2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于故障可诊断性量化评价的传感器优化配置方法研究

蒋栋年 李炜 王君 孙晓静

蒋栋年, 李炜, 王君, 孙晓静. 基于故障可诊断性量化评价的传感器优化配置方法研究. 自动化学报, 2018, 44(6): 1128-1137. doi: 10.16383/j.aas.2017.c160776
引用本文: 蒋栋年, 李炜, 王君, 孙晓静. 基于故障可诊断性量化评价的传感器优化配置方法研究. 自动化学报, 2018, 44(6): 1128-1137. doi: 10.16383/j.aas.2017.c160776
JIANG Dong-Nian, LI Wei, WANG Jun, SUN Xiao-Jing. Research on Sensor Optimal Placement Method Using Quantitative Evaluation of Fault Diagnosability. ACTA AUTOMATICA SINICA, 2018, 44(6): 1128-1137. doi: 10.16383/j.aas.2017.c160776
Citation: JIANG Dong-Nian, LI Wei, WANG Jun, SUN Xiao-Jing. Research on Sensor Optimal Placement Method Using Quantitative Evaluation of Fault Diagnosability. ACTA AUTOMATICA SINICA, 2018, 44(6): 1128-1137. doi: 10.16383/j.aas.2017.c160776

基于故障可诊断性量化评价的传感器优化配置方法研究

doi: 10.16383/j.aas.2017.c160776
基金项目: 

甘肃省自然科学基金 1506RJYA108

国家自然科学基金 61370037

国家自然科学基金 61763027

国家自然科学基金 61463030

详细信息
    作者简介:

    蒋栋年  兰州理工大学讲师, 博士研究生.主要研究方向为故障诊断与容错控制, 控制系统故障可诊断性评价与设计.E-mail:dreamjdn@126.com

    王君  兰州理工大学教授.2013年获得兰州理工大学博士学位.主要研究方向为故障诊断与容错控制.E-mail:wangj31901@163.com

    孙晓静   兰州电源车辆研究所有限公司教授级高级工程师.2013年获得兰州理工大学博士学位.主要研究方向为移动电站控制系统的研究和设计.E-mail:sxj12382@163.com

    通讯作者:

    李炜  兰州理工大学教授.主要研究方向为故障诊断与容错控制, 预测维护.本文通信作者.E-mail:liwei@lut.cn

Research on Sensor Optimal Placement Method Using Quantitative Evaluation of Fault Diagnosability

Funds: 

Gansu Provincial Natural Science Foundation 1506RJYA108

National Natural Science Foundation of China 61370037

National Natural Science Foundation of China 61763027

National Natural Science Foundation of China 61463030

More Information
    Author Bio:

     Lecturer and Ph. D. candidate at Lanzhou University of Technology. His research interest covers fault diagnosis and tolerant control, fault diagnosability evaluation and design for control systems

     Professor at Lanzhou University of Technology. She received her Ph. D. degree from Lanzhou University of Technology in 2013. Her research interest covers fault diagnosis and tolerant control

     Professorate senior engineer at Lanzhou Power Supply Vehicle Research Institute Co., LTD. She received her Ph. D. degree from Lanzhou University of Technology in 2013. Her research interest covers mobile power station control system research and design

    Corresponding author: LI Wei    Professor at Lanzhou University of Technology. Her research interest covers fault diagnosis and tolerant control, and predictive maintenance. Corresponding author of this paper
  • 摘要: 提出了一种基于故障可诊断性量化评价的传感器优化配置方法.针对可能发生故障的非线性系统,首先,基于K-L散度思想,通过计算故障情形下残差概率密度函数的差异度,得到了系统不同故障下故障可检测性和可分离性的量化指标,由于稀疏内核密度估计和蒙特卡洛算法的引入,克服了K-L散度计算中残差概率密度函数难以估计和非线性结构的K-L散度计算复杂度高的困难;其次,以故障可诊断性的定量评价为基础,借助于动态规划方法给出了系统满足期望故障可诊断性的传感器最优集合;最后,通过数值仿真和实体实验仿真验证了文中方法在故障诊断系统传感器优化配置中的有效性.
    1)  本文责任编委 吴立刚
  • 图  1  不同分布集合中概率密度函数的距离示意图

    Fig.  1  The distance of probability density function in different distribution sets

    图  2  基于动态规划法的传感器配置优化过程

    Fig.  2  Sensor optimal placement based on dynamic programming

    图  3  车辆电源系统结构图

    Fig.  3  System structure diagram of vehicle power supply

    图  4  车辆电源模块关系图

    Fig.  4  Module diagram of vehicle power supply

    图  5  基于动态规划法的传感器配置优化过程

    Fig.  5  Sensor optimal placement based on dynamic programming

    表  1  故障可诊断性分析

    Table  1  Fault diagnosability analysis

    FD $f_{1}$ $f_{2}$ $f_{3}$ $f_{4}$
    $f_{1}$ $\times$00 $\times$ $\times$
    $f_{2}$ $\times$00 $\times$ $\times$
    $f_{3}$ $\times$ $\times$ $\times$0 $\times$
    $f_{4}$ $\times$ $\times$ $\times$ $\times$ 0
    下载: 导出CSV

    表  2  故障可诊断性量化评价

    Table  2  Quantitative evaluation of fault diagnosability

    $\{x_1, x_3\}$FD $f_{1}$ $f_{2}$ $f_{3}$ $f_{4}$
    $f_{1}$0.036000.0580.061
    $f_{2}$0.054000.0990.054
    $f_{3}$0.0080.0510.07400.116
    $f_{4}$0.0930.0590.0530.1290
    下载: 导出CSV

    表  3  故障可诊断性量化评价

    Table  3  Quantitative evaluation of fault diagnosability

    $\{x_{2}, x_{4} \}$FD $f_{1}$ $f_{2}$ $f_{3}$ $f_{4}$
    $f_{1}$0.055000.0890.083
    $f_{2}$0.086000.0980.063
    $f_{3}$0.1220.1330.12600.285
    $f_{4}$0.2320.0800.0590.1800
    下载: 导出CSV

    表  4  非线性系统故障可诊断性量化评价

    Table  4  Quantitative evaluation of fault diagnosability for nonlinear systems

    FD $f_{1}$ $f_{2}$ $f_{3}$ $f_{4}$
    $f_{1}$0.660001.4121.564
    $f_{2}$0.671001.2732.229
    $f_{3}$1.5321.5181.93600.330
    $f_{4}$1.5101.6172.5200.2020
    下载: 导出CSV

    表  5  非线性系统故障可诊断性量化评价

    Table  5  Quantitative evaluation of fault diagnosability for nonlinear systems

    {$x_{2}$, $x_{3}$, $x_{4}$}FD $f_{1}$ $f_{2}$ $f_{3}$ $f_{4}$
    $f_{1}$0.460001.1420.465
    $f_{2}$0.423001.1031.110
    $f_{3}$1.0671.1741.24800.143
    $f_{4}$1.0280.3791.0390.1560
    下载: 导出CSV

    表  6  车辆电源常见故障描述

    Table  6  Common fault description of vehicle power supply

    故障故障描述
    $f_{1}$发电机失磁
    $f_{2}$柴油滤清器堵塞
    $f_{3}$调速器调节失灵
    $f_{4}$发动机高温
    $f_{5}$系统超载
    $f_{6}$励磁模块故障
    $f_{7}$喷油嘴故障
    下载: 导出CSV

    表  7  故障可诊断性定性评价

    Table  7  Qualitative evaluation of fault diagnosability

    $r_{1}$ $r_{2}$ $r_{3}$ $r_{4}$ $r_{5}$ $r_{6}$ $r_{7 }$
    $f_{1}$0001010
    $f_{2}$0000010
    $f_{3}$1000101
    $f_{4}$0010010
    $f_{5}$0110000
    $f_{6}$1100010
    $f_{7}$0000010
    下载: 导出CSV

    表  8  故障可诊断性量化评价

    Table  8  Quantitative evaluation of fault diagnosability

    FD $f_{1}$ $f_{2}$ $f_{3}$ $f_{4}$ $f_{5}$ $f_{6}$ $f_{7 }$
    $f_{1}$0.346200.12980.89780.12900.14320.27650.0988
    $f_{2}$0.43870.130400.80700.99080.14350.27870
    $f_{3}$0.21220.90290.786500.74340.46340.41720.8432
    $f_{4}$0.34560.13000.89900.732100.64320.74320.8432
    $f_{5}$0.67830.17650.15430.47640.732500.34340.1088
    $f_{6}$0.54350.29100.28980.42780.70000.329900.5898
    $f_{7}$0.76460.091000.10220.78530.09870.57860
    下载: 导出CSV
  • [1] 周东华, 刘洋, 何潇.闭环系统故障诊断技术综述.自动化学报, 2013, 39(11):1933-1943 http://www.aas.net.cn/CN/Y2013/V39/I11/1933

    Zhou Dong-Hua, Liu Yang, He Xiao. Review on fault diagnosis techniques for closed-loop systems. Acta Automatica Sinica, 2013, 39(11):1933-1943 http://www.aas.net.cn/CN/Y2013/V39/I11/1933
    [2] Zhang K K, Jiang B, Yan X G, Mao Z H. Sliding mode observer based incipient sensor fault detection with application to high-speed railway traction device. ISA Transactions, 2016, 63:49-59 doi: 10.1016/j.isatra.2016.04.004
    [3] Lan J L, Patton R J. A new strategy for integration of fault estimation within fault-tolerant control. Automatica, 2016, 69:48-59 doi: 10.1016/j.automatica.2016.02.014
    [4] Gao Z W, Cecati C, Ding S X. A survey of fault diagnosis and fault-tolerant techniques-part 1:fault diagnosis with model-based and signal-based approaches. IEEE Transactions on Industrial Electronics, 2015, 62(6):3757-3767 doi: 10.1109/TIE.2015.2417501
    [5] Li J, Yang G H. Simultaneous fault detection and control for switched systems with actuator faults. International Journal of Systems Science, 2016, 47(10):2411-2427 doi: 10.1080/00207721.2014.998740
    [6] Debouk R, Lafortune S, Teneketzis D. On an optimization problem in sensor selection. Discrete Event Dynamic Systems, 2002, 12(4):417-445 doi: 10.1023/A:1019770124060
    [7] Rosich A, Yassine A A, Ploix S. Efficient optimal sensor placement for structural model based diagnosis. In: Proceedings of the 21st International Workshop on Principles of Diagnosis. Portland, Oregon, USA: DX'10, 2010. 135-142
    [8] Frisk E, Krysander M, Åslund J. Sensor placement for fault isolation in linear differential-algebraic systems. Automatica, 2009, 45(2):364-371 doi: 10.1016/j.automatica.2008.08.013
    [9] Eguchi S, Copas J. Interpreting Kullback-Leibler divergence with the Neyman-Pearson lemma. Journal of Multivariate Analysis, 2006, 97(9):2034-2040 doi: 10.1016/j.jmva.2006.03.007
    [10] Eriksson D, Frisk E, Krysander M. A method for quantitative fault diagnosability analysis of stochastic linear descriptor models. Automatica, 2013, 49(6):1591-1600 doi: 10.1016/j.automatica.2013.02.045
    [11] 李文博, 王大轶, 刘成瑞.动态系统实际故障可诊断性的量化评价研究.自动化学报, 2015, 41(3):497-507 doi: 10.16383/j.aas.2015.c140428

    Li Wen-Bo, Wang Da-Yi, Liu Cheng-Rui. Quantitative evaluation of actual fault diagnosability for dynamic systems. Acta Automatica Sinica, 2015, 41(3):497-507 doi: 10.16383/j.aas.2015.c140428
    [12] Harmouche J, Delpha C, Diallo D. Incipient fault amplitude estimation using KL divergence with a probabilistic approach. Signal Processing, 2016, 120:1-7 doi: 10.1016/j.sigpro.2015.08.008
    [13] Youssef A, Delpha C, Diallo D. An optimal fault detection threshold for early detection using Kullback-Leibler divergence for unknown distribution data. Signal Processing, 2016, 120:266-279 doi: 10.1016/j.sigpro.2015.09.008
    [14] Eriksson D, Krysander M, Frisk E. Using quantitative diagnosability analysis for optimal sensor placement. IFAC Proceedings Volumes, 2012, 45(20):940-945 doi: 10.3182/20120829-3-MX-2028.00196
    [15] Krysander M, Frisk E. Sensor placement for fault diagnosis. IEEE Transactions on Systems, Man, and Cybernetics——Part A:Systems and Humans, 2008, 38(6):1398-1410 doi: 10.1109/TSMCA.2008.2003968
    [16] Eriksson D, Krysander M, Frisk E. Quantitative fault diagnosability performance of linear dynamic descriptor models. In: Proceedings of the 22nd International Workshop on Principles of Diagnosis. Murnau, Germany, 2011. 1-8
    [17] Eriksson D, Krysander M, Frisk E. Quantitative stochastic fault diagnosability analysis. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC). Orlando, Florida, USA: IEEE, 2011. 1563-1569
    [18] Hong X, Chen S, Becerra V M. Sparse density estimator with tunable kernels. Neurocomputing, 2016, 173:1976-1982 doi: 10.1016/j.neucom.2015.08.021
    [19] Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 2000, 10(3):197-208 doi: 10.1023/A:1008935410038
    [20] Alban A, Darji H A, Imamura A, Nakayama M K. Efficient Monte Carlo methods for estimating failure probabilities. Reliability Engineering and System Safety, 2017, 165:376-394 doi: 10.1016/j.ress.2017.04.001
    [21] 张化光, 张欣, 罗艳红, 杨珺.自适应动态规划综述.自动化学报, 2013, 39(4):303-311 http://www.aas.net.cn/CN/abstract/abstract17916.shtml

    Zhang Hua-Guang, Zhang Xin, Luo Yan-Hong, Yang Jun. An overview of research on adaptive dynamic programming. Acta Automatica Sinica, 2013, 39(4):303-311 http://www.aas.net.cn/CN/abstract/abstract17916.shtml
    [22] Cai Y Z, Ji R R, Li S Z. Dynamic programming based optimized product quantization for approximate nearest neighbor search. Neurocomputing, 2016, 217:110-118 doi: 10.1016/j.neucom.2016.01.112
  • 加载中
图(5) / 表(8)
计量
  • 文章访问数:  2647
  • HTML全文浏览量:  205
  • PDF下载量:  805
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-17
  • 录用日期:  2017-05-06
  • 刊出日期:  2018-06-20

目录

    /

    返回文章
    返回