Research on Sensor Optimal Placement Method Using Quantitative Evaluation of Fault Diagnosability
-
摘要: 提出了一种基于故障可诊断性量化评价的传感器优化配置方法.针对可能发生故障的非线性系统,首先,基于K-L散度思想,通过计算故障情形下残差概率密度函数的差异度,得到了系统不同故障下故障可检测性和可分离性的量化指标,由于稀疏内核密度估计和蒙特卡洛算法的引入,克服了K-L散度计算中残差概率密度函数难以估计和非线性结构的K-L散度计算复杂度高的困难;其次,以故障可诊断性的定量评价为基础,借助于动态规划方法给出了系统满足期望故障可诊断性的传感器最优集合;最后,通过数值仿真和实体实验仿真验证了文中方法在故障诊断系统传感器优化配置中的有效性.Abstract: A method of sensor optimal placement using quantitative evaluation of fault diagnosability is proposed. With the idea of K-L divergence, using quantificational indices of fault detectability and isolability under different fault conditions are obtained by calculating the difference degree of residual probability density function. Sparse kernel density estimation and Monte Carlo algorithm are introduced to overcome the difficulty of estimating the residual probability density function of K-L divergence calculation and high complexity of K-L divergence computation of nonlinear structure. Secondly, with the quantitative evaluation of fault diagnosability, the optimal set of sensors satisfying the expected fault diagnosability is given by means of dynamic programming method. Finally, the validity of the proposed method is validated through numerical simulation and physical experiment simulation in a sensor optimal configuration of fault diagnosis system.1) 本文责任编委 吴立刚
-
表 1 故障可诊断性分析
Table 1 Fault diagnosability analysis
FD $f_{1}$ $f_{2}$ $f_{3}$ $f_{4}$ $f_{1}$ $\times$ 0 0 $\times$ $\times$ $f_{2}$ $\times$ 0 0 $\times$ $\times$ $f_{3}$ $\times$ $\times$ $\times$ 0 $\times$ $f_{4}$ $\times$ $\times$ $\times$ $\times$ 0 表 2 故障可诊断性量化评价
Table 2 Quantitative evaluation of fault diagnosability
$\{x_1, x_3\}$ FD $f_{1}$ $f_{2}$ $f_{3}$ $f_{4}$ $f_{1}$ 0.036 0 0 0.058 0.061 $f_{2}$ 0.054 0 0 0.099 0.054 $f_{3}$ 0.008 0.051 0.074 0 0.116 $f_{4}$ 0.093 0.059 0.053 0.129 0 表 3 故障可诊断性量化评价
Table 3 Quantitative evaluation of fault diagnosability
$\{x_{2}, x_{4} \}$ FD $f_{1}$ $f_{2}$ $f_{3}$ $f_{4}$ $f_{1}$ 0.055 0 0 0.089 0.083 $f_{2}$ 0.086 0 0 0.098 0.063 $f_{3}$ 0.122 0.133 0.126 0 0.285 $f_{4}$ 0.232 0.080 0.059 0.180 0 表 4 非线性系统故障可诊断性量化评价
Table 4 Quantitative evaluation of fault diagnosability for nonlinear systems
FD $f_{1}$ $f_{2}$ $f_{3}$ $f_{4}$ $f_{1}$ 0.660 0 0 1.412 1.564 $f_{2}$ 0.671 0 0 1.273 2.229 $f_{3}$ 1.532 1.518 1.936 0 0.330 $f_{4}$ 1.510 1.617 2.520 0.202 0 表 5 非线性系统故障可诊断性量化评价
Table 5 Quantitative evaluation of fault diagnosability for nonlinear systems
{$x_{2}$, $x_{3}$, $x_{4}$} FD $f_{1}$ $f_{2}$ $f_{3}$ $f_{4}$ $f_{1}$ 0.460 0 0 1.142 0.465 $f_{2}$ 0.423 0 0 1.103 1.110 $f_{3}$ 1.067 1.174 1.248 0 0.143 $f_{4}$ 1.028 0.379 1.039 0.156 0 表 6 车辆电源常见故障描述
Table 6 Common fault description of vehicle power supply
故障 故障描述 $f_{1}$ 发电机失磁 $f_{2}$ 柴油滤清器堵塞 $f_{3}$ 调速器调节失灵 $f_{4}$ 发动机高温 $f_{5}$ 系统超载 $f_{6}$ 励磁模块故障 $f_{7}$ 喷油嘴故障 表 7 故障可诊断性定性评价
Table 7 Qualitative evaluation of fault diagnosability
$r_{1}$ $r_{2}$ $r_{3}$ $r_{4}$ $r_{5}$ $r_{6}$ $r_{7 }$ $f_{1}$ 0 0 0 1 0 1 0 $f_{2}$ 0 0 0 0 0 1 0 $f_{3}$ 1 0 0 0 1 0 1 $f_{4}$ 0 0 1 0 0 1 0 $f_{5}$ 0 1 1 0 0 0 0 $f_{6}$ 1 1 0 0 0 1 0 $f_{7}$ 0 0 0 0 0 1 0 表 8 故障可诊断性量化评价
Table 8 Quantitative evaluation of fault diagnosability
FD $f_{1}$ $f_{2}$ $f_{3}$ $f_{4}$ $f_{5}$ $f_{6}$ $f_{7 }$ $f_{1}$ 0.3462 0 0.1298 0.8978 0.1290 0.1432 0.2765 0.0988 $f_{2}$ 0.4387 0.1304 0 0.8070 0.9908 0.1435 0.2787 0 $f_{3}$ 0.2122 0.9029 0.7865 0 0.7434 0.4634 0.4172 0.8432 $f_{4}$ 0.3456 0.1300 0.8990 0.7321 0 0.6432 0.7432 0.8432 $f_{5}$ 0.6783 0.1765 0.1543 0.4764 0.7325 0 0.3434 0.1088 $f_{6}$ 0.5435 0.2910 0.2898 0.4278 0.7000 0.3299 0 0.5898 $f_{7}$ 0.7646 0.0910 0 0.1022 0.7853 0.0987 0.5786 0 -
[1] 周东华, 刘洋, 何潇.闭环系统故障诊断技术综述.自动化学报, 2013, 39(11):1933-1943 http://www.aas.net.cn/CN/Y2013/V39/I11/1933Zhou Dong-Hua, Liu Yang, He Xiao. Review on fault diagnosis techniques for closed-loop systems. Acta Automatica Sinica, 2013, 39(11):1933-1943 http://www.aas.net.cn/CN/Y2013/V39/I11/1933 [2] Zhang K K, Jiang B, Yan X G, Mao Z H. Sliding mode observer based incipient sensor fault detection with application to high-speed railway traction device. ISA Transactions, 2016, 63:49-59 doi: 10.1016/j.isatra.2016.04.004 [3] Lan J L, Patton R J. A new strategy for integration of fault estimation within fault-tolerant control. Automatica, 2016, 69:48-59 doi: 10.1016/j.automatica.2016.02.014 [4] Gao Z W, Cecati C, Ding S X. A survey of fault diagnosis and fault-tolerant techniques-part 1:fault diagnosis with model-based and signal-based approaches. IEEE Transactions on Industrial Electronics, 2015, 62(6):3757-3767 doi: 10.1109/TIE.2015.2417501 [5] Li J, Yang G H. Simultaneous fault detection and control for switched systems with actuator faults. International Journal of Systems Science, 2016, 47(10):2411-2427 doi: 10.1080/00207721.2014.998740 [6] Debouk R, Lafortune S, Teneketzis D. On an optimization problem in sensor selection. Discrete Event Dynamic Systems, 2002, 12(4):417-445 doi: 10.1023/A:1019770124060 [7] Rosich A, Yassine A A, Ploix S. Efficient optimal sensor placement for structural model based diagnosis. In: Proceedings of the 21st International Workshop on Principles of Diagnosis. Portland, Oregon, USA: DX'10, 2010. 135-142 [8] Frisk E, Krysander M, Åslund J. Sensor placement for fault isolation in linear differential-algebraic systems. Automatica, 2009, 45(2):364-371 doi: 10.1016/j.automatica.2008.08.013 [9] Eguchi S, Copas J. Interpreting Kullback-Leibler divergence with the Neyman-Pearson lemma. Journal of Multivariate Analysis, 2006, 97(9):2034-2040 doi: 10.1016/j.jmva.2006.03.007 [10] Eriksson D, Frisk E, Krysander M. A method for quantitative fault diagnosability analysis of stochastic linear descriptor models. Automatica, 2013, 49(6):1591-1600 doi: 10.1016/j.automatica.2013.02.045 [11] 李文博, 王大轶, 刘成瑞.动态系统实际故障可诊断性的量化评价研究.自动化学报, 2015, 41(3):497-507 doi: 10.16383/j.aas.2015.c140428Li Wen-Bo, Wang Da-Yi, Liu Cheng-Rui. Quantitative evaluation of actual fault diagnosability for dynamic systems. Acta Automatica Sinica, 2015, 41(3):497-507 doi: 10.16383/j.aas.2015.c140428 [12] Harmouche J, Delpha C, Diallo D. Incipient fault amplitude estimation using KL divergence with a probabilistic approach. Signal Processing, 2016, 120:1-7 doi: 10.1016/j.sigpro.2015.08.008 [13] Youssef A, Delpha C, Diallo D. An optimal fault detection threshold for early detection using Kullback-Leibler divergence for unknown distribution data. Signal Processing, 2016, 120:266-279 doi: 10.1016/j.sigpro.2015.09.008 [14] Eriksson D, Krysander M, Frisk E. Using quantitative diagnosability analysis for optimal sensor placement. IFAC Proceedings Volumes, 2012, 45(20):940-945 doi: 10.3182/20120829-3-MX-2028.00196 [15] Krysander M, Frisk E. Sensor placement for fault diagnosis. IEEE Transactions on Systems, Man, and Cybernetics——Part A:Systems and Humans, 2008, 38(6):1398-1410 doi: 10.1109/TSMCA.2008.2003968 [16] Eriksson D, Krysander M, Frisk E. Quantitative fault diagnosability performance of linear dynamic descriptor models. In: Proceedings of the 22nd International Workshop on Principles of Diagnosis. Murnau, Germany, 2011. 1-8 [17] Eriksson D, Krysander M, Frisk E. Quantitative stochastic fault diagnosability analysis. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC). Orlando, Florida, USA: IEEE, 2011. 1563-1569 [18] Hong X, Chen S, Becerra V M. Sparse density estimator with tunable kernels. Neurocomputing, 2016, 173:1976-1982 doi: 10.1016/j.neucom.2015.08.021 [19] Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 2000, 10(3):197-208 doi: 10.1023/A:1008935410038 [20] Alban A, Darji H A, Imamura A, Nakayama M K. Efficient Monte Carlo methods for estimating failure probabilities. Reliability Engineering and System Safety, 2017, 165:376-394 doi: 10.1016/j.ress.2017.04.001 [21] 张化光, 张欣, 罗艳红, 杨珺.自适应动态规划综述.自动化学报, 2013, 39(4):303-311 http://www.aas.net.cn/CN/abstract/abstract17916.shtmlZhang Hua-Guang, Zhang Xin, Luo Yan-Hong, Yang Jun. An overview of research on adaptive dynamic programming. Acta Automatica Sinica, 2013, 39(4):303-311 http://www.aas.net.cn/CN/abstract/abstract17916.shtml [22] Cai Y Z, Ji R R, Li S Z. Dynamic programming based optimized product quantization for approximate nearest neighbor search. Neurocomputing, 2016, 217:110-118 doi: 10.1016/j.neucom.2016.01.112