D, Lee H. Understanding and improving convolutional neural networks via concatenated rectified linear units. In:Proceedings of the 33rd International Conference on Machine Learning (ICML). New York, USA:IEEE, 2016. 2217-2225
|
[77]
|
Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y. Overfeat:integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229, 2013.
|
[78]
|
Redmon J, Divvala S, Girshick R, Farhadi A. You only look once:unified, real-time object detection. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016. 779-788
|
[79]
|
Najibi M, Rastegari M, Davis L S. G-CNN:an iterative grid based object detector. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016. 2369-2377
|
[80]
|
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S E, Fu C Y, Berg A C. SSD:single shot multibox detector. In:Proceedings of the 14th European Conference on Computer Vision (ECCV). Amsterdam, Netherlands:Springer, 2016. 21-37
|
[81]
|
Redmon J, Farhadi A. YOLO9000:better, faster, stronger. arXiv:1612.08242, 2016.
|
[82]
|
Pepik B, Benenson R, Ritschel T, Schiele B. What is holding back convnets for detection? In:Proceedings of the 2015 German Conference on Pattern Recognition. Cham, Germany:Springer, 2015. 517-528
|
[83]
|
Xiang Y, Mottaghi R, Savarese S. Beyond PASCAL:a benchmark for 3d object detection in the wild. In:Proceedings of the 2014 IEEE Winter Conference on Applications of Computer Vision (WACV). Steamboat Springs, Colorado, USA:IEEE, 2014. 75-82
|
[84]
|
Amazon Mechanical Turk[Online], available:https://www.mturk.com/, February 13, 2017
|
[85]
|
王坤峰, 苟超, 王飞跃.平行视觉:基于ACP的智能视觉计算方法.自动化学报, 2016, 42(10):1490-1500 http://www.aas.net.cn/CN/abstract/abstract18936.shtmlWang Kun-Feng, Gou Chao, Wang Fei-Yue. Parallel vision:an ACP-based approach to intelligent vision computing. Acta Automatica Sinica, 2016, 42(10):1490-1500 http://www.aas.net.cn/CN/abstract/abstract18936.shtml
|
[86]
|
Wang K F, Gou C, Zheng N N, Rehg J M, Wang F Y. Parallel vision for perception and understanding of complex scenes:methods, framework, and perspectives. Artificial Intelligence Review[Online], available:https://link.springer.com/article/10.1007/s10462-017-9569-z, July 18, 2017
|
[87]
|
王飞跃.平行系统方法与复杂系统的管理和控制.控制与决策, 2004, 19(5):485-489, 514 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200405001.htmWang Fei-Yue. Parallel system methods for management and control of complex systems. Control and Decision, 2004, 19(5):485-489, 514 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200405001.htm
|
[88]
|
Wang F Y. Parallel control and management for intelligent transportation systems:concepts, architectures, and applications. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3):630-638 doi: 10.1109/TITS.2010.2060218
|
[89]
|
王飞跃.平行控制:数据驱动的计算控制方法.自动化学报, 2013, 39(4):293-302 http://www.aas.net.cn/CN/abstract/abstract17915.shtmlWang Fei-Yue. Parallel control:a method for data-driven and computational control. Acta Automatica Sinica, 2013, 39(4):293-302 http://www.aas.net.cn/CN/abstract/abstract17915.shtml
|
[90]
|
Peng X C, Sun B C, Ali K, Saenko K. Learning deep object detectors from 3D models. In:Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile:IEEE, 2015. 1278-1286
|
[91]
|
Johnson-Roberson M, Barto C, Mehta R, Sridhar S N, Rosaen K, Vasudevan R. Driving in the matrix:can virtual worlds replace human-generated annotations for real world tasks? arXiv:1610.01983, 2016.
|
[92]
|
Pan S J, Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359 doi: 10.1109/TKDE.2009.191
|
[93]
|
Taylor M E, Stone P. Transfer learning for reinforcement learning domains:a survey. The Journal of Machine Learning Research, 2009, 10:1633-1685 http://dl.acm.org/citation.cfm?doid=1577069.1755839
|