2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于有限时间稳定的环绕控制器设计

张春燕 戚国庆 李银伢 盛安冬

张春燕, 戚国庆, 李银伢, 盛安冬. 一种基于有限时间稳定的环绕控制器设计. 自动化学报, 2018, 44(11): 2056-2067. doi: 10.16383/j.aas.2017.c160798
引用本文: 张春燕, 戚国庆, 李银伢, 盛安冬. 一种基于有限时间稳定的环绕控制器设计. 自动化学报, 2018, 44(11): 2056-2067. doi: 10.16383/j.aas.2017.c160798
ZHANG Chun-Yan, QI Guo-Qing, LI Yin-Ya, SHENG An-Dong. Standoff Tracking Control With Respect to Moving Target via Finite-time Stabilization. ACTA AUTOMATICA SINICA, 2018, 44(11): 2056-2067. doi: 10.16383/j.aas.2017.c160798
Citation: ZHANG Chun-Yan, QI Guo-Qing, LI Yin-Ya, SHENG An-Dong. Standoff Tracking Control With Respect to Moving Target via Finite-time Stabilization. ACTA AUTOMATICA SINICA, 2018, 44(11): 2056-2067. doi: 10.16383/j.aas.2017.c160798

一种基于有限时间稳定的环绕控制器设计

doi: 10.16383/j.aas.2017.c160798
基金项目: 

国家自然科学基金 61876024

国家自然科学基金 61871221

详细信息
    作者简介:

    张春燕  南京理工大学自动化学院博士研究生.主要研究方向为目标跟踪.E-mail:chunyan.zhang@njust.edu.cn

    李银伢  南京理工大学自动化学院副研究员.主要研究方向为非线性估计理论及应用.E-mail:liyinya@njust.edu.cn

    盛安冬  南京理工大学自动化学院研究员.主要研究方向为多源信息融合, 非线性估计理论及应用.E-mail:shengandong@njust.edu.cn

    通讯作者:

    戚国庆  南京理工大学自动化学院副研究员.主要研究方向为随机状态估计, 多传感器数据融合.本文通信作者.E-mail:qiguoqing@njust.edu.cn

Standoff Tracking Control With Respect to Moving Target via Finite-time Stabilization

Funds: 

National Natural Science Foundation of China 61876024

National Natural Science Foundation of China 61871221

More Information
    Author Bio:

     Ph. D. candidate at the College of Automation, Nanjing University of Science and Technology. Her main research interest is target tracking

     Associate professor at the College of Automation, Nanjing University of Science and Technology. His research interest covers nonlinear estimation theory and application

     Professor at the College of Automation, Nanjing University of Science and Technology. His research interest covers multi-source information fusion and the nonlinear estimation theory and its application

    Corresponding author: QI Guo-Qing  Associate professor at the College of Automation, Nanjing University of Science and Technology. His research interest covers stochastic state estimation and multi-sensor information fusion. Corresponding author of this paper
  • 摘要: 针对单无人机对单目标的环航跟踪问题,设计了一个能保证无人机在速度有界条件下,飞行轨迹快速收敛到期望航迹的控制器.1)根据无人机运动特性,设计了一个考虑目标运动状态的控制方案,并利用Lyapunov稳定性定理给出了系统渐近稳定的充分条件.2)结合饱和控制和有限时间控制,得到使无人机相对目标距离在有限时间内收敛到期望值的充分条件.3)用数值算例比较验证了所提控制器的有效性.
    1)  本文责任编委 朱纪洪
  • 图  1  系统模型

    Fig.  1  Model of the system

    图  2  环航跟踪相对几何模型

    Fig.  2  Guidance geometry for standofi tracking

    图  3  饱和约束下的有限时间稳定控制参数

    Fig.  3  Control parameters of flnite-time stability subject to saturation

    图  4  目标速度对环航跟踪误差的影响

    Fig.  4  The influences of the target velocity on the standofi tracking errors

    图  5  $d(0)>d_0$时静止目标环航跟踪

    Fig.  5  Standoff tracking a static target when $d(0)>d_0$

    图  6  $d(0)<d_0$时静止目标环航跟踪

    Fig.  6  Standoff tracking a static target when $d(0)<d_0$

    图  7  $d(0)>d_0$时机动目标环航跟踪

    Fig.  7  Standoff tracking a maneuvering target when $d(0)>d_0$

    图  8  $d(0)<d_0$时机动目标环航跟踪

    Fig.  8  Standoff tracking a maneuvering target when $d(0)<d_0$

    图  9  $\kappa$对无人机环航轨迹和收敛速度的影响

    Fig.  9  The influences of $\kappa$ on the trajectory of UAV and rate of convergence

  • [1] Deghat M, Shames I, Anderson B D O, Yu C B. Localization and circumnavigation of a slowly moving target using bearing measurements. IEEE Transactions on Automatic Control, 2014, 59(8):2182-2188 doi: 10.1109/TAC.2014.2299011
    [2] Deghat M, Davis E, See T, Shames I, Anderson B D O, Yu C B. Target localization and circumnavigation by a non-holonomic robot. In:Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vilamoura, Algarve, Portugal:IEEE, 2012. 1227-1232
    [3] Deghat M, Xia L, Anderson B, Hong Y G. Multi-target localization and circumnavigation by a single agent using bearing measurements. International Journal of Robust and Nonlinear Control, 2015, 25(14):2362-2374 doi: 10.1002/rnc.v25.14
    [4] Shames I, Dasgupta S, Fidan B, Anderson B D O. Circumnavigation using distance measurements under slow drift. IEEE Transactions on Automatic Control, 2012, 57(4):889-903 doi: 10.1109/TAC.2011.2173417
    [5] Cao Y C, Muse J, Casbeer D, Kingston D. Circumnavigation of an unknown target using UAVs with range and range rate measurements. In:Proceedings of the 52nd IEEE Conference on Decision and Control (CDC). Firenze, Italy:IEEE, 2013. 3617-3622
    [6] 张民, 田鹏飞, 陈欣.一种无人机定距盘旋跟踪制导律及稳定性证明.航空学报, 2016, 37(11):3425-3434 http://d.old.wanfangdata.com.cn/Periodical/hkxb201611020

    Zhang Min, Tian Peng-Fei, Chen Xin. UAV guidance law for circumnavigating and tracking ground target and its stability proof. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3425-3434 http://d.old.wanfangdata.com.cn/Periodical/hkxb201611020
    [7] Matveev A S, Semakova A A, Savkin A V. Range-only based circumnavigation of a group of moving targets by a non-holonomic mobile robot. Automatica, 2016, 65:76-89 doi: 10.1016/j.automatica.2015.11.032
    [8] Zhang M F, Liu H H T. Vision-based tracking and estimation of ground moving target using unmanned aerial vehicle. In:Proceedings of the 2010 American Control Conference. Baltimore, MD, USA:IEEE, 2010. 6968-6973
    [9] Zhu S Q, Wang D W, Chen Q J. Standoff tracking control of moving target in unknown wind. In:Proceedings of the 48th IEEE Conference on Decision and Control, 2009 Held Jointly with the 28th Chinese Control Conference. Shanghai, China:IEEE, 2009. 776-781
    [10] Lawrence D A. Lyapunov vector fields for UAV flock coordination. In:Proceedings of the 2nd AIAA "Unmanned Unlimited" Conference and Workshop and Exhibit. San Diego, California, USA:AIAA, 2003.
    [11] Frew E W, Lawrence D A, Morris S. Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields. Journal of Guidance, Control, and Dynamics, 2008, 31(2):290-306 doi: 10.2514/1.30507
    [12] Summers T H, Akella M R, Mears M J. Coordinated standoff tracking of moving targets:control laws and information architectures. Journal of Guidance, Control, and Dynamics, 2009, 32(1):56-69 doi: 10.2514/1.37212
    [13] Yoon S, Park S, Kim Y. Circular motion guidance law for coordinated standoff tracking of a moving target. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4):2440-2462 doi: 10.1109/TAES.2013.6621827
    [14] Wang X, Zhang D B, Shen L C, Zhang J W. A virtual force approach for cooperative standoff target tracking using multiple robots. In:Proceedings of the 29th Chinese Control and Decision Conference. Yinchuan, China:IEEE, 2016. 1348-1353
    [15] Oh H, Kim S, Shin H S, White B A, Tsourdos A, Rabbath C A. Rendezvous and standoff target tracking guidance using differential geometry. Journal of Intelligent and Robotic Systems, 2013, 69(1-4):389-405 doi: 10.1007/s10846-012-9751-0
    [16] Shames I, Fidan B, Anderson B D O. Close target reconnaissance with guaranteed collision avoidance. International Journal of Robust and Nonlinear Control, 2011, 21(16):1823-1840 doi: 10.1002/rnc.v21.16
    [17] Chen H D, Chang K C, Agate C S. UAV path planning with tangent-plus-Lyapunov vector field guidance and obstacle avoidance. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2):840-856 doi: 10.1109/TAES.2013.6494384
    [18] Kim S, Oh H, Tsourdos A. Nonlinear model predictive coordinated standoff tracking of a moving ground vehicle. Journal of Guidance, Control, and Dynamics, 2013, 36(2):557-566 doi: 10.2514/1.56254
    [19] Oh H, Kim S, Tsourdos A. Road-map-assisted standoff tracking of moving ground vehicle using nonlinear model predictive control. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2):975-986 doi: 10.1109/TAES.2014.130688
    [20] Oh H, Kim S, Tsourdos A, White B A. Decentralised standoff tracking of moving targets using adaptive sliding mode control for UAVs. Journal of Intelligent and Robotic Systems, 2014, 76(1):169-183 doi: 10.1007/s10846-013-9864-0
    [21] Quintero S A P, Papi F, Klein D J, Chisci L, Hespanha J P. Optimal UAV coordination for target tracking using dynamic programming. In:Proceedings of the 49th IEEE Conference on Decision and Control (CDC). Atlanta, GA, USA:IEEE, 2010. 4541-4546
    [22] Oh H, Turchi D, Kim S, Tsourdos A, Pollini L, White B. Coordinated standoff tracking using path shaping for multiple UAVs. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1):348-363 doi: 10.1109/TAES.2013.110712
    [23] Zheng R H, Lin Z Y, Fu M Y, Sun D. Distributed control for uniform circumnavigation of ring-coupled unicycles. Automatica, 2015, 53:23-29 doi: 10.1016/j.automatica.2014.11.012
    [24] Zhu S Q, Wang D W. Adversarial ground target tracking using UAVs with input constraints. Journal of Intelligent and Robotic Systems, 2012, 65(1-4):521-532 doi: 10.1007/s10846-011-9574-4
    [25] Zhu S Q, Wang D W, Low C B. Ground target tracking using UAV with input constraints. Journal of Intelligent and Robotic Systems, 2013, 69(1-4):417-429 doi: 10.1007/s10846-012-9737-y
    [26] 杨晨, 程盈盈, 都海波, 王金平, 何怡刚. Buck型变换器自适应有限时间降压控制算法研究.自动化学报, 2016, 42(2):315-320 http://www.aas.net.cn/CN/abstract/abstract18821.shtml

    Yang Chen, Cheng Ying-Ying, Du Hai-Bo, Wang Jin-Ping, He Yi-Gang. An adaptive finite-time control algorithm for buck converter systems. Acta Automatica Sinica, 2016, 42(2):315-320 http://www.aas.net.cn/CN/abstract/abstract18821.shtml
    [27] 丁世宏, 李世华.输入饱和下的非线性积分系统的全局有限时间镇定.自动化学报, 2011, 37(10):1222-1231 http://www.aas.net.cn/CN/abstract/abstract17611.shtml

    Ding Shi-Hong, Li Shi-Hua. Global finite-time stabilization of nonlinear integrator systems subject to input saturation. Acta Automatica Sinica, 2011, 37(10):1222-1231 http://www.aas.net.cn/CN/abstract/abstract17611.shtml
    [28] 周映江, 王莉, 孙长银.一类非线性系统的全局渐近稳定和有限时间镇定.自动化学报, 2013, 39(5):664-672 http://www.aas.net.cn/CN/abstract/abstract17924.shtml

    Zhou Ying-Jiang, Wang Li, Sun Chang-Yin. Global asymptotic and finite-time stability for nonlinear systems. Acta Automatica Sinica, 2013, 39(5):664-672 http://www.aas.net.cn/CN/abstract/abstract17924.shtml
    [29] 李雪冰, 马莉, 丁世宏.一类新的二阶滑模控制方法及其在倒立摆控制中的应用.自动化学报, 2015, 41(1):193-202 http://www.aas.net.cn/CN/abstract/abstract18598.shtml

    Li Xue-Bing, Ma Li, Ding Shi-Hong. A new second-order sliding mode control and its application to inverted pendulum. Acta Automatica Sinica, 2015, 41(1):193-202 http://www.aas.net.cn/CN/abstract/abstract18598.shtml
    [30] Hong Y G. Finite-time stabilization and stabilizability of a class of controllable systems. Systems and Control Letters, 2002, 46(4):231-236 doi: 10.1016/S0167-6911(02)00119-6
    [31] Bhat S P, Bernstein D S. Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Transactions on Automatic Control, 1998, 43(5):678-682 doi: 10.1109/9.668834
    [32] Khalil H K. Nonlinear Systems (3rd edition). New Jersey: Prentice Hall, 2002.
  • 加载中
图(9)
计量
  • 文章访问数:  1753
  • HTML全文浏览量:  212
  • PDF下载量:  707
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-01
  • 录用日期:  2017-04-18
  • 刊出日期:  2018-11-20

目录

    /

    返回文章
    返回