2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fisher准则下面向判别性特征的字典学习方法及其组织病理图像分类研究

汤红忠 李骁 张小刚 张东波 王翔 毛丽珍

汤红忠, 李骁, 张小刚, 张东波, 王翔, 毛丽珍. Fisher准则下面向判别性特征的字典学习方法及其组织病理图像分类研究. 自动化学报, 2018, 44(10): 1842-1853. doi: 10.16383/j.aas.2017.c160814
引用本文: 汤红忠, 李骁, 张小刚, 张东波, 王翔, 毛丽珍. Fisher准则下面向判别性特征的字典学习方法及其组织病理图像分类研究. 自动化学报, 2018, 44(10): 1842-1853. doi: 10.16383/j.aas.2017.c160814
TANG Hong-Zhong, LI Xiao, ZHANG Xiao-Gang, ZHANG Dong-Bo, WANG Xiang, MAO Li-Zhen. Discriminative Feature-oriented Dictionary Learning Method With Fisher Criterion for Histopathological Image Classification. ACTA AUTOMATICA SINICA, 2018, 44(10): 1842-1853. doi: 10.16383/j.aas.2017.c160814
Citation: TANG Hong-Zhong, LI Xiao, ZHANG Xiao-Gang, ZHANG Dong-Bo, WANG Xiang, MAO Li-Zhen. Discriminative Feature-oriented Dictionary Learning Method With Fisher Criterion for Histopathological Image Classification. ACTA AUTOMATICA SINICA, 2018, 44(10): 1842-1853. doi: 10.16383/j.aas.2017.c160814

Fisher准则下面向判别性特征的字典学习方法及其组织病理图像分类研究

doi: 10.16383/j.aas.2017.c160814
基金项目: 

湖南省自然科学基金 2017JJ3315

国家自然科学基金 61573299

湖南省自然科学基金 2016JJ3125

湖南省自然科学基金 2017JJ2251

国家自然科学基金 61672216

湖南省教育厅项目 15C1328

国家自然科学基金 61673162

详细信息
    作者简介:

    汤红忠  湘潭大学信息工程学院副教授, 湖南大学电气与信息工程学院博士研究生.主要研究方向为字典学习, 稀疏表示及其在图像处理与模式识别中的应用.E-mail:diandiant@126.com

    李骁  湘潭大学信息工程学院硕士研究生.主要研究方向为图像处理与模式识别.E-mail:lixiaoedu@163.com

    张东波  湘潭大学信息工程学院教授.2007年获得湖南大学电气与信息工程学院控制科学与工程博士学位.主要研究方向为图像处理, 模式识别, 机器学习.E-mail:zhadonbo@163.com

    王翔  湘潭大学信息工程学院硕士研究生.主要研究方向为图像处理与模式识别.E-mail:18107470993@163.com

    毛丽珍  湘潭大学信息工程学院硕士研究生.主要研究方向为图像处理与模式识别.E-mail:m1239954546@gmail.com

    通讯作者:

    张小刚  湖南大学电气与信息工程学院教授.主要研究方向为工业窑炉过程控制与模式识别.本文通信作者.E-mail:zhangxiaogang@126.com

Discriminative Feature-oriented Dictionary Learning Method With Fisher Criterion for Histopathological Image Classification

Funds: 

National Natural Science Foundation of Hunan Province 2017JJ3315

National Natural Science Foundation of China 61573299

National Natural Science Foundation of Hunan Province 2016JJ3125

National Natural Science Foundation of Hunan Province 2017JJ2251

National Natural Science Foundation of China 61672216

Scientific Research Project of Hunan Province Education Department 15C1328

National Natural Science Foundation of China 61673162

More Information
    Author Bio:

     Associate professor at the College of Information Engineering, Xiangtan University. She is a Ph. D. candidate at the College of Electrical and Information engineering, Hunan University. Her research interest covers dictionary learning, sparse representation and the application into image processing and pattern recognition

     Master student at the College of Information Engineering, Xiangtan University. His research interest covers image processing and pattern recognition

     Professor at the College of Information Engineering, Xiangtan University. He received his Ph. D. degree from the College of Electrical and Information Engineering, Hunan University in 2007. His research interest covers image processing, pattern recognition, and machine learning

     Master student at the College of Information Engineering, Xiangtan University. His research interest covers image processing and pattern recognition

     Master student at the College of Information Engineering, Xiangtan University. Her research interest covers image processing and pattern recognition

    Corresponding author: ZHANG Xiao-Gang  Professor at the College of Electrical and Information Engineering, Hunan University. His research interest covers process control and pattern recognition for industrial kiln. Corresponding author of this paper
  • 摘要: 针对当前面向组织病理图像特征提取的字典学习方法中存在着学习的无病字典与有病字典相似程度高,判别性弱的问题,本文提出一种新的面向判别性特征字典学习方法(Discriminative feature-oriented dictionary learning based on Fisher criterion,FCDFDL).该方法基于Fisher准则构造目标函数的惩罚项,最小化学习字典的类内距离与最大化学习字典的类间距离,大大降低无病字典与有病字典间的相似性.同时,优化学习字典对同类样本的重构性能,并约束学习字典对非同类样本的重构性能.然后,利用本文学习的无病与有病字典对测试样本进行稀疏表示,采用重构误差向量的统计量构造分类器.最后,分别在ADL数据集与BreaKHis数据集上验证了本文方法的有效性.实验结果表明,本文学习字典的判别性更强,获得了更优的分类性能.
    1)  本文责任编委 张道强
  • 图  1  肺、脾脏、肾脏的组织病理图像

    Fig.  1  Lung, spleen and kidney images

    图  2  腺病与叶状癌的组织病理图像

    Fig.  2  The images of adenosis and phyllodes tumor

    图  3  FCDFDL, DFDL, FDDL, LC-KSVD方法学习字典的可视图

    Fig.  3  The visual maps of learned dictionaries with FCDFDL, DFDL, FDDL, and LC-KSVD method

    图  4  学习字典的类间差异

    Fig.  4  Inter-class differences between learned $D$ and $\bar{D}$

    图  5  参数$\alpha $, $\beta $的变化对不同病理图像分类精度的影响

    Fig.  5  Classification accuracy with different parameters $\alpha $, $\beta $ on different pathological images

    图  6  FCDFDL方法下图块尺寸的变化对不同病理图像分类精度的影响

    Fig.  6  Classification accuracy on different pathological images with different image block size, and with FCDFDL method

    表  1  不同方法在肺部图像的分类结果对比

    Table  1  Classification results comparison of different methods on lung images

    The class of samples Health Diseased Method
    0.8875 0.1125 WND-CHARM
    0.7250 0.2750 SRC
    Healthy samples 0.7500 0.2500 SHIRC
    0.7703 0.2297 LC-KSVD
    0.9325 0.0675 FDDL
    0.9234 0.0766 DFDL
    0.9509 0.0491 FCDFDL
    0.3762 0.6238 WND-CHARM
    0.2417 0.7583 SRC
    Diseased samples 0.15 0.85 SHIRC
    0.1607 0.8393 LC-KSVD
    0.1000 0.9000 FDDL
    0.0576 0.9424 DFDL
    0.0375 0.9625 FCDFDL
    下载: 导出CSV

    表  2  不同方法在脾脏图像的分类结果对比

    The class of samples Health Diseased Method
    0.5512 0.4488 WND-CHARM
    0.7083 0.2917 SRC
    0.6500 0.3500 SHIRC
    Healthy samples 0.8193 0.1807 LC-KSVD
    0.8694 0.1306 FDDL
    0.8999 0.1001 DFDL
    0.9064 0.0936 FCDFDL
    0.1275 0.8725 WND-CHARM
    0.2083 0.7917 SRC
    0.1167 0.8833 SHIRC
    Diseased samples 0.1457 0.8543 LC-KSVD
    0.0857 0.9143 FDDL
    0.0599 0.9401 DFDL
    0.0409 0.9591 FCDFDL
    下载: 导出CSV

    表  3  不同方法在肾脏图像的分类结果对比

    Table  3  Classification results comparison of different methods on kidney images

    The class of samples Healthy Diseased Method
    0.6925 0.3075 WND-CHARM
    0.7910 0.2090 SRC
    0.811 0.189 SHIRC
    Healthy samples 0.8215 0.1785 LC-KSVD
    0.8409 0.1591 FDDL
    0.8723 0.1277 DFDL
    0.8809 0.1191 FCDFDL
    0.2812 0.7188 WND-CHARM
    0.2220 0.7780 SRC
    0.1946 0.8054 SHIRC
    Diseased samples 0.1857 0.8143 LC-KSVD
    0.1971 0.8029 FDDL
    0.1405 0.8595 DFDL
    0.1311 0.8689 FCDFDL
    下载: 导出CSV

    表  4  不同方法在BreaKHis数据库上的分类结果对比

    Table  4  Classification results comparison of different methods on BreaKHis dataset

    The class of samples Adenosis Phyllodes tumor Method
    0.7225 0.2775 WND-CHARM
    0.7875 0.2125 SRC
    Adenosis samples 0.8775 0.1225 SHIRC
    0.8921 0.1079 LC-KSVD
    0.8896 0.1104 FDDL
    0.9057 0.0943 DFDL
    0.9385 0.0615 FCDFDL
    0.3192 0.6808 WND-CHARM
    0.2925 0.7075 SRC
    Phylldes tumor samples 0.2875 0.7125 SHIRC
    0.1422 0.8578 LC-KSVD
    0.1047 0.8953 FDDL
    0.0924 0.9076 DFDL
    0.0723 0.9277 FCDFDL
    下载: 导出CSV
  • [1] Gurcan M N, Boucheron L E, Can A, Madabhushi A, Rajpoot N M, Yener B. Histopathological image analysis:a review. IEEE Reviews in Biomedical Engineering, 2009, 2:147-171 doi: 10.1109/RBME.2009.2034865
    [2] McCann M T, Ozolek J A, Castro C A, Parvin B, Kovacevic J. Automated histology analysis:opportunities for signal processing. IEEE Signal Processing Magazine, 2015, 32(1):78-87 doi: 10.1109/MSP.2014.2346443
    [3] Madabhushi A, Lee G. Image analysis and machine learning in digital pathology:challenges and opportunities. Medical Image Analysis, 2016, 33:170-175 doi: 10.1016/j.media.2016.06.037
    [4] Dundar M M, Badve S, Bilgin G, Raykar V, Jain R, Sertel O, Gurcan M N. Computerized classification of intraductal breast lesions using histopathological images. IEEE Transactions on Biomedical Engineering, 2011, 58(7):1977-1984 doi: 10.1109/TBME.2011.2110648
    [5] Tabesh A, Teverovskiy M, Pang H Y, Kumar V P, Verbel D, Kotsianti A, Saidi O. Multifeature prostate cancer diagnosis and Gleason grading of histological images. IEEE Transactions on Medical Imaging, 2007, 26(10):1366-1378 doi: 10.1109/TMI.2007.898536
    [6] Doyle S, Agner S, Madabhushi A, Feldman M, Tomaszewski J. Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features. In: Proceedings of the 5th IEEE International Symposium on Biomedical Imaging: from Nano to Macro. Paris, France: IEEE, 2008. 496-499
    [7] Li W Q, Coats M, Zhang J G, McKenna S J. Discriminating dysplasia:optical tomographic texture analysis of colorectal polyps. Medical Image Analysis, 2015, 26(1):57-69 doi: 10.1016/j.media.2015.08.002
    [8] Linder N, Konsti J, Turkki R, Rahtu E, Lundin M, Nordling S, Haglund C, Ahonen T, Pietikäinen M, Lundin J. Identification of tumor epithelium and stroma in tissue microarrays using texture analysis. Diagnostic Pathology, 2012, 7(1):22 doi: 10.1186/1746-1596-7-22
    [9] Al-Kadi O S. Texture measures combination for improved meningioma classification of histopathological images. Pattern Recognition, 2015, 43(6):2043-2053 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0215850394
    [10] Irshad H, Jalali S, Roux L, Racoceanu D, Hwee L J, Le Naour G, Capron F. Automated mitosis detection using texture, SIFT features and HMAX biologically inspired approach. Journal of Pathology Informatics, 2013, 4(S2):S12 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3678748
    [11] Ergin S, Kilinc O. A new feature extraction framework based on wavelets for breast cancer diagnosis. Computers in Biology and Medicine, 2014, 51:171-182 doi: 10.1016/j.compbiomed.2014.05.008
    [12] Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2):210-227 doi: 10.1109/TPAMI.2008.79
    [13] Srinivas U, Mousavi H, Jeon C, Monga V, Hattel A, Jayarao B. SHIRC: a simultaneous sparsity model for histopathological image representation and classification. In: Proceedings of the 10th IEEE International Symposium on Biomedical Imaging (ISBI). Asilomar, CA, USA: IEEE, 2013. 1118-1121 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6556675
    [14] Srinivas U, Mousavi H S, Monga V, Hattel A, Jayarao B. Simultaneous sparsity model for histopathological image representation and classification. IEEE Transactions on Medical Imaging, 2014, 33(5):1163-1179 doi: 10.1109/TMI.2014.2306173
    [15] Nayak N, Chang H, Borowsky A, Spellman P, Parvin B. Classification of tumor histopathology via sparse feature learning. In: Proceedings of the 10th IEEE International Symposium on Biomedical Imaging (ISBI). Asilomar, CA, USA: IEEE, 2013. 410-413 http://ieeexplore.ieee.org/document/6556499/
    [16] Chang H, Zhou Y, Spellman P, Parvin B. Stacked predictive sparse coding for classification of distinct regions in tumor histopathology. In: Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV). Sydney, NSW, Australia: IEEE, 2013. 169-176 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6751130&filter%3DAND(p_IS_Number%3A6751100)
    [17] Chang H, Zhou Y, Borowsky A, Barner K, Spellman P, Parvin B. Stacked predictive sparse decomposition for classification of histology sections. International Journal of Computer Vision, 2015, 113(1):3-18 doi: 10.1007/s11263-014-0790-9
    [18] Shi J, Li Y, Zhu J, Sun H J, Cai Y. Joint sparse coding based spatial pyramid matching for classification of color medical image. Computerized Medical Imaging and Graphics, 2015, 41:61-66 doi: 10.1016/j.compmedimag.2014.06.002
    [19] Zhou Y, Chang H, Barner K, Spellman P, Parvin B. Classification of histology sections via multispectral convolutional sparse coding. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH, USA: IEEE, 2014. 3081-3088 http://dl.acm.org/citation.cfm?id=2679600.2680188
    [20] Shi Y H, Gao Y, Yang Y B, Zhang Y, Wang D. Multimodal sparse representation-based classification for lung needle biopsy images. IEEE Transactions on Biomedical Engineering, 2013, 60(10):2675-2685 doi: 10.1109/TBME.2013.2262099
    [21] Xu J, Xiang L, Liu Q S, Gilmore H, Wu J Z, Tang J H, Madabhushi A. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Transactions on Medical Imaging, 2016, 35(1):119-130 doi: 10.1109/TMI.2015.2458702
    [22] Zhang X F, Dou H, Ju T, Xu J, Zhang S T. Fusing heterogeneous features from stacked sparse autoencoder for histopathological image analysis. IEEE Journal of Biomedical and Health Informatics, 2016, 20(5):1377-1383 doi: 10.1109/JBHI.2015.2461671
    [23] 汤红忠, 张小刚, 陈华, 程炜, 唐美玲.带边界条件约束的非相干字典学习方法及其稀疏表示.自动化学报, 2015, 41(2):312-319 http://www.aas.net.cn/CN/abstract/abstract18610.shtml

    Tang Hong-Zhong, Zhang Xiao-Gang, Chen Hua, Cheng Wei, Tang Mei-Ling. Incoherent dictionary learning method with border condition constrained for sparse representation. Acta Automatica Sinica, 2015, 41(2):312-319 http://www.aas.net.cn/CN/abstract/abstract18610.shtml
    [24] 文伟, 王英华, 冯博, 刘宏伟.基于监督非相干字典学习的极化SAR图像舰船目标检测.自动化学报, 2015, 41(11):1926-1940 http://www.aas.net.cn/CN/abstract/abstract18767.shtml

    Wen Wei, Wang Ying-Hua, Feng Bo, Liu Hong-Wei. Supervised incoherent dictionary learning for ship detection with PolSAR images. Acta Automatica Sinica, 2015, 41(11):1926-1940 http://www.aas.net.cn/CN/abstract/abstract18767.shtml
    [25] Zhang Q, Li B X. Discriminative K-SVD for dictionary learning in face recognition. In: Proceedings of the 2010 IEEE Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010. 2691-2698
    [26] Jiang Z L, Lin Z, Davis L S. Label consistent K-SVD:learning a discriminative dictionary for recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11):2651-2664 doi: 10.1109/TPAMI.2013.88
    [27] Yang M, Zhang L, Feng X C, Zhang D. Fisher discrimination dictionary learning for sparse representation. In: Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV). Barcelona, Spain: IEEE, 2011. 543-550 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6126286
    [28] 潘宗序, 禹晶, 胡少兴, 孙卫东.基于多尺度结构自相似性的单幅图像超分辨率算法.自动化学报, 2014, 40(4):594-603 http://www.aas.net.cn/CN/abstract/abstract18325.shtml

    Pan Zong-Xu, Yu Jing, Hu Shao-Xing, Sun Wei-Dong. Single image super resolution based on multi-scale structural self-similarity. Acta Automatica Sinica, 2014, 40(4):594-603 http://www.aas.net.cn/CN/abstract/abstract18325.shtml
    [29] Vu T H, Mousavi H S, Monga V, Rao U K A, Rao G. DFDL: discriminative feature-oriented dictionary learning for histopathological image classification. In: Proceedings of the 12th International Symposium on Biomedical Imaging (ISBI). New York, NY, USA: IEEE, 2015. 990-994 http://cn.arxiv.org/abs/1502.01032
    [30] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, 53(12):4655-4666 doi: 10.1109/TIT.2007.909108
    [31] Animal Diagnostic Laboratory. Safeguarding animal and human health and facilitating animal agricultureOnline, available: http://vbs.psu.edu/adl, December 12, 2017
    [32] Spanhol F A, Oliveira L S, Petitjean C, Heutte L. A dataset for breast cancer histopathological image classification. IEEE Transactions on Biomedical Engineering, 2016, 63(7):1455-1462 doi: 10.1109/TBME.2015.2496264
    [33] Orlov N, Shamir L, Macura T, Johnston J, Eckley D M, Goldberg I G. WND-CHARM:multi-purpose image classification using compound image transforms. Pattern Recognition Letters, 2008, 29(11):1684-1693 doi: 10.1016/j.patrec.2008.04.013
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  1918
  • HTML全文浏览量:  364
  • PDF下载量:  531
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-09
  • 录用日期:  2017-09-23
  • 刊出日期:  2018-10-20

目录

    /

    返回文章
    返回