2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斐波那契树优化算法求解多峰函数全局最优解的可达性分析

董易 施心陵 王霞 王耀民 吕丹桔 张松海 李孙寸

董易, 施心陵, 王霞, 王耀民, 吕丹桔, 张松海, 李孙寸. 斐波那契树优化算法求解多峰函数全局最优解的可达性分析. 自动化学报, 2018, 44(9): 1679-1689. doi: 10.16383/j.aas.2017.c160703
引用本文: 董易, 施心陵, 王霞, 王耀民, 吕丹桔, 张松海, 李孙寸. 斐波那契树优化算法求解多峰函数全局最优解的可达性分析. 自动化学报, 2018, 44(9): 1679-1689. doi: 10.16383/j.aas.2017.c160703
DONG Yi, SHI Xin-Ling, WANG Xia, WANG Yao-Min, LV Dan-Ju, ZHANG Song-Hai, LI Sun-Cun. On Accessibility of Fibonacci Tree Optimization Algorithm for Global Optima of Multi-modal Functions. ACTA AUTOMATICA SINICA, 2018, 44(9): 1679-1689. doi: 10.16383/j.aas.2017.c160703
Citation: DONG Yi, SHI Xin-Ling, WANG Xia, WANG Yao-Min, LV Dan-Ju, ZHANG Song-Hai, LI Sun-Cun. On Accessibility of Fibonacci Tree Optimization Algorithm for Global Optima of Multi-modal Functions. ACTA AUTOMATICA SINICA, 2018, 44(9): 1679-1689. doi: 10.16383/j.aas.2017.c160703

斐波那契树优化算法求解多峰函数全局最优解的可达性分析

doi: 10.16383/j.aas.2017.c160703
基金项目: 

国家自然科学基金 61661050

云南省教育厅科学研究基金项目 2017ZZX229

详细信息
    作者简介:

    施心陵 云南大学信息学院教授.主要研究方向为智能优化算法, 自适应信号处理与信息系统, 医学电子学.E-mail:xlshi@ynu.edu.cn

    王霞 云南大学信息学院博士研究生.2010年获得中南大学物理科学与技术学院硕士学位.主要研究方向为智能优化算法.E-mail:wangxiacsu@163.com

    王耀民 云南大学信息学院博士研究生.2013年获得南京邮电大学通信与信息工程学院硕士学位.主要研究方向为智能优化算法.E-mail:18988081898@189.cn

    吕丹桔 云南大学信息学院博士研究生.2013年获得云南大学信息学院硕士学位.主要研究方向为智能林业信息处理.E-mail:lvdanjv@hotmail.com

    张松海 云南大学信息学硕士研究生.主要研究方向为智能优化算法.E-mail:hai_zs@sina.com

    李孙寸 云南大学信息学院硕士研究生.主要研究方向为智能优化算法.E-mail:lisuncun@outlook.com

    通讯作者:

    董易 云南大学信息学院博士研究生.2009年获得云南大学信息学院硕士学位.主要研究方向为智能优化算法.本文通信作者.E-mail:yeo003@163.com

On Accessibility of Fibonacci Tree Optimization Algorithm for Global Optima of Multi-modal Functions

Funds: 

National Natural Science Foundation of China 61661050

Science Research Foundation of Yunnan Provincial Department of Education 2017ZZX229

More Information
    Author Bio:

    Professor at the School of Information Science and Engineering, Yunnan University. His research interest covers intelligent optimization algorithm, adaptive signal processing, information system, and medical electronics

    Ph. D. candidate at the School of Information Science and Engineering, Yunnan University. She received her master degree from the College of Physical Science and Technology, Central South University in 2010. Her main research interest is intelligent optimization algorithm

    Ph. D. candidate at the School of Information Science and Engineering, Yunnan University. He received his master degree from the College of Telecommunications and Information Engineering, Nangjing University of Posts and Telecommunications in 2013. His main research interest is intelligent optimization algorithm

    Ph. D. candidate at the School of Information Science and Engineering, Yunnan University. She received her master degree from the School of Information Science and Engineering, Yunnan University in 2013. Her main research interest is intelligent forestry information processing

    Master student at the School of Information Science and Engineering, Yunnan University. His main research interest is intelligent optimization algorithm

    Master student at the Science and Engineering, Yunnan University. Her main research interest is intelligent optimization algorithm

    Corresponding author: DONG Yi Ph. D. candidate at the School of Information Science and Engineering, Yunnan University. He received his master degree from the School of Information Science and Engineering, Yunnan University in 2009. His main research interest is intelligent optimization algorithm. Corresponding author of this paper
  • 摘要: 为分析和验证斐波那契树优化算法(Fibonacci tree optimization algorithm,FTO)求解多峰函数全局最优解的算法性能,对算法的可达性问题进行研究.本文基于斐波那契法构造一个斐波那契树结构,在搜索空间中进行全局、局部交替搜索,不易陷入局部最优解.对斐波那契树优化算法基于该结构的可达性进行分析和证明.通过跟踪算法求解过程中坐标点的累积分布仿真实验和到达率的对比实验,分析和验证了算法求解多峰函数全局最优解的可达性.
    1)  本文责任编委 孙长银
  • 图  1  FTO算法基本结构

    Fig.  1  Basic structure of FTO

    图  2  斐波那契树生成过程示意图

    Fig.  2  Building procedure of Fibonacci tree

    图  3  FTO算法流程图

    Fig.  3  Algorithm flow chart of FTO

    图  4  函数图像和等高线示意图

    Fig.  4  Function graphs and contour graphs

    图  5  函数Damavandi求解坐标点的累积分布示意图

    Fig.  5  Cumulative distribution of points of function Damavandi

    图  6  函数Langermann求解坐标点的累积分布示意图

    Fig.  6  Cumulative distribution of points of function Langermann

    图  7  仿真实验收敛曲线

    Fig.  7  Convergence curves of simulation experiment

    图  8  对比实验的收敛曲线

    Fig.  8  Convergence curves of comparison experiment

    表  2  算法参数设置

    Table  2  Parameters setting of algorithms

    GA PSO CLPS FTO
    交叉概率 0.7 惯性权重 0.9~0.5 惯性权重 0.9~0.5 斐波那契树深度 6
    变异概率 0.01 加速常数$ c1 $ 2 加速常数$ c1 $ 1.49445
    精英保留概率 0.05 加速常数$ c2 $ 2 加速常数$ c2 $ 1.49445
    二进制位数 20 种群个数 20 学习概率 0.5~0.05
    种群个数 20 种群个数 20
    下载: 导出CSV

    表  1  函数局部极值点

    Table  1  Local optima of benchmark functions

    局部极值1 (全局最优解) 局部极值2
    Damavandi $ f(2, 2)=0 $ $ f(7, 7)=2 $
    Langermann $ f(2.003, 1.006)=-5.1621 $ $ f(7, 9)=-3 $
    下载: 导出CSV

    表  3  测试函数列表

    Table  3  Benchmark functions

    函数名称 表达式 定义域 全局最优解
    Damavandi $ [1-|\frac{\sin[\pi(x_1-2)]\sin[\pi(x_2-2)]}{\pi^2(x_1-2)(x_2-2)}|^5][2+(x_1-7)^2+(x_2-7)^2]- $ $ \sum\limits_{i=1}^5 c_i\cos(z_i\pi){\rm e}^{-\frac{z_i}{\pi}} $ $[0, 14]$ 0
    $ z_i=(x_1-a_i)^2+(x_2-b_i)^2 $
    Langermann $ a=[3, 5, 2, 1, 7] $ $[0, 10]$ $-5.1621$
    $ b=[5, 2, 1, 4, 9] $
    $ c=[1, 2, 5, 2, 3] $
    Michalewicz $ \sum\limits_{i=1}^d \sin(\frac{ix_i^2}{\pi})^{20}\sin(x_i) $ $[0, 5] $ $ -1.9679$
    YangStandingWave $ {\rm e}^{-\sum\limits_{i=1}^d(\frac{x_i}{15})^6}-2{\rm e}^{-\sum\limits_{i=1}^d x_i^2}\prod\limits_{i=1}^d \cos^2(x_i)$ $[-20, 20]$ $ -1 $
    cec2005 15 HCF1 $[-5, 5]$ 120
    cec2005 16 RHCF1 Hybrid composition functions $[-5, 5]$ 120
    cec2005 18 RHCF2 $[-5, 5]$ 10
    cec2005 21 RHCF3 $[-5, 5]$ 360
    下载: 导出CSV

    表  4  实验函数的最优解及可接受范围

    Table  4  The optimal solution and acceptable range of the functions in experiment

    函数 最优解 可接受范围
    Damavandi 0.0000E+00 $ < 1.0000$ E$-$ 02
    Langermann $-5.1621$ E+00 $ < -5.1000$ E+00
    Michalewicz $-1.9679$ E+00 $ < -1.9500$ E+00
    YangStandingWave $-1.0000$ E+00 $ < 0.0000$ E+00
    HCF1 1.2000E+02 $ < 1.2900$ E+02
    RHCF1 1.2000E+02 $ < 1.2900$ E+02
    RHCF2 1.0000E+01 $ < 1.1000$ E+01
    RHCF3 3.6000E+02 $ < 3.6100$ E+02
    下载: 导出CSV

    表  5  Damavandi实验结果

    Table  5  Result of Damavandi in experiment

    算法 到达均值 标准差1 未达均值 标准差2 $N$ $r$ (%)
    GA / / 2.0000E+00 /
    PSO -8.5487E-14 1.3213E-23 2.0000E+00 0.0000E+00 2 4
    CLPSO / / 2.0000E+00 /
    FTO 1.1168E-06 1.4894E-06 2.0000E+00 1.7888E-09 12 24
    下载: 导出CSV

    表  6  Langermann实验结果

    Table  6  Result of Langermann in experiment

    算法 到达均值 标准差1 未达均值 标准差2 $N$ $r$ (%)
    GA $-5.1621$ E+00 1.8078E-15 $-2.9938$ E+00 3.6444E-01 29 58
    PSO $-5.1621$ E+00 2.6968E-15 $-3.0000$ E+00 4.7475E-16 42 84
    CLPSO $-5.1615$ E+00 4.3819E-03 / / 50 100
    FTO $-5.1621$ E+00 5.0777E-08 / / 50 100
    下载: 导出CSV

    表  7  Michalewicz实验结果

    Table  7  Result of Michalewicz in experiment

    算法 到达均值 标准差1 未达均值 标准差2 $N$ $r$ (%)
    GA $-1.9679$ E+00 4.5325E-16 -1.7979E+00 9.6821E-02 25 50
    PSO $-1.9678$ E+00 3.9389E-05 -9.9196E-01 1.6075E-02 46 92
    CLPSO $-1.9679$ E+00 7.4886E-09 / / 50 100
    FTO $-1.9679$ E+00 7.0607E-07 / / 50 100
    下载: 导出CSV

    表  8  YangStandingWave实验结果

    Table  8  Result of YangStandingWave in experiment

    算法 到达均值 标准差1 未达均值 标准差2 $N$ $r$ (%)
    GA $-1.0000$ E+00 5.6277E-16 1.3173E-05 3.5265E-21 37 74
    PSO $-1.0000$ E+00 0.0000E+00 1.5571E-05 1.2516E-06 4 8
    CLPSO $-7.0208$ E-01 2.6415E-01 1.2852E-05 2.0573E-06 9 18
    FTO $-1.0000$ E+00 1.8775E-09 / / 50 100
    下载: 导出CSV

    表  9  HCF1实验结果

    Table  9  Result of HCF1 in experiment

    算法 到达均值 标准差1 未达均值 标准差2 $N$ $r$ (%)
    GA 1.2000E+02 3.6311E-06 2.6457E+02 1.2548E+02 27 54
    PSO 1.2000E+02 0.0000E+00 3.2000E+02 0.0000E+00 45 90
    CLPSO 1.2008E+02 2.7377E-01 1.4330E+02 1.4567E+01 48 96
    FTO 1.2000E+02 1.3480E-05 / / 50 100
    下载: 导出CSV

    表  10  RHCF1实验结果

    Table  10  Result of RHCF1 in experiment

    算法 到达均值 标准差1 未达均值 标准差2 $N$ $r$ (%)
    GA 1.2000E+02 0.0000E+00 2.1146E+02 5.0191E+01 7 14
    PSO 1.2000E+02 0.0000E+00 2.1597E+02 1.5598E+01 35 70
    CLPSO 1.2155E+02 2.6034E+00 1.9118E+02 $-3.3710$ E+01 41 82
    FTO 1.2000E+02 2.3951E-05 2.2000E+02 0.0000E+00 49 98
    下载: 导出CSV

    表  11  RHCF2实验结果

    Table  11  Result of RHCF2 in experiment

    算法 到达均值 标准差1 未达均值 标准差2 $N$ $r$ (%)
    GA 1.0006E+01 0.0000E+00 3.8551E+02 9.0210E+01 1 2
    PSO 1.0000E+01 0.0000E+00 3.8500E+02 6.0356E+01 14 28
    CLPSO / / 2.6217E+02 /
    FTO 1.0043E+01 3.1468E-02 1.1011E+02 8.2284E-02 44 88
    下载: 导出CSV

    表  12  RHCF3实验结果

    Table  12  Result of RHCF3 in experiment

    算法 到达均值 标准差1 未达均值 标准差2 $N$ $r$ (%)
    GA 3.6000E+02 0.0000E+00 7.8881E+02 1.6723E+02 1 2
    PSO / / 6.9800E+02 /
    CLPSO / / 6.0613E+02 /
    FTO 3.6000E+02 5.1019E-04 5.5474E+02 2.2942E+01 31 62
    下载: 导出CSV
  • [1] Boussad I, Lepagnot J, Siarry P. A survey on optimization metaheuristics. Information Sciences, 2013, 237:82-117 doi: 10.1016/j.ins.2013.02.041
    [2] 李建平, 宫耀华, 赵思远, 卢爱平, 李盼池.粒子群优化算法的改进及数值仿真.吉林大学学报(理学版), 2017, 55(2):322-332 http://d.old.wanfangdata.com.cn/Periodical/jldxzrkxxb201702024

    Li Jian-Ping, Gong Yao-Hua, Zhao Si-Yuan, Lu Ai-Ping, Li Pan-Chi. Improvement of particle swarm optimization algorithm and numerical simulation. Journal of Jilin University (Science Edition), 2017, 55 (2):322-332 http://d.old.wanfangdata.com.cn/Periodical/jldxzrkxxb201702024
    [3] 高雷阜, 佟盼.遗传-人工蜂群融合算法及其Markov收敛性分析.数学杂志, 2017, 37 (1):215-222 doi: 10.3969/j.issn.0255-7797.2017.01.023

    Gao Lei-Fu, Tong Pan. Combination algorithm of genetic-artificial bee colony and its Markov convergence analysis. Journal of Mathematics, 2017, 37 (1):215-222 doi: 10.3969/j.issn.0255-7797.2017.01.023
    [4] Whitley D. A genetic algorithm tutorial. Statistics and Computing, 1994, 4 (2):65-85 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_c227a5f223e4c1bc4e93b3863a92a817
    [5] Mareda T, Gaudard L, Romerio F. A parametric genetic algorithm approach to assess complementary options of large scale wind-solar coupling. IEEE/CAA Journal of Automatica Sinica, 2017, 4 (2), 260-272 doi: 10.1109/JAS.2017.7510523
    [6] Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks. Perth, WA, Australia: IEEE, 1995, 4: 1942-1948
    [7] Poli R. The sampling distribution of particle swarm optimisers and their stability[Online], available: http://cswww.essex.ac.uk/technical-reports/2007/csm-465.pdf, 2007.
    [8] Zhang Y D, Wang S H, Ji G L. A comprehensive survey on particle swarm optimization algorithm and its applications. Mathematical Problems in Engineering, 2015, 2015:Article No. 931256 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004037005
    [9] Han Z, Zhao J, Wang W. An optimized oxygen system scheduling with electricity cost consideration in steel industry. IEEE/CAA Journal of Automatica Sinica, 2017, 4 (2), 216-222 doi: 10.1109/JAS.2017.7510439
    [10] 张军英, 许进, 保铮.遗传交叉运算的可达性研究.自动化学报, 2002, 28 (1):120-125 http://www.aas.net.cn/CN/abstract/abstract15509.shtml

    Zhang Jun-Ying, Xu Jin, Bao Zheng. Attainability of genetic crossover operator. Acta Automatica Sinica, 2002, 28 (1):120-125 http://www.aas.net.cn/CN/abstract/abstract15509.shtml
    [11] Zhang Y A, Ma Q L, Sakamoto M, Furutani H. Effect of mutation to distribution of optimum solution in genetic algorithm. Natural Computing. Tokyo, Japan:Springer, 2010. 380-387
    [12] Liu Q F, Wei W H, Yuan H Q, Zhan Z H, Li Y. Topology selection for particle swarm optimization. Information Sciences, 2016, 363:154-173 doi: 10.1016/j.ins.2016.04.050
    [13] Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 2002, 6 (1):58-73 doi: 10.1109/4235.985692
    [14] 刘建华, 刘国买, 杨荣华, 胡文瑜.粒子群算法的交互性与随机性分析.自动化学报, 2012, 38 (9):1471-1484 http://www.aas.net.cn/CN/abstract/abstract17757.shtml

    Liu Jian-Hua, Liu Guo-Mai, Yang Rong-Hua, Hu Wen-Yu. Analysis of interactivity and randomness in particle swarm optimization. Acta Automatica Sinica, 2012, 38 (9):1471-1484 http://www.aas.net.cn/CN/abstract/abstract17757.shtml
    [15] Leboucher C, Shin H S, Siarry P, Le Ménec S, Chelouah R, Tsourdos A. Convergence proof of an enhanced particle swarm optimisation method integrated with evolutionary game theory. Information Sciences, 2016, 346-347:389-411 doi: 10.1016/j.ins.2016.01.011
    [16] Subasi M, Yildirim N, Yildiz B. An improvement on Fibonacci search method in optimization theory. Applied Mathematics and Computation, 2004, 147 (3):893-901 doi: 10.1016/S0096-3003(02)00828-7
    [17] Liang J J, Qin A K, Suganthan P N, Baskar S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 2006, 10 (3):281-295 doi: 10.1109/TEVC.2005.857610
    [18] Suganthan P N, Hansen N, Liang J J, Deb K, Chen Y P, Auger A, Tiwari S. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Singapore: Nanyang Technological University[Online], available: http://web.mysites.ntu.edu.sg/epn-sugan/PublicSite/Shared
  • 加载中
图(8) / 表(12)
计量
  • 文章访问数:  2323
  • HTML全文浏览量:  478
  • PDF下载量:  656
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-09
  • 录用日期:  2017-08-08
  • 刊出日期:  2018-09-20

目录

    /

    返回文章
    返回