2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多核多分类相关向量机的模拟电路故障诊断方法

高明哲 许爱强 唐小峰 张伟

高明哲, 许爱强, 唐小峰, 张伟. 基于多核多分类相关向量机的模拟电路故障诊断方法. 自动化学报, 2019, 45(2): 434-444. doi: 10.16383/j.aas.2017.c160779
引用本文: 高明哲, 许爱强, 唐小峰, 张伟. 基于多核多分类相关向量机的模拟电路故障诊断方法. 自动化学报, 2019, 45(2): 434-444. doi: 10.16383/j.aas.2017.c160779
GAO Ming-Zhe, XU Ai-Qiang, TANG Xiao-Feng, ZHANG Wei. Analog Circuit Diagnostic Method Based on Multi-kernel Learning Multiclass Relevance Vector Machine. ACTA AUTOMATICA SINICA, 2019, 45(2): 434-444. doi: 10.16383/j.aas.2017.c160779
Citation: GAO Ming-Zhe, XU Ai-Qiang, TANG Xiao-Feng, ZHANG Wei. Analog Circuit Diagnostic Method Based on Multi-kernel Learning Multiclass Relevance Vector Machine. ACTA AUTOMATICA SINICA, 2019, 45(2): 434-444. doi: 10.16383/j.aas.2017.c160779

基于多核多分类相关向量机的模拟电路故障诊断方法

doi: 10.16383/j.aas.2017.c160779
基金项目: 

武器装备预研基金 020214JB14435

详细信息
    作者简介:

    许爱强  海军航空工程学院科研部教授.主要研究方向为电子信息系统的测试与故障诊断技术.E-mail:hy_xuaiqiang@163.com

    唐小峰  海军航空工程学院科研部博士研究生.分别于2007年和2010年获得国防科技大学航天工程学士学位和武器系统与运用工程硕士学位.主要研究方向为电路的测试、故障建模和故障诊断.E-mail:vivorimage@126.com

    张伟  海军航空工程学院科研部博士研究生.分别于2012年和2014年获得海军航空工程学院信息与通信工程学士学位和硕士学位.主要研究方向为核方法, 电子设备的智能故障诊断.E-mail:hjhy1989@163.com

    通讯作者:

    高明哲  中国人民解放军91054部队工程师.分别于2011年、2013年和2017年获得海军航空工程学院信息与通信工程学士学位、硕士学位和博士学位.主要研究方向为模式识别, 电子设备的故障诊断与预测.本文通信作者.E-mail:mac7872@163.com

Analog Circuit Diagnostic Method Based on Multi-kernel Learning Multiclass Relevance Vector Machine

Funds: 

Weaponry Pre-research Foundation 020214JB14435

More Information
    Author Bio:

     Professor in the Department of Scientific Research, Naval Aeronautical and Astronautical University. His research interest covers testing and diagnosis of electronic information system

     Ph. D. candidate in the Department of Scientific Research, Naval Aeronautical and Astronautical University. He received his bachelor and master degrees in aerospace engineering and weapon systems and utilization engineering from National University of Defense Technology in 2007 and 2010, respectively. His research interest covers circuit test and diagnosis, fault modeling

     Ph. D. candidate in the Department of Scientific Research, Naval Aeronautical and Astronautical University. He received his bachelor and master degrees in information and communication engineering from Naval Aeronautical and Astronautical University in 2012 and 2014, respectively. His research interest covers kernel methods, intelligent fault diagnosis of electronic equipment

    Corresponding author: GAO Ming-Zhe  Engineer at the Chinese People's Liberation Army 91054 Unit. He received his bachelor, master, and Ph. D. degrees in information and communication engineering from Naval Aeronautical and Astronautical University in 2011, 2013, and 2017, respectively. His research interest covers pattern recognition, fault diagnosis, and prediction of electronic equipment. Corresponding author of this paper
  • 摘要: 针对模拟电路实际存在的多类故障问题,本文提出一种基于多核多分类相关向量机(Multi-kernel learning multiclass relevance vector machine,MKL-mRVM)的模拟电路故障诊断方法.所提方法能够在故障数据所在的原始特征空间上建立多个非线性核,在构建分类器的同时实现故障特征的约简;同时,基于贝叶斯框架的分类模型还能够给出诊断结果的后验概率.通过两个电路的诊断实验证明了所提方法的优越性和实用性.
    1)  本文责任编委 钟麦英
  • 图  1  多核组合原理图

    Fig.  1  Combination of multi-kernels

    图  2  MKL-mRVM模型结构示意图

    Fig.  2  Schematic diagram of MKL-mRVM

    图  3  诊断实施框架示意图

    Fig.  3  Implementation framework of the diagnosis

    图  4  模糊度示意图

    Fig.  4  Schematic diagram of ambiguity

    图  5  Sallen-Key带通滤波电路结构图

    Fig.  5  Sallen-Key band-pass fllter circuit diagram

    图  6  几类故障的频率响应曲线

    Fig.  6  Frequency response curves of faults

    图  7  MKL-mRVM的迭代过程

    Fig.  7  Diagnostic performance comparison of 3 methods

    图  8  故障特征对应的加权系数值

    Fig.  8  The weighting factors of fault features

    图  9  诊断结果的置信度

    Fig.  9  Confldence of diagnostic results

    图  10  Biquad低通滤波电路结构图

    Fig.  10  Biquad low-pass fllter circuit diagram

    图  11  几类故障的频率响应曲线

    Fig.  11  Frequency response curves of faults

    图  12  不同门限下f0所在的模糊组

    Fig.  12  Ambiguity groups of f0 under difierent thresholds

    表  1  变异操作

    Table  1  Mutation operators

    操作 名称 描述
    PCH 参数改变(Parameter change) 将元件的指定参数偏离其容差范围
    ROP 电阻开路(Resistive open) 在元件的端口间接入一个阻值极大的电阻以表示开路
    LRB 局部电阻桥接(Local resistive bridging) 在同一元件的两个端口间接入一个阻值极小的电阻
    GRB 全局电阻桥接(Global resistive bridging) 在不同元件的两个节点间接入一个阻值极小的电阻
    NSP 节点分裂(Node splitting) 将一个节点分为两个, 并在分出的节点上接入一个阻值极大的电阻
    下载: 导出CSV

    表  2  Sallen-Key带通滤波电路故障描述

    Table  2  Faults in Sallen-Key band-pass fllter

    编号 故障描述 标称值 故障值
    f0 无故障
    f1 C1↑ 5 nF [6 ~ 10] nF
    f2 C1↓ 5 nF [0.5 ~ 4] nF
    f3 C2↑ 5 nF [6 ~ 10] nF
    f4 C2↓ 5 nF [0.5 ~ 4] nF
    f5 R1↑ 5.18 k$\Omega$ [6.22 ~ 10.36] k$\Omega$
    f6 R1↓ 5.18 k$\Omega$ [0.52 ~ 4.14] k$\Omega$
    f7 R2↑ 1 k$\Omega$ [1.2 ~ 2] k$\Omega$
    f8 R2↓ 1 k$\Omega$ [0.1 ~ 0.8] k$\Omega$
    f9 R3↑ 2 k$\Omega$ [2.4 ~ 4] k$\Omega$
    f10 R3↓ 2 k$\Omega$ [0.2 ~ 1.6] k$\Omega$
    f11 R4↑ 4 k$\Omega$ [4.8 ~ 8] k$\Omega$
    f12 R4↓ 4 k$\Omega$ [0.4 ~ 3.2] k$\Omega$
    f13 R5↑ 4 k$\Omega$ [4.8 ~ 8] k$\Omega$
    f14 R5↓ 4 k$\Omega$ [0.4 ~ 3.2] k$\Omega$
    下载: 导出CSV

    表  3  三种方法的诊断性能对比

    Table  3  Diagnostic performance comparison of 3 methods

    方法 漏判率 误判率 检测率 隔离率 准确率 训练时间/s 测试时间/s
    MKL-mRVM 0.0107 0.0200 0.9986 0.9893 0.9640 381.43 3.007E$-$04
    OAO-SVM 0.0071 0.0600 0.9957 0.9928 0.9160 2.2103 1.781E$-$04
    kELM 0.0114 0.0900 0.9935 0.9886 0.9020 0.1287 3.607E$-$05
    下载: 导出CSV

    表  4  Biquad低通滤波电路故障描述

    Table  4  Faults in Biquad low-pass fllter

    编号 故障描述 编号 故障描述 编号 故障描述 编号 故障描述
    f0 无故障 f24 ROP (R4, +) f48 LRB (R4, +, $-$) f72 GRB (n2, in)
    f1 PCH (C1↑) f25 ROP (R5, +) f49 LRB (R5, +, $-$) f73 GRB (n2, n4)
    f2 PCH (C1↓) f26 ROP (R6, +) f50 LRB (R6, +, $-$) f74 GRB (n2, n5)
    f3 PCH (C2↑) f27 ROP (R7, +) f51 LRB (R7, +, $-$) f75 GRB (n2, out)
    f4 PCH (C2↓) f28 ROP (U1, 1) f52 LRB (U1, 1, 2) f76 GRB (n3, in)
    f5 PCH (R1↑) f29 ROP (U1, 2) f53 LRB (U1, 2, 3) f77 GRB (n3, n5)
    f6 PCH (R1↓) f30 ROP (U1, 3) f54 LRB (U1, 3, 4) f78 GRB (n3, out)
    f7 PCH (R2↑) f31 ROP (U1, 4) f55 LRB (U1, 4, 5) f79 GRB (n4, in)
    f8 PCH (R2↓) f32 ROP (U1, 5) f56 LRB (U1, 5, 1) f80 GRB (n4, out)
    f9 PCH (R3↑) f33 ROP (U2, 1) f57 LRB (U2, 1, 2) f81 GRB (n5, in)
    f10 PCH (R3↓) f34 ROP (U2, 2) f58 LRB (U2, 2, 3) f82 GRB (n6, in)
    f11 PCH (R4↑) f35 ROP (U2, 3) f59 LRB (U2, 3, 4) f83 GRB (n6, n3)
    f12 PCH (R4↓) f36 ROP (U2, 4) f60 LRB (U2, 4, 5) f84 GRB (n6, n5)
    f13 PCH (R5↑) f37 ROP (U2, 5) f61 LRB (U2, 5, 1) f85 GRB (n6, out)
    f14 PCH (R5↓) f38 ROP (U3, 1) f62 LRB (U3, 1, 2) f86 GRB (in, out)
    f15 PCH (R6↑) f39 ROP (U3, 2) f63 LRB (U3, 2, 3) f87 NSP (n1, [2, 3] [1, 4])
    f16 PCH (R6↓) f40 ROP (U3, 3) f64 LRB (U3, 3, 4) f88 NSP (n1, [2, 4] [1, 3])
    f17 PCH (R7↑) f41 ROP (U3, 4) f65 LRB (U3, 4, 5) f89 NSP (n1, [3, 4] [1, 2])
    f18 PCH (R7↓) f42 ROP (U3, 5) f66 LRB (U3, 5, 1) f90 NSP (n4, [2, 3] [1, 4])
    f19 ROP (C1, +) f43 LRB (C1, +, $-$) f67 GRB (n1, 0) f91 NSP (n4, [2, 4] [1, 3])
    f20 ROP (C2, +) f44 LRB (C2, +, $-$) f68 GRB (n1, n3) f92 NSP (n4, [3, 4] [1, 2])
    f21 ROP (R1, +) f45 LRB (R1, +, $-$) f69 GRB (n1, n4)
    f22 ROP (R2, +) f46 LRB (R2, +, $-$) f70 GRB (n1, n5)
    f23 ROP (R3, +) f47 LRB (R3, +, $-$) f71 GRB (n2, 0)
    下载: 导出CSV

    表  5  三种方法的诊断性能对比

    Table  5  Diagnostic performance comparison of 3 methods

    方法 $\lambda$ 漏判率 误判率 检测率 隔离率 准确率 训练时间(s) 测试时间(s)
    1 0.0165 0.9200 0.9899 0.9834 0.6069
    0.7 0.0235 0.3400 0.9962 0.9765 0.7796
    MKL-mRVM 0.5 0.0215 0.0600 0.9993 0.9893 0.8602 2.0436E$-$05 1.7472
    0.3 0.0132 0.0200 0.9997 0.9867 0.9202
    0.1 0.0132 0.0200 0.9997 0.9867 0.9406
    1 0.0254 0.9600 09894 0.9746 0.5303
    0.7 0.0608 0.4400 0.9950 0.9656 0.6905
    OAO-SVM 0.5 0.0196 0.0400 0.9996 0.9804 0.8009 4.6002E$-$02 0.1628
    0.3 0.0167 0.0400 0.9996 0.9833 0.8598
    0.1 0.0167 0.0400 0.9996 0.9833 0.9191
    1 0.0402 0.9800 0.9890 0.9598 0.5006
    0.7 0.0437 0.4800 0.9941 0.9563 0.6301
    kELM 0.5 0.0243 0.0800 0.9991 0.9757 0.7623 1.9524 1.4584E$-$04
    0.3 0.0191 0.0600 0.9996 0.9809 0.8271
    0.1 0.0191 0.0400 0.9996 0.9809 0.9013
    下载: 导出CSV

    表  6  其他特征的诊断性能

    Table  6  Diagnostic performance of other features

    故障特征 分类算法 训练时间(s) 分类准确率
    高阶统计量 mRVM 6.1434E$-$03 0.2046
    电路规格参数 mRVM 5.6213E$-$03 0.3871
    MAF mRVM 1.7324E$-$04 0.5113
    MAF MKL-mRVM 2.0436E$-$05 0.6069
    下载: 导出CSV
  • [1] Sarathi Vasan A S, Long B, Pecht M. Diagnostics and prognostics method for analog electronic circuits. IEEE Transactions on Industrial Electronics, 2013, 60(11):5277-5291 doi: 10.1109/TIE.2012.2224074
    [2] Ao Y C, Shi Y B, Zhang W, Li Y J. An approximate calculation of ratio of normal variables and its application in analog circuit fault diagnosis. Journal of Electronic Testing Theory & Applications, 2013, 29(4):555-565 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b9d32259512026ad9aacb8d8bfed98ac
    [3] Tadeusiewicz M, Halgas S. A new approach to multiple soft fault diagnosis of analog BJT and CMOS Circuits. IEEE Transactions on Instrumentation & Measurement, 2015, 64(10):2688-2695 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=24a338b94522b8a5d797fae90983bd1e
    [4] Tang X F, Xu A Q. Practical analog circuit diagnosis based on fault features with minimum ambiguities. Journal of Electronic Testing, 2016, 32(1):83-95 doi: 10.1007/s10836-015-5561-1
    [5] Liu Z B, Liu T M, Han J W, Bu S H, Tang X J, Pecht M. Signal Model-based fault coding for diagnostics and prognostics of analog electronic circuits. IEEE Transactions on Industrial Electronics, 2016, 64(1):605-614 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=64ef90618081629f53f3e48784a63595
    [6] Jing Y P, Yuan L F, He Y G. An analog circuit diagnosis method based on Adaptive-Kernel ICA. International Journal of Electronics and Electrical Engineering, 2016, 4(2):116-120
    [7] Luo H, Wang Y R, Lin H, Jiang Y Y. A new optimal test node selection method for analog circuit. Journal of Electronic Testing, 2012, 28(3):279-290 doi: 10.1007/s10836-011-5274-z
    [8] Tan H, Peng M F. Minimization of ambiguity in parametric fault diagnosis of analog circuits:a complex network approach. Applied Mathematics & Computation, 2012, 219(1):408-415 http://www.sciencedirect.com/science/article/pii/S0096300312006327
    [9] Kumar A, Singh A P. Fuzzy classifier for fault diagnosis in analog electronic circuits. ISA Transactions, 2013, 52(6):816-824 doi: 10.1016/j.isatra.2013.06.006
    [10] Litovski V, Andrejević M, Zwolinski M. Analogue electronic circuit diagnosis based on ANNs. Microelectronics Reliability, 2006, 46(8):1382-1391 doi: 10.1016/j.microrel.2005.11.008
    [11] Lin H J, Han J R, Zhang X H, Xu J B, Liu Y F. The research on fusion and diagnosis method of multi soft fault of nonlinear analog circuit. International Journal of U & E Service, Science and Technology, 2015, 8(11):191-198
    [12] Cui J, Wang Y R. A novel approach of analog circuit fault diagnosis using support vector machines classifier. Measurement, 2011, 44(1):281-289 doi: 10.1016/j.measurement.2010.10.004
    [13] Xie T, He Y G. Fault diagnosis of analog circuit based on high-order cumulants and information fusion. Journal of Electronic Testing, 2014, 30(5):505-514 doi: 10.1007/s10836-014-5478-0
    [14] Yuan L F, He Y G, Huang J Y, Sun Y C. A new neural-network-based fault diagnosis approach for analog circuits by using kurtosis and entropy as a preprocessor. IEEE Transactions on Instrumentation & Measurement, 2010, 59(3):586-595 http://ieeexplore.ieee.org/document/5256198
    [15] Kowalewski M. Two-center radial basis function network for classification of soft faults in electronic analog circuits. In:Proceedings of the Instrumentation and Measurement Technology Conference. Warsaw, Poland:IEEE, 2007. 1-6
    [16] Stratigopoulos H G, Mir S, Hora C, Kruseman B. Diagnosis of local spot defects in analog circuits. IEEE Transactions on Instrumentation & Measurement, 2012, 61(10):2701-2712 http://ieeexplore.ieee.org/document/6197714/
    [17] Zhang C L, He Y G, Yuan L F, He W, Xiang S, Li Z G. A novel approach for diagnosis of analog circuit fault by using GMKL-SVM and PSO. Journal of Electronic Testing, 2016, 32(5):531-540 doi: 10.1007/s10836-016-5616-y
    [18] Yu W X, Sui Y B, Wang J N. The faults diagnostic analysis for analog circuit based on FA-TM-ELM. Journal of Electronic Testing, 2016, 32(4):459-465 doi: 10.1007/s10836-016-5597-x
    [19] Han H, Wang H J, Tian S L, Zhang N. A new analog circuit fault diagnosis method based on improved mahalanobis distance. Journal of Electronic Testing, 2013, 29(1):95-102 doi: 10.1007/s10836-012-5342-z
    [20] 徐丹蕾, 杜兰, 刘宏伟, 洪灵, 李彦兵.一种基于变分相关向量机的特征选择和分类结合方法.自动化学报, 2011, 37(8):932-943 http://www.aas.net.cn/CN/abstract/abstract17512.shtml

    Xu Dan-Lei, Du Lan, Liu Hong-Wei, Hong Ling, Li Yan-Bing. Joint feature selection and classification design based on variational relevance vector machine. Acta Automatica Sinica, 2011, 37(8):932-943 http://www.aas.net.cn/CN/abstract/abstract17512.shtml
    [21] Tipping M E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 2001, 1(3):211-244 http://d.old.wanfangdata.com.cn/Periodical/dsjs201802008
    [22] Psorakis I, Damoulas T, Girolami M A. Multiclass relevance vector machines:sparsity and accuracy. IEEE Transactions on Neural Networks, 2010, 21(10):1588-1598 doi: 10.1109/TNN.2010.2064787
    [23] Carin L, Dobeck G J. Relevance vector machine feature selection and classification for underwater targets. In:Proceedings of the OCEANS. San Diego, USA:IEEE, 2003. 1110-1110
    [24] Li D F, Hu W C. Feature selection with RVM and its application to prediction modeling. Lecture Notes in Computer Science. Berlin:Springer-Verlag, 2006. 1140-1144
    [25] Girolami M, Rogers S. Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Computation, 2006, 18(8):1790-1817 doi: 10.1162/neco.2006.18.8.1790
    [26] Tipping M E, Faul A C. Fast marginal likelihood maximisation for sparse bayesian models. In:Proceedings of the 9th International Workshop on Artificial Intelligence and Statistics. Key West, Florida, USA:Miketipping, 2003. 3-6
    [27] Yang Z R. A fast algorithm for relevance vector machine. In:Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning. Burgos, Spain:Springer, 2006. 33-39
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  2765
  • HTML全文浏览量:  679
  • PDF下载量:  624
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-23
  • 录用日期:  2017-06-22
  • 刊出日期:  2019-02-20

目录

    /

    返回文章
    返回