-
摘要: 电熔镁群炉需量指当前时刻k和(k-1),…,(k-n+1)时刻群炉功率的平均值,用于度量高耗能电熔镁群炉用电量.(k+1)时刻群炉需量取决于功率变化率.本文建立了功率变化率与电流控制系统输出电流之间由线性项与未知非线性项组成的动态模型,其中线性项通过电流被控对象的参数和控制器的参数计算,未知非线性项采用基于偏自相关函数(Partial autocorrelation function,PACF)输入变量决策的径向基函数神经网络(Radial basis function neural network,RBFNN)来估计.本文提出了由当前k时刻的需量和功率,(k-n+1)时刻功率及k时刻功率变化率的估计组成的(k+1)时刻需量的计算模型.通过某电熔镁砂厂实际数据的仿真实验和工业实验表明所提方法可准确预报需量变化趋势,可以防止因原料变化引起需量尖峰导致错误切断电熔镁炉供电造成电熔镁砂质量降低.Abstract: The demand of fused magnesium furnace group (FMFG) is the average value of powers at times k, (k-1), …, (k-n+1). The demand indicates the electricity consumption of the FMFG. The demand at time (k+1) depends on the rate of power change. In this paper, we develop a dynamic model of the rate of power change and the output current. The model consists of a linear term and an unknown nonlinear term, where the linear term can be calculated by the parameters of the controlled current and the controller, and the unknown nonlinear term can be estimated using the radial basis function neural network (RBFNN). The input variables of RBFNN are decided based on partial autocorrelation function (PACF). Then a computing model of demand at time (k+1) is proposed, which consists of the demand at time k, the powers at times k and (k-n+1) and the estimate of the rate of power change at time k. Simulations based on actual data and industrial experiments at a fused magnesia plant show that the proposed method can accurately forecast demand trends and can prevent reduction of fused magnesia grade caused by unnecessary cut off due to the demand spikes caused by change of raw materials.
-
迭代学习控制技术问世于上世纪80年代初, 适用于重复作业对象的控制器设计, 可实现在整个作业区间上的零误差跟踪 [1]. 当系统在固定区间内重复运行时, 可学习的不确定性虽然随着时间的变化而变化, 但在各次运行中呈现相同的变化规律, 沿迭代轴来看, 同一时刻对应的不确定性为一常值. 由此, 可通过学习方法对其进行估计, 并根据误差不断修正控制输入. 这样, 经过足够多次迭代运行后, 可将闭环系统中可学习的不确定性予以完全补偿, 实现系统状态对参考信号在整个作业区间上的完全跟踪 [2-7]. 至今, 这种控制技术已应用于机械臂、磁盘驱动器和逆变电路等.
目前, 基于Lyapunov方法设计学习控制系统引起了人们的关注 [2-3]. 在设计学习控制系统过程中, 需要处理各种不确定性, 常见的有线性参数不确定、非线性参数不确定性 [8]和非参数不确定性 [9] 等. 线性参数不确定性又可分为固定常数 [10-11]、不随迭代次数变化的时变参数 [12], 以及随迭代次数变化的时变参数 [13]. 从已经发表的文献数量来看, 非线性参数不确定性和非参数不确定性方面的结果较少. 文献[14]利用界函数设计反馈项补偿非参数不确定性. 文献[15-16] 结合使用鲁棒方法与学习方法处理非参数不确定性. 傅里叶级数等逼近工具也可用于估计该类不确定 [17]. 文献[18]针对控制增益时变的非参数不确定系统, 基于Backstepping方法设计迭代学习控制系统. 文献[19]针对一类同含参数不确定性和非参数不确定性的 非线性系统, 分别提出准最优迭代学习控制算法和准最优重复学习控制算法.
在应用常规迭代学习控制算法时, 需要在每次迭代开始前进行严格初始定位, 以使系统初态与期望轨迹的起始点完全一致 [3]. 但在实际中, 受复位条件的限制, 系统存在非零误差初值. 因此, 研究适用于任意误差初值的迭代学习控制算法, 不仅具有理论意义, 还可拓宽迭代学习控制技术的应用范围. 针对连续系统的Lyapunov方法初值问题解决方案见文献[20-22]. 文献[20]提出了时变边界层解决方案. 其控制策略是: 经过足够多次迭代后, 闭环系统的滤波误差可以收敛到与迭代初值相关的时变死区中. 文献[21] 给出误差跟踪设计方法, 并将其与参考信号初始修正方法进行对比. 文献[22]研究非参数不确定系统的误差跟踪学习控制算法. 另外, 在参考信号光滑闭合场合, 可采用重复学习控制方法设 计控制器, 该法在运行过程中勿需停顿及复位 [2, 23-24].
设计自适应或自适应学习控制器时, 为了处理有界的不确定性, 常采用鲁棒方法予以处理. 根据界函数与符号函数设计反馈项可完全补偿不确定性, 但据此设计的控制器在实现时容易发生颤振现象. 为了克服这一不足, 可以采用饱和函数代替符号函数, 实现边界层外的切换控制和边界层内的线性反馈控制. 类似的方法还有单位向量连续化 [25]. 在一些场合, 例如根据反演方法设计控制器时, 为了设计上的方便, 可以采用双曲正切函数代替符号函数 [26]. 文献[27]利用双曲正切函数为严格反馈时变系统设计学习控制器.
为解决参数/非参数混合不确定系统的轨迹跟踪问题, 针对任意初态的非严格复位系统, 本文 提出基于滤波误差初始修正的自适应迭代学习控制方法. 在构造修正滤波误差后, 采用Lyapunov方法设计迭代学习控制器并进行性能分析, 利用鲁棒手段确保系统变量有界, 处理非参数不确定性后, 将所得的各未知时变参数合并为两个未知时变参数向量, 并通过学习方法分别予以估计. 经过足够多次迭代后, 闭环系统的修正滤波误差在整个作业区间收敛于零, 滤波 误差在预设的部分作业区间上收敛于零. 文中所给出的修正滤波误差构造方案, 具有构造简单实现方便的特点.
1. 问题描述
考虑有限时间区间$[0, T]$上重复运行的非线性不确定系统
$\begin{cases} \dot{x}_{ik}=x_{i+1k}, i=1, 2, \cdots, n-1\\dot{x}_{nk}=f( x_k, t)+g( x_k, t)u_k \end{cases}\label{01cssys} $
(1) 式中, $k=0, 1, 2, \cdots$为重复作业次数. ${x}_k=[x_{1k}$, ${x}_{2k}, \cdots, x_{nk}]^{\rm T}\in R^n$为状态向量, $u_k\in R$为控制输入, $f( x_k, t)$与$g( x_k, t)$为不确定性, 未知实数 $g( x_k, t)>0$. 参考信号为${x_d} = {[{x_d}, {{\dot x}_d}, {{\ddot x}_d}, \cdots , {x_d}^{(n - 1)}]^{\rm{T}}}, {x_d}^{(n)}$存在.
本文考虑系统状态初值$ x_k(0)$, $k=0, 1, 2, \cdots$, 任意情形下的学习控制算法, 拟构造修正滤波误差设计控制器, 在足够多次迭代后, 实现闭环系统的$ x_k$ 在部分作业区间上精确跟踪$ x_d$. 因控制器设计需要, 做如下假设.
假设 1. 函数
$f( x_k, t)= \theta^{\rm T}(t) \varphi( x_k, t)+\Delta f( x_k, t) $
(2) 其中, $ \theta(t)\in R^m$为未知时变常数, $ \varphi( x_k, t)$为与$ \theta(t)$同维的连续向量, $\Delta f( x_k, t)$满足
$|\Delta f({\xi _1}, t) - \Delta f({\xi _2}, t)| \le {\alpha _f}({\xi _1}, {\xi _2}, t){\xi _1} - {\xi _2}, \forall {\xi _1} \in {R^n}, \forall {\xi _2} \in {R^n}$
此处, $\alpha_f(\cdot, \cdot, \cdot)$为非负连续函数.
假设 2. 函数$g(\cdot, \cdot)$满足
$|g({\xi _1}, t) - g({\xi _2}, t)| \le {\alpha _g}({\xi _1}, {\xi _2}, t){\xi _1} - {\xi _2}, \forall {\xi _1} \in {R^n}, \forall {\xi _2} \in {R^n}{\rm{ }}$
其中, $\alpha_g(\cdot, \cdot, \cdot)$为非负连续函数, 且 存在连续函数$g_{m}( x_k, t)$, 满足$0<g_{m}( x_k, t)\leq g( x_k, t)$.
假设 3. $\partial g({x_k}, t)\partial {x_k} < + \infty $.
参数不确定性和非参数不确定性是系统中常见的不确定性, 本文在假设性方面的要求较文献[28]低. 为叙述简便, 下文记$g_{m}( x_k, t)$, $ \varphi( x_k, t)$, $\Delta f( x_k, t)$, $g( x_k, t)$, $\Delta f( x_d, t)$, $g( x_d, t)$, $\alpha_f( x_k, x_d$, $t)$, $\alpha_g( x_k, x_d, t)$分别为$g_{mk}$, $ \varphi_k$, $\Delta f_k$, gk, $\Delta f_d$, gd, $\alpha_{fk}$, $\alpha_{gk}$. 在不引起歧义时, 函数的自变量t常被略去.
2. 滤波误差初始修正下的控制器设计
记
${e_k} = {[{e_{1k}}, {e_{2k}}, \cdots , {e_{nk}}]^{\rm{T}}} = {x_k} - {x_d}{s_k} = {c_1}{e_{1k}} + \cdots + {c_{n - 1}}{e_{n - 1k}} + {e_{nk}}$
(3) 选取合适的参数$c_1$, $\cdots$, $c_{n-1}$, 使得多项式$\Delta(p)=$ $p^{n-1}$ $+$ $c_{n-1}p^{n-2}+\cdots+c_2p+c_1$为Hurwitz多项式.
定义 1.
$s_{\phi k}=s_k-\phi(t)s_k(0) \label{sfkdef} $
(4) 其中, $\phi(t)$为一类连续可导的单调递减函数, 满足$\phi(0)=1$, $\phi(t)=0$ $(\forall t\in [t_1, T])$. 一种可选的$\phi(t)$ 构造方案为 {\small
$\phi (t) = \left\{ {\matrix{ {{{10{{({t_1} - t)}^3}} \over {t_1^3}} - {{15{{({t_1} - t)}^4}} \over {t_1^4}} + {{6{{({t_1} - t)}^5}} \over {t_1^5}}, } \hfill&{0 \le t \le {t_1}\;0, } \hfill&{{t_1}} \hfill&{ < t \le T\;} \hfill \cr } } \right.$
本文称$s_{\phi k}$为修正滤波误差, 其与误差$ e_k$的关系满足引理1.
引理 1. 对于任意$\mu>0$及取值任意的系统初态$ x_k(0)$, 不等式
$\int_0^t {{{\rm{e}}^{ - \lambda \tau }}} \mu |{s_{\phi k}}|{e_k}{\rm{d}}\tau \le \int_0^t {{{\rm{e}}^{ - \lambda \tau }}} {\beta _1}(\mu , t)s_{\phi k}^2{\rm{d}}\tau + \int_0^t {{{\rm{e}}^{ - \lambda \tau }}} {\beta _2}(\tau )\mu |{s_{\phi k}}|{\rm{d}}\tau $
成立. 其中, $\beta_1(\mu, t)=[\mu+t\|A\|{\rm e}^{\|A\| t}(1+\mu)^2]$, $\beta_2(t)$ $=$ $t\|A \|{\rm e}^{t\|A\|} (|s_k(0)|+\|{ e}_{k}(0)-bs_k(0)\|) +\|{ e}_{k}(0)$ $+$ $ b(\phi(t)-1) s_k(0)\|$, $ b=[0, 0, \cdots, 0, 1]^{\rm T}$,
$A = \left( {\matrix{ 0&1&0& \cdots &{} \cr 0&0&1& \cdots &{} \cr \vdots & \vdots & \vdots & \ddots & \vdots \cr 0&{ - {c_1}}&{ - {c_2}}& \cdots &{} \cr } } \right)$
(5) 证明 . 由式(4)知,
$\eqalign{ &{{\dot s}_{\phi k}} = {c^{\rm{T}}}{e_k} + {{\dot e}_{nk}} - \eta (t){s_k}(0) \cr &{{\dot e}_k} = A{e_k} + b({{\dot s}_{\phi k}} + \eta (t){s_k}(0)) \cr} $
(6) 式中, $ c=[0, c_1, c_2, \cdots, c_{n-1}]^{\rm T}$, $\eta(t)= \dfrac{{\rm d}\phi}{{\rm d}t}$. 对式(6)两边定积分, 可得
$\eqalign{ &{e_k} = \int_0^t A {e_k}{\rm{d}}\tau + b{s_{\phi k}} + {e_k}(0) - \cr &b{s_{\phi k}}(0) + b{s_k}(0)\int_0^t \eta (\tau ){\rm{d}}\tau = \int_0^t A {e_k}{\rm{d}}\tau + b{s_{\phi k}} + {e_k}(0) + b(\phi (t) - 1){s_k}(0) \cr} $
(7) 两边取范数
${e_k} \le \int_0^t {A} {e_k}{\rm{d}}\tau + |{s_{\phi k}}| + {e_k}(0) + b(\phi (t) - 1){s_k}(0)$
利用Bellman引理%
${e_k} \le A{{\rm{e}}^{tA}}\int_0^t | {s_{\phi k}}|{\rm{d}}\tau + |{s_{\phi k}}| + {\beta _2}$
(8) 在式(8)的两边同乘以${\rm e}^{-\lambda t}\mu|{s}_{\phi k}|$后取定积分, 根据柯西不等式可以推得
$\eqalign{ &\int_0^t {{{\rm{e}}^{ - \lambda \tau }}} \mu |{s_{\phi k}}|{e_k}{\rm{d}}\tau \le A{{\rm{e}}^{At}} \cr &\int_0^t {{{\rm{e}}^{ - \lambda \tau }}} \mu (\tau )|{s_{\phi k}}(\tau )|\int_0^v | {s_{\phi k}}(v)|{\rm{d}}v{\rm{d}}\tau + \cr &\int_0^t {{{\rm{e}}^{ - \lambda \tau }}} \mu s_{\phi k}^2{\rm{d}}\tau + \int_0^t {{{\rm{e}}^{ - \lambda \tau }}} {\beta _2}(\tau )\mu |{s_{\phi k}}|{\rm{d}}\tau \le \cr &A{{\rm{e}}^{At}}{[\int_0^t {{{\rm{e}}^{ - \lambda \tau }}} (1 + \mu (\tau ))|{s_{\phi k}}(\tau )|{\rm{d}}\tau ]^2} + \cr &\int_0^t {{{\rm{e}}^{ - \lambda \tau }}} \mu s_{\phi k}^2{\rm{d}}\tau + \int_0^t {{{\rm{e}}^{ - \lambda \tau }}} {\beta _2}(\tau )\mu |{s_{\phi k}}|{\rm{d}}\tau \le \cr &\int_0^t {{{\rm{e}}^{ - \lambda \tau }}} [\mu + tA{{\rm{e}}^{At}}{(1 + \mu )^2}]s_{\phi k}^2{\rm{d}}\tau + \int_0^t {{{\rm{e}}^{ - \lambda \tau }}} {\beta _2}(\tau )\mu |{s_{\phi k}}|{\rm{d}}\tau \cr} $
文给出了修正滤波误差与系统误差之间的不等式关系, 在下文的控制器设计和收敛性分析中, 将利用该不等式关系处理不确定性.
对$V_{1k}=\dfrac{1}{2g_k}{\rm e}^{-\lambda t}s_{\phi k}^2$求关于时间的导数, 得
$\eqalign{ &{{\dot V}_{1k}} = - \lambda {1 \over {2{g_k}}}{{\rm{e}}^{ - \lambda t}}s_{\phi k}^2 + {{\rm{e}}^{ - \lambda t}}[ - {1 \over {2g_k^2}}{{\dot g}_k}s_{\phi k}^2 + {s_{\phi k}}g_k^{ - 1}({c^{\rm{T}}}{e_k} - {x_d}^{(n)} - \eta (t){s_k} \cr &(0) + {\theta ^{\rm{T}}}{\varphi _k}) + {s_{\phi k}}(g_k^{ - 1}\Delta {f_k} + {u_k})] \cr} $
根据假设1和假设2, 可以推出
$\begin{align} &{{s}_{\phi k}}{{({{g}_{k}})}^{-1}}\Delta {{f}_{k}}={{s}_{\phi k}}[g_{d}^{-1}\Delta {{f}_{d}}+g_{d}^{-1}(\Delta {{f}_{k}}-\Delta {{f}_{d}})+ \\ &g_{k}^{-1}g_{d}^{-1}({{g}_{d}}-{{g}_{k}})\Delta {{f}_{d}}+g_{k}^{-1}g_{d}^{-1}({{g}_{d}}-{{g}_{k}})(\Delta {{f}_{k}}-\Delta {{f}_{d}})] \\ &\le {{s}_{\phi k}}g_{d}^{-1}\Delta {{f}_{d}}+|{{s}_{\phi k}}|g_{d}^{-1}{{\alpha }_{fk}}{{e}_{k}}+|{{s}_{\phi k}}|g_{k}^{-1}g_{d}^{-1}|\Delta {{f}_{d}}|{{\alpha }_{gk}}{{e}_{k}}+|{{s}_{\phi k}}| \\ &g_{k}^{-1}g_{d}^{-1}{{\alpha }_{fk}}{{e}_{k}}{{\alpha }_{gk}}{{e}_{k}} \\ \end{align}$
和
${{s}_{\phi k}}{{({{g}_{k}})}^{-1}}({{c}^{\text{T}}}{{e}_{k}}+{{\theta }^{\text{T}}}{{\varphi }_{k}}-{{x}_{d}}^{(n)}-\eta (t){{s}_{k}}(0))$
$\eqalign{ &{s_{\phi k}}{({g_k})^{ - 1}}({c^{\rm{T}}}{e_k} + {\theta ^{\rm{T}}}{\varphi _k} - {x_d}^{(n)} - \eta (t){s_k}(0)) \le {s_{\phi k}}g_d^{ - 1} \cr &({c^{\rm{T}}}{e_k} + {\theta ^{\rm{T}}}{\varphi _k} - {x_d}^{(n)} - \eta (t){s_k}(0)) + \cr &|{s_{\phi k}}|{({g_k}{g_d})^{ - 1}}{e_k}{\alpha _{gk}}|{c^{\rm{T}}}{e_k} + {\theta ^{\rm{T}}}{\varphi _k} - {x_d}^{(n)} - \eta (t){s_k}(0)| \cr} $
结合以上三式, 有
$\eqalign{ &{V_{1k}} \le \int_0^t {{{\rm{e}}^{ - \lambda \tau }}} [ - {\lambda \over {2{g_k}}}s_{\phi k}^2 - {1 \over {2g_k^2}}{{\dot g}_k}s_k^2 + \cr &_{\phi k}({p^{\rm{T}}}{\psi _{1k}} + {u_k})]{\rm{d}}\tau + \int_0^t {{{\rm{e}}^{ - \lambda \tau }}} {\rho _k}|{s_{\phi k}}|{e_k}{\rm{d}}\tau \cr} $
(9) 其中,
$\eqalign{ &{\rho _k} = g_d^{ - 1}{\alpha _{fk}} + g_{mk}^{ - 1}g_d^{ - 1}|\Delta {f_d}|{\alpha _{gk}} + g_{mk}^{ - 1}g_d^{ - 1}{\alpha _{fk}}{\alpha _{gk}}{e_k} \cr & + {({g_{mk}}{g_d})^{ - 1}}{\alpha _{gk}}|{c^{\rm{T}}}{e_k} - {x_d}^{(n)} - \eta (t){s_k}(0)| + {({g_{mk}}{g_d})^{ - 1}}{\alpha _{gk}} \cr &\theta {\varphi _k}\;p = {\left( {\matrix{ {g_d^{ - 1}\Delta {f_d}}&{g_d^{ - 1}}&{g_d^{ - 1}{\theta ^{\rm{T}}}\;} \cr } } \right)^{\rm{T}}}\;{\psi _{1k}} = \cr &1{c^{\rm{T}}}{e_k} - {x_d}^{(n)} - \eta (t){s_k}(0){\varphi _k}^{\rm{T}} \cr} $
根据引理1,
$\eqalign{ &\int_0^t {{{\rm{e}}^{ - \lambda \tau }}} {\rho _k}|{s_{\phi k}}|{e_k}{\rm{d}}\tau \le \int_0^t {{{\rm{e}}^{ - \lambda \tau }}} {\beta _1}({\rho _k}, t)s_{\phi k}^2{\rm{d}}\tau + \cr &\int_0^t {{{\rm{e}}^{ - \lambda \tau }}} {\beta _2}(\tau ){\rho _k}|{s_{\phi k}}|{\rm{d}}\tau = \int_0^t {{{\rm{e}}^{ - \lambda \tau }}} {\beta _1}({\rho _k}, t)s_{\phi k}^2{\rm{d}}\tau + \cr &\int_0^t {{{\rm{e}}^{ - \lambda \tau }}} |{s_{\phi k}}|{\vartheta ^{\rm{T}}}(\tau ){\psi _{2k}}{\rm{d}}\tau \cr} $
成立. 其中
$\begin{align} &\vartheta (t)=[g_{d}^{-1}{{l}_{1}}{{\beta }_{5}}, g_{d}^{-1}|\Delta {{f}_{d}}|{{l}_{1}}{{\beta }_{5}}, g_{d}^{-1}\| \\ &\theta \|{{l}_{1}}{{\beta }_{5}}, g_{d}^{-1}{{\beta }_{5}}, g_{d}^{-1}|\Delta {{f}_{d}}|{{\beta }_{5}}, g_{d}^{-1}\|\theta \|{{\beta }_{5}}|{{]}^{\text{T}}} \\ &{{\psi }_{2k}}=\left[ {{l}_{2}}\frac{{{\beta }_{3}}}{{{\beta }_{5}}}, g_{mk}^{-1}{{\alpha }_{gk}}\frac{{{\beta }_{3}}}{{{\beta }_{5}}}, g_{mk}^{-1}{{\alpha }_{gk}}\|{{\varphi }_{k}}\|\frac{{{\beta }_{3}}}{{{\beta }_{5}}}, \right. \\ &{{\left. {{l}_{2}}\frac{{{\beta }_{4}}}{{{\beta }_{5}}}, g_{mk}^{-1}{{\alpha }_{gk}}\frac{{{\beta }_{4}}}{{{\beta }_{5}}}, g_{mk}^{-1}{{\alpha }_{gk}}\|{{\varphi }_{k}}\|\frac{{{\beta }_{4}}}{{{\beta }_{5}}} \right]}^{\text{T}}} \\ &\ {{l}_{1}}=t\|A\|{{\text{e}}^{t\|A\|}}\ \\ &{{l}_{2}}={{\alpha }_{fk}}+g_{mk}^{-1}{{\alpha }_{fk}}{{\alpha }_{gk}}\|{{e}_{k}}\|+g_{mk}^{-1}{{\alpha }_{gk}}|{{c}^{\text{T}}}{{e}_{k}}-\eta (t){{s}_{k}}(0)-{{x}_{d}}^{(n)}| \\ \end{align}$
其中, $\beta_1$与$\beta_2$的含义见引理1, $\beta_3(t)=(|s_k(0)|$ $+$ $\|{ e}_{k}(0)$ $-$ $ bs_k(0)\|)$, $\beta_4= \|{ e}_{k}(0)+ b(\phi(t)-1) s_k(0)\|$, $\beta_5$ $>$ $0$ 为设计参数.
将上式的结果应用于式(9), 有
$\begin{align} &{{V}_{1k}}\le \int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}[\frac{-\lambda }{2{{g}_{k}}}s_{\phi k}^{2}\frac{1}{2g_{k}^{2}}{{{\dot{g}}}_{k}}s_{k}^{2}+{{s}_{\phi k}}({{p}^{\text{T}}}{{\psi }_{1k}}+{{u}_{k}})] \\ &\text{d}\tau +\int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}{{\beta }_{1}}({{\rho }_{k}}, t)s_{\phi k}^{2}\text{d}\tau +\int_{0}^{t}{|}{{s}_{\phi k}}|{{\vartheta }^{\text{T}}}{{\psi }_{2k}}\text{d}\tau \\ \end{align}$
(10) 由此, 设计控制律
$\begin{align} &{{u}_{k}}=-p_{k}^{\text{T}}{{\psi }_{1k}}-\vartheta _{k}^{\text{T}}{{\psi }_{2k}}\text{tanh}({{\gamma }_{1}}(k+1)\times \\ &(k+2)\vartheta _{k}^{\text{T}}{{\psi }_{2k}}{{s}_{\phi k}})-\frac{{{s}_{\phi k}}\|{{\psi }_{1k}}\|}{\varepsilon }-\frac{{{s}_{\phi k}}}{\varepsilon {{g}_{mk}}}(1+|{{c}^{\text{T}}}{{e}_{k}}|+\|{{\varphi }_{k}}\|+{{\alpha }_{fk}}\|{{e}_{k}}\|) \\ \end{align}$
(11) 其中,
$\begin{align} & {{p}_{k}}=\text{sat}({{{\hat{p}}}_{k}}) \\ & {{{\hat{p}}}_{k}}=\text{sat}({{{\hat{p}}}_{k-1}})+{{\gamma }_{2}}{{s}_{\phi k}}{{\psi }_{1k}}, {{{\hat{p}}}_{-1}}=0 \\ \end{align}$
(12) $\begin{align} & {{\vartheta }_{k}}=\text{sat}({{{\hat{\vartheta }}}_{k}}) \\ & {{{\hat{\vartheta }}}_{k}}=\text{sat}({{{\hat{\vartheta }}}_{k}}-1)+{{\gamma }_{3}}|{{s}_{\phi k}}|{{\psi }_{2k}}, {{{\hat{\vartheta }}}_{-1}}=0 \\ \end{align}$
(13) 式中, $ p_{k}$为对$ p$的估计, $ \vartheta_k$为对$ \vartheta$的估计, $\gamma_1>0$, $\gamma_2$ $>$ $0$, $\gamma_3>0$, $\varepsilon\gg 0$. 对于$\hat a \in R$,
$\text{sat}(\hat{a})=\left\{ \begin{align} &\bar{a}, |\hat{a}|\text{sgn}(\hat{a})>\bar{a} \\ &\hat{a}, 其他 \\ \end{align} \right.\ $
(14) $\bar{a}$为对应的限幅, 对于向量$\hat { a}$, ${\rm sat}(\hat { a})$ 表示对向量中的各元素进行上述限幅运算.
在上文的设计过程中, 系统中原有的参数不确定性$ \theta$和非参数不确定性$\Delta f_k$, gk被转化为新的参数不确定性$ p$, $ \vartheta$, 即非参数不确定性的补偿问题被转化为未知时变参数的估计问题. 利用学习方法估计线性时变参数不确定性的已有成果较多, 可以采用部分限幅学习、完全限幅学习或无限幅学习的方法对未知时变参数进行估计. 本文采用的是完全限幅学习方案.
3. 收敛性分析
闭环系统具有的稳定性与收敛性方面的性质可总结为定理1.
定理1. 在$ x_k(0)$, $k=0, 1, 2, \cdots$, 取值任意的情况下, 将控制律(11)施加于系统(1), 足够多次迭代后, 可使sk在区间$[t_1, T]$上收敛于零, 即
$\lim_{k\rightarrow +\infty} s_k(t)=0, t\in [t_1, T] $
(15) 并保证闭环系统所有信号有界.
证明 1) 系统变量的有界性 对Lyapunov函数$V_{2k}=\dfrac{1}{2}s_{\phi k}^2$求导
$\begin{align} &{{{\dot{V}}}_{2k}}={{s}_{\phi k}}({{c}^{\text{T}}}{{e}_{k}}-{{x}_{d}}^{(n)}-\eta {{s}_{k}}(0)+{{\theta }^{\text{T}}}{{\varphi }_{k}}+{{f}_{k}}+{{g}_{k}}{{u}_{k}})\le \\ &|{{s}_{\phi k}}||{{c}^{\text{T}}}{{e}_{k}}|+|{{s}_{\phi k}}|(|{{x}_{d}}^{(n)}|+|{{f}_{d}}|+|\eta {{s}_{k}}(0)|)+|{{s}_{\phi k}}| \\ &\|\theta \|\|{{\varphi }_{k}}\|+|{{s}_{\phi k}}|{{\alpha }_{fk}}\|{{e}_{k}}\|+|{{s}_{\phi k}}|{{g}_{k}}\|{{p}_{k}}\|\|{{\psi }_{1k}}\| \\ &-\frac{{{g}_{k}}s_{\phi k}^{2}}{\varepsilon {{g}_{mk}}}(1+|{{c}^{\text{T}}}{{e}_{k}}|+\|{{\varphi }_{k}}\|+{{\alpha }_{fk}}\|{{e}_{k}}\|)-{{g}_{k}}\frac{s_{\phi k}^{2}\|{{\psi }_{1k}}\|}{\varepsilon } \\ &-{{s}_{\phi k}}\vartheta _{k}^{\text{T}}{{\psi }_{2k}}\text{tanh}({{\gamma }_{1}}(k+1)(k+2)\vartheta _{k}^{\text{T}}{{\psi }_{2k}}{{s}_{\phi k}}) \\ \end{align}$
(16) 当$|s_{\phi k}|\geq \varepsilon $时,
$|{{s}_{\phi k}}||{{c}^{\text{T}}}{{e}_{k}}|-\frac{{{g}_{k}}s_{\phi k}^{2}}{\varepsilon {{g}_{mk}}}|{{c}^{\text{T}}}{{e}_{k}}|\le 0$
(17) $|{{s}_{\phi k}}|{{\alpha }_{fk}}\|{{e}_{k}}\|-\frac{{{g}_{k}}s_{\phi k}^{2}}{\varepsilon {{g}_{mk}}}{{\alpha }_{fk}}\|{{e}_{k}}\|\le 0$
(18) 当$|{{s}_{\phi k}}|\ge \varepsilon (|{{x}_{d}}^{(n)}|+|{{f}_{d}}|+|\eta {{s}_{k}}(0)|)$时,
$|{{s}_{\phi k}}|(|{{x}_{d}}^{(n)}|+|{{f}_{d}}|)-\frac{{{g}_{k}}s_{\phi k}^{2}}{\varepsilon {{g}_{mk}}}\le 0$
(19) 当$|s_{\phi k}|\geq \varepsilon \| p_{k}\| $时,
$|s_{\phi k}|g_k \| p_{k}\| \| \psi_{1k} \| -g_k\frac{s_{\phi k}^2\| \psi_{1k}\|}{\varepsilon }\leq 0 $
(20) 当$|s_{\phi k}|\geq \varepsilon \| \theta\| $时,
$|s_{\phi k}| \| \theta\| \| \varphi_k\| -\frac{g_k s_{\phi k}^2}{\varepsilon g_{mk}}\| \varphi_k\|\leq 0 $
(21) 综合式(16) $\sim$ (21), 可知当
$|{{s}_{\phi k}}|\ge \max (\varepsilon , \varepsilon (|{{x}_{d}}^{(n)}|+|{{f}_{d}}|+|\eta {{s}_{k}}(0)|), \varepsilon \|{{p}_{k}}\|, \varepsilon \|\theta \|)$
(22) 时,
${{{\dot{V}}}_{2k}}\le -{{s}_{\phi k}}\vartheta _{k}^{\text{T}}{{\psi }_{2k}}\text{tanh}({{\gamma }_{1}}(k+1)(k+2)\vartheta _{k}^{\text{T}}{{\psi }_{2k}}{{s}_{\phi k}})$
根据双曲函数的性质可知
${{\gamma }_{1}}(k+1)(k+2){{s}_{\phi k}}\vartheta _{k}^{\text{T}}{{\psi }_{2k}}\times \text{tanh}({{\gamma }_{1}}(k+1)(k+2)\vartheta _{k}^{\text{T}}{{\psi }_{2k}}{{s}_{\phi }}k)\ge 0$
结合以上两式, 可以推出满足条件(22)时
$\dot V_{2k}\leq 0 $
(23) 由此可以得到$s_{\phi k}$的有界性, 在此基础上, 结合饱和函数的性质, 易得其他变量也为有界.
2) 误差的收敛性 选择Lyapunov泛函
${{L}_{k}}={{V}_{1k}}+\frac{1}{2{{\gamma }_{2}}}\int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}\tilde{p}_{k}^{\text{T}}{{{\tilde{p}}}_{k}}\text{d}\tau \frac{1}{2{{\gamma }_{3}}}\int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}\tilde{\vartheta }_{k}^{\text{T}}{{{\tilde{\vartheta }}}_{k}}\text{d}\tau $
(24) 式中, $\tilde{ p}_{k}= p-p_{k}$, $\tilde{ \vartheta}_{k}= \vartheta-\vartheta_{k}$.
前文已证闭环系统变量均为有界, 结合假设3, 可知取足够大的$\lambda$, 由式(10)和式(11), 可得
$\begin{align} &{{V}_{1k}}\le \int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}[{{s}_{\phi k}}\tilde{p}_{k}^{\text{T}}{{\psi }_{1k}}+|{{s}_{\phi k}}|\tilde{\vartheta }_{k}^{\text{T}}{{\psi }_{2k}}+ \\ &|{{s}_{\phi k}}|\vartheta _{k}^{\text{T}}{{\psi }_{2k}}-{{s}_{\phi k}}\vartheta _{k}^{\text{T}}{{\psi }_{2k}}\times \text{tanh}({{\gamma }_{1}}(k+1)(k+2)\vartheta _{k}^{\text{T}}{{\psi }_{2k}}{{s}_{\phi k}})]\text{d}\tau \\ \end{align}$
对于$a\in R$, $\varepsilon>0$, 不等式$0\le |a|-a\text{tanh}({{a}_{\varepsilon }})\le {{\delta }_{\varepsilon }}$成立 [26-27], 式中$\delta$为一常数, 满足$\delta ={{\text{e}}^{-}}(\delta +1)$, 其值为0.2785. 于是, 可知
$\begin{align} &|{{s}_{\phi k}}|\vartheta _{k}^{\text{T}}{{\psi }_{2k}}-{{s}_{\phi k}}\vartheta _{k}^{\text{T}}{{\psi }_{2k}}\text{tanh}({{\gamma }_{1}}(k+1)\times (k+2)\vartheta _{k}^{\text{T}}{{\psi }_{2k}}{{s}_{\phi k}}) \\ &\le \delta {{\gamma }_{1}}(k+1)(k+2) \\ \end{align}$
(25) 成立. 据此, 可以推出
${{V}_{1k}}\le \int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}({{s}_{\phi k}}\tilde{p}_{k}^{\text{T}}{{\psi }_{1k}}+|{{s}_{\phi k}}|\tilde{\vartheta }_{k}^{\text{T}}{{\psi }_{2k}})\text{d}\tau +\int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}{{\gamma }_{1}}(k+1)(k+2)\text{d}\tau $
(26) 由式(26)及式(24), 知
$\begin{align} &{{L}_{k}}-{{L}_{k-1}}\le \int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}({{s}_{\phi k}}\tilde{p}_{k}^{\text{T}}{{\psi }_{1k}}+|{{s}_{\phi k}}|\tilde{\vartheta }_{k}^{\text{T}}{{\psi }_{2k}})\text{d}\tau + \\ &\int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}\delta {{\gamma }_{1}}(k+1)(k+2)\text{d}\tau -{{V}_{1k-1}}+\frac{1}{2{{\gamma }_{2}}}\int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}(\tilde{p}_{k}^{\text{T}}{{{\tilde{p}}}_{k}}-\tilde{p}_{k-1}^{\text{T}}{{{\tilde{p}}}_{k-1}})\text{d}\tau + \\ &\frac{1}{2{{\gamma }_{3}}}\int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}(\tilde{\vartheta }_{k}^{\text{T}}{{{\tilde{\vartheta }}}_{k}}-\tilde{\vartheta }_{k-1}^{\text{T}}{{{\tilde{\vartheta }}}_{k-1}})\text{d}\tau \\ \end{align}$
(27) 利用学习律(12)和(13), 分别可以推出
$\begin{align} &\frac{1}{2{{\gamma }_{2}}}\left( \tilde{p}_{k}^{\text{T}}{{{\tilde{p}}}_{k}}-\tilde{p}_{k-1}^{\text{T}}{{{\tilde{p}}}_{k-1}} \right)+{{s}_{\phi k}}\tilde{p}_{k}^{\text{T}}{{\psi }_{1k}}\le \\ &-\frac{1}{{{\gamma }_{2}}}(p-{{p}_{k{{)}^{\text{T}}}(p}}_{k}-{{p}_{k-1}})+{{s}_{\phi k}}\tilde{p}_{k}^{\text{T}}{{\psi }_{1k}}= \\ &\frac{1}{{{\gamma }_{2}}}{{(p-{{p}_{k}})}^{\text{T}}}(-{{p}_{k}}+{{p}_{k-1}}+{{\gamma }_{2}}{{s}_{\phi k}}{{\psi }_{1k}})= \\ &\frac{1}{{{\gamma }_{2}}}{{(p-\text{sat}({{{\hat{p}}}_{k}}))}^{\text{T}}}({{{\hat{p}}}_{k}}-\text{sat}({{{\hat{p}}}_{k}}))\le 0 \\ \end{align}$
(28) 及
$\begin{align} &\frac{1}{2{{\gamma }_{3}}}\left( \tilde{\vartheta }_{k}^{\text{T}}{{{\tilde{\vartheta }}}_{k}}-\tilde{\vartheta }_{k-1}^{\text{T}}{{{\tilde{\vartheta }}}_{k-1}} \right)+|{{s}_{\phi k}}|{{{\tilde{\vartheta }}}_{k}}{{\psi }_{2k}}\le -\frac{1}{{{\gamma }_{3}}}{{({{\vartheta }_{k}}-{{\vartheta }_{k-1}})}^{\text{T}}}{{{\tilde{\vartheta }}}_{k}}+ \\ &|{{s}_{\phi k}}|{{{\tilde{\vartheta }}}_{k}}{{\psi }_{2k}}=\frac{1}{{{\gamma }_{3}}}{{(-{{\vartheta }_{k}}+{{\vartheta }_{k-1}}+{{\gamma }_{3}}|{{s}_{\phi k}}|)}^{\text{T}}}{{{\tilde{\vartheta }}}_{k}}{{\psi }_{2k}}= \\ &\frac{1}{{{\gamma }_{3}}}{{({{{\hat{\vartheta }}}_{k}}-\text{sat}({{{\hat{\vartheta }}}_{k}}))}^{\text{T}}}(\vartheta -\text{sat}({{{\hat{\vartheta }}}_{k}}))\le 0 \\ \end{align}$
(29) 将式(28)和式(29)的结果应用于式(27)
${{L}_{k}}-{{L}_{k-1}}\le {{\int }_{0}}^{t}{{\text{e}}^{-\lambda \tau }}\delta {{\gamma }_{1}}(k+1)(k+2)\text{d}\tau -{{V}_{1k-1}}$
进一步地
${{L}_{k}}\le {{L}_{0}}+\int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}\sum\limits_{i=1}^{k}{\delta {{\gamma }_{1}}}(i+1)(i+2)\text{d}\tau -\sum\limits_{i=0}^{k-1}{\left( \frac{1}{2{{g}_{i}}}{{\text{e}}^{-\lambda t}}s_{\phi i}^{2} \right)}$
由于$L_0$为非负有界量, 且
$\begin{align} &\underset{k\to +\infty }{\mathop{\lim }}\,\int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}\sum\limits_{i=1}^{k}{\delta {{\gamma }_{1}}}(i+1)(i+2)\text{d}\tau =\frac{\delta }{{{\gamma }_{1}}\lambda }\left( 1-{{\text{e}}^{-\lambda t}} \right) \\ &\underset{k\to +\infty }{\mathop{\lim }}\,\left( \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\cdots - \right.\left. \frac{1}{k+1}+\frac{1}{k+1}-\frac{1}{k+2} \right)<{{\frac{\delta }{2{{\gamma }_{1}}\lambda }}_{k}} \\ \end{align}$
(30) 是有界的, 故根据数列收敛的必要性, 可知
$\lim_{k\rightarrow +\infty}s_{\phi k}=0 $
(31) 至此, 根据$s_{\phi k}$的定义, 可得
$\lim_{k\rightarrow +\infty} s_k(t)= 0, t\in [t_1, T] $
上文给出了基于滤波误差初始修正的自适应迭代学习控制方法, 适用于系统初态任意情形. 经过足够多次迭代后, 籍由$s_{\phi k}$在整个作业区间收敛于零, 实现了sk 在预设的部分作业区间收敛于零.
应该注意的是, 严格复位即$ x_k(0)= x_d(0)$, $k=$ $0, 1, 2, \cdots$ 情形, 属本文所考虑情形的一种特殊情况. 在此情况下, $s_k(0)=0$, $ e_k(0)=0$, $s_{\phi k}=s_k$, 引理1结论中的$\beta_2=0$, 控制律(11)中的$ \psi_{2k}= 0$. 引理1的结论及控制律(11)分别退化为
$\int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}{{\mu }_{k}}|{{s}_{\phi k}}|\|{{e}_{k}}\|\text{d}\tau \le \int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}{{\beta }_{1}}({{\mu }_{k}}, t)s_{\phi k}^{2}\text{d}\tau $
及
${{u}_{k}}=-p_{k}^{\text{T}}{{\psi }_{1k}}-\frac{{{s}_{k}}\|{{\psi }_{1k}}\|}{\varepsilon }-\frac{{{s}_{k}}}{\varepsilon {{g}_{mk}}}(1+|{{c}^{\text{T}}}{{e}_{k}}|+\|{{\varphi }_{k}}\|+{{\alpha }_{fk}}\|{{e}_{k}}\|)$
(32) 其中, $ p_{k}$的取值同式(12). 相应的收敛性质可总结为定理2.
定理2. 在$ x_k(0)= x_d(0)$, $k=0, 1, 2, \cdots$ 情形下, 将控制律(32)施加于系统(1), 足够多次迭代后, 可使sk在整个作业区间$[0, T]$上收敛于零, 即
$\lim_{k\rightarrow + \infty} s_k(t)= 0, t\in [0, T] $
(33) 并保证闭环系统中的所有信号有界.
容易看出, 修正滤波误差的构造方法简单. 由上文的设计和分析过程可以看出, 采用滤波误差初始修正方法设计控制器, 勿需进行分类讨论, 由此具有使用上的便捷性. 经过足够多次迭代后, 可实现滤波误差在预设的部分作业区间收敛于零.
4. 仿真算例
考虑如下倒立摆系统
$\begin{align} &{{{\dot{x}}}_{1k}}={{x}_{2k}}dot{{x}_{2k}}=g\sin {{x}_{1k}}-\frac{mlx_{2k}^{2}\cos {{x}_{1k}}\sin {{x}_{1k}}}{{{m}_{c}}+m} \\ &l\left( \frac{4}{3}-\frac{m{{\cos }^{2}}{{x}_{1k}}}{{{m}_{c}}+m} \right)+\frac{\cos {{x}_{1k}}}{{{m}_{c}}+m}l\left( \frac{4}{3}-\frac{m\text{co}{{\text{s}}^{2}}{{x}_{1k}}}{{{m}_{c}}+m} \right){{u}_{k}} \\ \end{align}$
(34) 这里, $x_{1k}$和$x_{2k}$分别是倒立摆的角位移与角速度, $x_{1k}(0)=1.2+0.1(r_1-0.5)$, $x_{2k}(0)=$ $-0.2$ $+$ $0.05r_2$, $r_1$和$r_2$均为0 $\sim$ 1之间的随机数. $g=9.8 {\rm m}/{\rm s}^2$为重力加速度, $m_c=1$ kg是小车的质量, $m=0.1$ kg为摆的质量, $l=0.5$ m为摆长的一半, uk为小车的推力. 参考信号是$[{\cos}(\pi t), -\pi{\sin} (\pi t)]^{\rm T}$. $[x_{1 k}(0), x_{2k}(0)]^{\rm T}\neq[1, 0]^{\rm T}$. 视 $g\sin {{x}_{1k}}-\frac{mlx_{2k}^{2}\cos {{x}_{1k}}\sin {{x}_{1k}}}{{{m}_{c}}+m}l(\frac{4}{3}-m{{\cos }^{2}}{{x}_{1k}}{{m}_{c}}+m)$和 $\frac{\cos {{x}_{1k}}}{{{m}_{c}}+m}l(\frac{4}{3}-m{{\cos }^{2}}{{x}_{1k}}{{m}_{c}}+m)$分别为$\Delta f_k$和gk. 考虑到实际系统存在的多种不确定性和扰动, 设各参数与标称值存在$\pm 40 % $的偏差, 取
$\begin{align} &{{g}_{mk}}=\frac{|{{\cos }_{1k}}|}{1.44+0.23\cos _{1k}^{2}}{{\alpha }_{fk}}= \\ &\frac{ml\max (|{{x}_{2k}}|, |{{{\dot{x}}}_{d}}|){{m}_{c}}+m}{l}{{\left( \frac{4}{3}-\frac{m}{{{m}_{c}}+m} \right)}^{2}} \\ &+g+ml\max (x_{2k}^{2}, \dot{x}_{d}^{2})2({{m}_{c}}+m)l\left( \frac{4}{3}-\frac{m}{{{m}_{c}}+m} \right)+ \\ &\max (x_{2k}^{2}, \dot{x}_{d}^{2})2({{m}_{c}}+m)l{{\left( \frac{4}{3}-\frac{m}{{{m}_{c}}+m} \right)}^{2}}\times \frac{m}{{{m}_{c}}+m}{{\alpha }_{gk}}= \\ &\frac{1}{{{m}_{c}}+m}l\left( \frac{4}{3}-\frac{m}{{{m}_{c}}+m} \right)+\frac{\frac{1}{{{m}_{c}}+m}}{l{{\left( \frac{4}{3}-\frac{m}{{{m}_{c}}+m} \right)}^{2}}} \\ \end{align}$
采用控制律(11)及相应学习律进行仿真. 仿真参数取 $\gamma_1=1$, $\gamma_2=5$, $\gamma_3=0.01$, $\varepsilon=100$, $\bar{p}=20$, $\bar{ \vartheta}$ $=$ $80$, $c_1=10$, $T=2$, $t_1=0.3$, $\beta_5=10$, $\beta_1$, $\beta_2$, $\beta_3$, $\beta_4$的含义见前文. 采用第2节给出的方案构造$\phi(t)$. 迭代30 次后, 仿真结果如图 1 $\sim$ 图 6所示. 图 1和图 2是第30次迭代时的系统状态情况. 图 3和图 4分别是第30次迭代过程中的状态误差和控制输入情况. 图 5是在$k=1, 5, 10, 20, 30$ 等次迭代过程中的滤波误差情况, 可以看出, 经过足够多次迭代后, 可实现滤波误差sk在$[t_1, T]$上的取值为零. 图 6是Jk的收敛过程, 在该图中, $J_{k}= \max_{t\in[0, T]} |s_{\phi k}(t)| $.
本文与文献[22]采用仿真模型相同, 在上文的仿真中, 参数学习律的增益取值为5, 而在文献[22]的仿真中, 学习律的增益取值为30. 对比之下, 本文所提方法在学习增益较小的情况下, 仍具有较快的误差收敛速度.
为了进一步说明本文所提设计方法的有效性, 下面采用文献[20]所提的时变边界层方案解决相同问题, 迭代学习模糊控制器取
$u_k=u_{1k}+u_{2k} $
(35) 其中,
$\begin{align} &{{u}_{1k}}=w_{fk}^{\text{T}}(t){{z}_{f}}({{x}_{k}})+w_{gk}^{\text{T}}(t){{z}_{g}}({{x}_{k}}){{\varpi }_{k}}- \\ &\text{sat}\left( \frac{{{s}_{k}}}{{{v}_{k}}} \right){{\epsilon }_{k}}(1+{{\varpi }_{k}}){{u}_{2k}}=-{{\gamma }_{4}}{{s}_{vk}}z_{f}^{\text{T}}({{x}_{k}}){{z}_{f}}({{x}_{k}})- \\ &{{\gamma }_{5}}{{s}_{vk}}z_{g}^{\text{T}}({{x}_{k}}){{z}_{g}}({{x}_{k}})\varpi _{k}^{2}-{{\gamma }_{6}}{{s}_{vk}}{{(1+{{\varpi }_{k}})}^{2}}{{\varpi }_{k}}= \\ &-{{c}_{1}}{{e}_{2k}}+{{{\ddot{x}}}_{d}}-{{\gamma }_{7}}{{s}_{vk}}\ {{w}_{fk}}={{{\hat{w}}}_{fk}}=\text{sat}({{{\hat{w}}}_{fk-1}})-{{\gamma }_{8}}{{s}_{vk}}{{z}_{f}}({{x}_{k}}), {{{\hat{w}}}_{f-1}}=0 \\ &{{w}_{gk}}=\text{sat}({{{\hat{w}}}_{gk}}){{{\hat{w}}}_{gk}}=\text{sat}({{{\hat{w}}}_{gk-1}})-{{\gamma }_{9}}{{s}_{vk}}{{z}_{g}}({{x}_{k}}), \\ &{{{\hat{w}}}_{g-1}}=0{{n}_{k}}=\text{sat}({{\epsilon }_{k}}=\text{sat}({{{\hat{\epsilon }}}_{k}})+{{\gamma }_{10}}{{s}_{vk}}(1+|{{\omega }_{k}}|), {{{\hat{\epsilon }}}_{-1}}=0 \\ \end{align}$
(36) 式中, $s_{vk} =s_k-v_k{\rm sat}({s_k}/{v_k})$, $v_k=|c_1e_{1k}(0)+e_{2k}(0)|{\rm e}^{-\sigma t}$, $\sigma>0$.
模糊基函数$ z_{f}( x_k)$与$ z_{g}( x_k)$ 均采用下述属函数构造
$\begin{align} &{{\mu }_{1}}({{x}_{i}})=1+{{\text{e}}^{5({{x}_{i}}+2)}} \\ &{{\mu }_{2}}({{x}_{i}})={{\text{e}}^{-{{({{x}_{i}}+1.5)}^{2}}}} \\ &{{\mu }_{3}}({{x}_{i}})={{\text{e}}^{-{{({{x}_{i}}+0.5)}^{2}}}} \\ &{{\mu }_{4}}({{x}_{i}})={{\text{e}}^{-{{({{x}_{i}}-0.5)}^{2}}}} \\ &{{\mu }_{5}}({{x}_{i}})={{\text{e}}^{-{{({{x}_{i}}-1.5)}^{2}}}} \\ &{{\mu }_{6}}({{x}_{i}})=1+{{\text{e}}^{-5({{x}_{i}}-2)}} \\ \end{align}$
$i=1, 2$. 具体构造方法见文献[20]的第2节. 不难看出, $ z_{f}( x_k)$与$ z_{g}( x_k)$ 均为36维的向量.
仿真参数取 $\gamma_4=\gamma_5=\gamma_6=\gamma_7=\gamma_8=\gamma_9=5$, $\gamma_{10}$ $=$ $0.01$, $\bar{w}_f=100$, $\bar{w}_g=100$, $\bar{\epsilon}=30$, $\sigma=5$, $c_1$的取值同前. 迭代30 次后, 仿真结果如图 7 $\sim$ 图 11所示. 图 7和图 8是第30次迭代时的系统状态情况. 图 9和图 10分别是第30次迭代过程中的状态误差和控制输入情况. 图 11是Jk的收敛过 程, 在该图中, $J_{k}= \max_{t\in[0, T]} |s_{v k}(t)| $.
对比图 1和图 2与图 7和图 8, 可以看出 本文提出的基于滤波误差初始修正学习控制方法和文献[20]所提的基于时变边界层的模糊学习控制方法, 均可用于解决迭代学习控制的初值问题, 实现系统状态对参考信号在部分作业区间上的精确跟踪. 在作业周期的后半段, 本文所提方法具有较好的误差收敛性能, 由图 3可见, 误差曲线在作业周期后半段几乎完全为零, 且曲线几乎没有波动; 而在图 9中, 误差曲线在作业区间后半段存在一定幅度的波动. 该现象产生的原因与修正滤波误差/时变边界层的构造方式有关. $s_{\phi k}(t)=0$, $t\in [0, T]$ 蕴含
$s_k(t)=0, t\in [t_1, T] $
(37) 但$s_{v k}(t)=0$, $t\in [0, T]$ 则意味着$s_k(t)\leq |s_k(0)|{\rm e}^{-\sigma t}$, $t\in [0, T]$. 对比图 7和图 11可以看出, 本文所提方法在不使用高增益反馈的情况下, 仍然具有较快的误差收敛速度和较好的控制精度.
仿真结果表明, 利用本文给出的滤波误差初始修正方法设计学习控制器, 可用于解决参数/非参数不确定学习控制系统的初值问题. 使用这种方法进行控制器设计时, 可以比较方便地构造出修正滤波误差, 由其设计的控制器具有较快的误差收敛速度, 能够获得较好的控制精度. 修正滤波误差的使用较为方便. 上述结果说明了本文所提控制方法的有效性.
5. 结论
本文提出基于滤波误差初始修正的自适应迭代学习控制方法, 解决参数/非参数混合不确定系统在任意初态情形下的轨迹跟踪问题. 这种设计方法处理非参数不确定性后, 将系统中原有的非参数不确定性补偿问题转化为线性时变参数估计问题, 达到简化设计的目的. 文中所构造的修正滤波误差兼具构造和使用方面的便捷性. 仿真结果表明, 对比已有主流方法, 本文所提方案可获得较快的误差收敛速度和较好的控制精度.
-
表 1 ∆p(k)预报误差指标
Table 1 Forecast error indicators of ∆p(k)
方差 RMSE 1.1481E+6 1 071.3 表 2 需量预报误差指标
Table 2 Forecast error indicators of demand
方法 方差 PB (%) RMSE MAPE (%) 文献[5] 1 533.0 97.05 39.1921 0.0979 本文 1 275.7 97.55 35.7104 0.1054 表 3 超限拉闸时段需量预报误差
Table 3 Demand forecast errors during cut off time period
时间 需量实际值(kW) 需量预报值(kW) 误差(kW) 22 : 36 : 50 21 626 21 635 -9 22 : 36 : 57 21 654 21 650 4 22 : 37 : 04 21 692 21 685 7 22 : 37 : 11 21 728 21 725 3 22 : 37 : 18 21 754 21 751 4 22 : 37 : 25 21 788 21 787 1 22 : 37 : 32 21 812 21 829 -17 22 : 37 : 39 21 834 21 849 -15 22 : 37 : 46 21 835 21 839 -4 22 : 37 : 53 21 833 21 829 4 22 : 38 : 00 21 826 21 822 4 22 : 38 : 07 21 691 21 819 -128 22 : 38 : 14 21 510 21 463 47 22 : 38 : 21 21 335 21 318 17 22 : 38 : 28 21 191 21 176 15 22 : 38 : 35 21 049 21 056 -7 22 : 38 : 42 20 908 20 907 1 22 : 38 : 49 20 751 20 769 -18 22 : 38 : 56 20 581 20 577 4 22 : 39 : 03 20 407 20 385 22 表 4 工业实验需量预报误差指标
Table 4 Demand forecast error indicators of industrial experiment
方差 PB (%) RMSE MAPE 1 049.8 97.68 32.3981 0.0996 -
[1] Paparoditis E, Sapatinas T. Short-term load forecasting:the similar shape functional time-series predictor. IEEE Transactions on Power Systems, 2013, 28(4):3818-3825 doi: 10.1109/TPWRS.2013.2272326 [2] Ceperic E, Ceperic V, Baric A. A strategy for short-term load forecasting by support vector regression machines. IEEE Transactions on Power Systems, 2013, 28(4):4356-4364 doi: 10.1109/TPWRS.2013.2269803 [3] Quan H, Srinivasan D, Khosravi A. Short-term load and wind power forecasting using neural network-based prediction intervals. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(2):303-315 doi: 10.1109/TNNLS.2013.2276053 [4] Kebriaei H, Araabi B N, Rahimi-Kian A. Short-term load forecasting with a new nonsymmetric penalty function. IEEE Transactions on Power Systems, 2011, 26(4):1817-1825 doi: 10.1109/TPWRS.2011.2142330 [5] Yang J, Chai T Y. Data-driven demand forecasting method for fused magnesium furnaces. In: Proceedings of the 12th World Congress on Intelligent Control and Automation. Guilin, China: IEEE, 2016. 2015-2022 http://ieeexplore.ieee.org/document/7578831/ [6] Wu Z, Chai T Y, Sun J. Intelligent operational feedback control for fused magnesium furnace. In: Proceedings of the 19th World Congress on International Federation of Automatic Control. Cape Town, South Africa: IFAC, 2014. 8516-8521 http://www.sciencedirect.com/science/article/pii/S1474667016429575 [7] Ozgun O, Abur A. Flicker study using a novel arc furnace model. IEEE Transactions on Power Delivery, 2002, 17(4):1158-1163 doi: 10.1109/TPWRD.2002.804013 [8] 王其平.电器电弧理论.北京:机械工业出版社, 1991.Wang Qi-Ping. Arc Theory of Electrical Appliances. Beijing:Metallurgical Industry Press, 1991. [9] Shigley J E, Mischke C R, Budynas R G. Mechanical Engineering Design. New York, USA: McGraw-Hill, 1989. [10] 郭茂先.工业电炉.北京:冶金工业出版社, 2002.Guo Mao-Xian. Industry Furnace. Beijing:Metallurgical Industry Press, 2002. [11] Wu Z W, Wu Y J, Chai T Y, Sun J. Data-driven abnormal condition identification and self-healing control system for fused magnesium furnace. IEEE Transactions on Industrial Electronics, 2015, 62(3):1703-1715 doi: 10.1109/TIE.2014.2349479 [12] Cecati C, Kolbusz J, Rózycki P, Siano P, Wilamowski B. A novel RBF training algorithm for short-term electric load forecasting and comparative studies. IEEE Transactions on Industrial Electronics, 2015, 62(10):6519-6529 doi: 10.1109/TIE.2015.2424399 [13] Yu H, Xie T T, Paszczynski S, Wilamowski B M. Advantages of radial basis function networks for dynamic system design. IEEE Transactions on Industrial Electronics, 2011, 58(12):5438-5450 doi: 10.1109/TIE.2011.2164773 [14] Xie T T, Yu H, Hewlett J, Rózycki P, Wilamowski B. Fast and efficient second-order method for training radial basis function networks. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(4):609-619 doi: 10.1109/TNNLS.2012.2185059 [15] Du K L, Swamy M N S. Radial basis function networks. Neural Networks and Statistical Learning. London, UK: Springer, 2014. 299-335 [16] Chen S, Cowan C F N, Grant P M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks, 1991, 2(2):302-309 doi: 10.1109/72.80341 [17] Park J, Sandberg I W. Universal approximation using radial-basis-function networks. Neural Computation, 1991, 3(2):246-257 doi: 10.1162/neco.1991.3.2.246 [18] Gomm J B, Yu D L. Selecting radial basis function network centers with recursive orthogonal least squares training. IEEE Transactions on Neural Networks, 2000, 11(2):306-314 doi: 10.1109/72.839002 [19] Armstrong J S, Collopy F. Error measures for generalizing about forecasting methods:empirical comparisons. International Journal of Forecasting, 1992, 8(1):69-80 doi: 10.1016/0169-2070(92)90008-W [20] Dai W, Chai T Y, Yang S X. Data-driven optimization control for safety operation of hematite grinding process. IEEE Transactions on Industrial Electronics, 2015, 62(5):2930-2941 doi: 10.1109/TIE.2014.2362093 [21] 代伟, 柴天佑.数据驱动的复杂磨矿过程运行优化控制方法.自动化学报, 2014, 40(9):2005-2014 http://www.aas.net.cn/CN/abstract/abstract18472.shtmlDai Wei, Chai Tian-You. Data-driven optimal operational control of complex grinding processes. Acta Automatica Sinica, 2014, 40(9):2005-2014 http://www.aas.net.cn/CN/abstract/abstract18472.shtml [22] 吴志伟, 柴天佑, 吴永建.电熔镁砂产品单吨能耗混合预报模型.自动化学报, 2013, 39(12):2002-2011 http://www.aas.net.cn/CN/abstract/abstract18239.shtmlWu Zhi-Wei, Chai Tian-You, Wu Yong-Jian. A hybrid prediction model of energy consumption per ton for fused magnesia. Acta Automatica Sinica, 2013, 39(12):2002-2011 http://www.aas.net.cn/CN/abstract/abstract18239.shtml [23] 黄宇斌, 袁景淇, 汪瑞清, 赵平伟.数据驱动的上海市日需水量预报建模研究.控制工程, 2010, 17(S2):58-60 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201003398025Huang Yu-Bin, Yuan Jing-Qi, Wang Rui-Qing, Zhao Ping-Wei. Data-driven modeling for daily water demand forecast of Shanghai city. Control Engineering of China, 2010, 17(S2):58-60 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201003398025 [24] Landau I D, Zito G. Digital Control Systems: Design, Identification and Implementation. London, UK: Springer, 2006 期刊类型引用(5)
1. 谌卓玲,卢绍文,张亚军,潘庆玉. 工业过程指标的平滑交替辨识预报算法. 控制理论与应用. 2024(09): 1539-1547 . 百度学术
2. 雷声媛. 电熔镁冶炼自动上料过程控制系统的设计. 电子技术. 2023(08): 364-365 . 百度学术
3. 张菁雯,柴天佑,李慷. 电熔镁砂生产用电需量多步智能预报方法. 自动化学报. 2023(09): 1868-1877 . 本站查看
4. 陶金梅,牛宏,张亚军,李旭生. 基于随机配置网络的非线性系统智能建模方法. 控制与决策. 2022(10): 2559-2564 . 百度学术
5. 王维洲,吴志伟,柴天佑. 电熔镁砂熔炼过程带输出补偿的PID控制. 自动化学报. 2018(07): 1282-1292 . 本站查看
其他类型引用(18)
-