2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类工业运行过程多模型自适应控制方法

富月 杜琼

富月, 杜琼. 一类工业运行过程多模型自适应控制方法. 自动化学报, 2018, 44(7): 1250-1259. doi: 10.16383/j.aas.2017.c160763
引用本文: 富月, 杜琼. 一类工业运行过程多模型自适应控制方法. 自动化学报, 2018, 44(7): 1250-1259. doi: 10.16383/j.aas.2017.c160763
FU Yue, DU Qiong. Multi-model Adaptive Control Method for a Class of Industrial Operational Processes. ACTA AUTOMATICA SINICA, 2018, 44(7): 1250-1259. doi: 10.16383/j.aas.2017.c160763
Citation: FU Yue, DU Qiong. Multi-model Adaptive Control Method for a Class of Industrial Operational Processes. ACTA AUTOMATICA SINICA, 2018, 44(7): 1250-1259. doi: 10.16383/j.aas.2017.c160763

一类工业运行过程多模型自适应控制方法

doi: 10.16383/j.aas.2017.c160763
基金项目: 

高校基本科研业务费项目 N160801001

国家自然科学基金 61525302

国家自然科学基金 61573090

详细信息
    作者简介:

    杜琼  东北大学信息科学与工程学院硕士研究生.2015年获得武汉科技大学信息科学与工程学院学士学位.主要研究方向为自适应控制, 解耦控制.E-mail:44668@wisdri.com

    通讯作者:

    富月  东北大学流程工业综合自动化国家重点实验室副教授.2009年获得东北大学控制理论与控制工程专业博士学位.主要研究方向为复杂工业过程自适应控制, 智能解耦控制, 近似动态规划以及工业过程运行控制.本文通信作者.E-mail:fuyue@mail.neu.edu.cn

Multi-model Adaptive Control Method for a Class of Industrial Operational Processes

Funds: 

the Fundamental Research Funds for the Central Universities N160801001

National Natural Science Foundation of China 61525302

National Natural Science Foundation of China 61573090

More Information
    Author Bio:

     Master student at the College of Information Science and Engineering, Northeastern University. She received her bachelor degree from Wuhan University of Science and Technology in 2015. Her research interest covers adaptive control and decoupling control

    Corresponding author: FU Yue  Associate professor at the State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University. She received her Ph. D. degree from Northeastern University in 2009. Her research interest covers adaptive control, intelligent decoupling control, approximate dynamic programming, and industrial operational control. Corresponding author of this paper.
  • 摘要: 针对一类动态未知的工业运行过程,提出一种基于神经网络补偿和多模型切换的自适应控制方法.为充分考虑底层跟踪误差对整个运行过程优化和控制的影响,将底层极点配置控制系统和上层运行层动态模型相结合,作为运行过程动态模型.针对参数未知的运行过程动态模型,设计由线性鲁棒自适应控制器、基于神经网络补偿的非线性自适应控制器以及切换机制组成的多模型自适应控制算法.采用带死区的递推最小二乘算法在线辨识控制器参数,克服了投影算法收敛速度慢、对参数初值灵敏的局限.理论分析和仿真实验结果表明了所提方法的有效性.
    1)  本文责任编委 贺威
  • 图  1  传统的运行反馈控制过程

    Fig.  1  The operation of the traditional feedback control process

    图  2  多模型自适应控制系统结构

    Fig.  2  The structure of multi-model adaptive control system

    图  3  采用基于递推最小二乘算法的线性鲁棒自适应控制方法时, 运行过程的输出及运行指标目标值

    Fig.  3  Outputs of the operation process and theirs operation targets when the linear robust adaptive control method based on recursive least square algorithm is used

    图  4  采用基于递推最小二乘算法的多模型自适应控制方法时, 运行过程的输出、运行指标目标值及控制输入

    Fig.  4  Outputs of the operation process, theirs operation targets and control inputs when the proposed multi-model adaptive control method based on recursive least square algorithm is used

    图  5  采用基于递推最小二乘算法的多模型自适应控制方法时, $\widehat{\theta}_1(k)$中16个参数的在线变化曲线

    Fig.  5  Online curves of 16 parameters in $\widehat{\theta}_1(k)$ when the proposed multi-model adaptive control method based on recursive least square algorithm is used

    图  6  底层极点配置控制系统的跟踪曲线

    Fig.  6  Tracking curves of the underlying pole assignment control system

    图  7  采用基于投影算法的多模型自适应控制方法时, 运行过程的输出和运行指标目标值

    Fig.  7  Outputs of the operation process and theirs operation targets when the multi-model adaptive control method based on projection algorithm is used

    图  8  采用基于投影算法的多模型自适应控制方法时, $\widehat{\theta}_1(k)$中16个参数的在线变化曲线

    Fig.  8  Online curves of 16 parameters in $\widehat{\theta}_1(k)$ when the multi-model adaptive control method based on projection algorithm is used

  • [1] 柴天佑.复杂工业过程运行优化与反馈控制.自动化学报, 2013, 39(11):1744-1757 http://www.aas.net.cn/CN/abstract/abstract18214.shtml

    Chai Tian-You. Operational optimization and feedback control for complex industrial processes. Acta Automatica Sinica, 2013, 39(11):1744-1757 http://www.aas.net.cn/CN/abstract/abstract18214.shtml
    [2] Morari M, Arkun Y, Stephanopoulos G. Studies in the synthesis of control structures for chemical process, Part Ⅰ:formulation of the problem. Process decomposition and the classification of the control task. Analysis of the optimizing control structures. AIChE Journal, 1980, 26(2):220-232
    [3] Skogestad S. Plantwide control:the search for the self-optimizing control structure. Journal of Process Control, 2000, 10(5):487-507 doi: 10.1016/S0959-1524(00)00023-8
    [4] Findeisen W, Baliey F N, Brdys M, Malinowski K, Tatjewski P, Wozniak A. Control and Coordination in Hierarchical Systems. NewYork:John Wiley, 1980.
    [5] Adetola V, Guay M. Integration of real-time optimization and model predictive control. Journal of Process Control, 2000, 20(2):125-133 http://cn.bing.com/academic/profile?id=76662a340e14980ce41eafae56ab96ce&encoded=0&v=paper_preview&mkt=zh-cn
    [6] 柴天佑, 丁进良, 王宏, 苏春翌.复杂工业过程运行的混合智能优化控制方法.自动化学报, 2008, 34(5):505-515 http://www.aas.net.cn/CN/abstract/abstract13476.shtml

    Chai Tian-You, Ding Jin-Liang, Wang Hong, Su Chun-Yi. Hybrid intelligent optimal control method for operation of complex industrial processes. Acta Automatica Sinica, 2008, 34(5):505-515 http://www.aas.net.cn/CN/abstract/abstract13476.shtml
    [7] Li H X, Guan S P. Hybrid intelligent control strategy. Supervising a DCS-controlled batch process. IEEE Control Systems, 2001, 21(3):36-48 doi: 10.1109/37.924796
    [8] 范家璐, 张也维, 柴天佑.一类工业过程运行反馈优化控制方法.自动化学报, 2015, 41(9):1754-1761 http://www.aas.net.cn/CN/abstract/abstract18749.shtml

    Fan Jia-Lu, Zhang Ye-Wei, Chai Tian-You. Optimal operational feedback control for a class of industrial processes. Acta Automatica Sinica, 2015, 41(9):1754-1761 http://www.aas.net.cn/CN/abstract/abstract18749.shtml
    [9] Chai T Y, Zhao L, Qiu J B, Liu F Z, Fan J L. Integrated network-based model predictive control for setpoints compensation in industrial processes. IEEE Transactions on Industrial Informatics, 2013, 9(1):417-426 doi: 10.1109/TII.2012.2217750
    [10] 周平, 柴天佑, 陈通文.工业过程运行的解耦内膜控制方法.自动化学报, 2009, 35(10):1362-1368 http://www.aas.net.cn/CN/abstract/abstract13591.shtml

    Zhou Ping, Chai Tian-You, Chen Tong-Wen. Decoupling internal model control method for operation of industrial process. Acta Automatica Sinica, 2009, 35(10):1362-1368 http://www.aas.net.cn/CN/abstract/abstract13591.shtml
    [11] Chen L J, Narendra K S. Nonlinear adaptive control using neural networks and multiple models. Automatica, 2001, 37(8):1245-1255 doi: 10.1016/S0005-1098(01)00072-3
    [12] Fu Y, Chai T Y. Nonlinear multivariable adaptive control using multiple models and neural networks. Automatica, 2007, 43(6):1101-1110 doi: 10.1016/j.automatica.2006.12.010
    [13] 石宇静, 柴天佑.基于神经网络与多模型的非线性自适应广义预测控制.自动化学报, 2007, 33(5):540-545 http://www.aas.net.cn/CN/abstract/abstract14304.shtml

    Shi Yu-Jing, Chai Tian-You. Neural networks and multiple models based nonlinear adaptive generalized predictive control. Acta Automatica Sinica, 2007, 33(5):540-545 http://www.aas.net.cn/CN/abstract/abstract14304.shtml
    [14] Chai T Y, Zhai L F, Yue H. Multiple models and neural networks based decoupling control of ball mill coal-pulverizing systems. Journal of Process Control, 2011, 21(3):351-366 doi: 10.1016/j.jprocont.2010.11.007
    [15] 曹叙风, 王昕, 王振雷.基于切换和混合策略的多模型自适应控制.控制工程, 2014, 21(6):878-881 http://www.oalib.com/paper/4224109

    Cao Xu-Feng, Wang Xin, Wang Zhen-Lei. Multiple-models adaptive control with mixing and switching. Control Engineering of China, 2014, 21(6):878-881 http://www.oalib.com/paper/4224109
    [16] Chen C, Liu Z, Zhang Y, Chen C L P, Xie S L. Adaptive control of MIMO mechanical systems with unknown actuator nonlinearities based on the nussbaum gain approach. IEEE/CAA Journal of Automatica Sinica, 2016, 3(1), 26-34 doi: 10.1109/JAS.2016.7373759
    [17] 柴天佑.多变量自适应解耦控制及应用.北京:科学出版社, 2001.

    Chai Tian-You. Multivariable Adaptive Decoupling Control and Its Applications. Beijing:Science Press, 2001.
  • 加载中
图(8)
计量
  • 文章访问数:  2584
  • HTML全文浏览量:  228
  • PDF下载量:  789
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-10
  • 录用日期:  2017-03-30
  • 刊出日期:  2018-07-20

目录

    /

    返回文章
    返回