2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多模式移动对象不确定性轨迹预测模型

乔少杰 韩楠 丁治明 金澈清 孙未未 舒红平

乔少杰, 韩楠, 丁治明, 金澈清, 孙未未, 舒红平. 多模式移动对象不确定性轨迹预测模型. 自动化学报, 2018, 44(4): 608-618. doi: 10.16383/j.aas.2017.c160575
引用本文: 乔少杰, 韩楠, 丁治明, 金澈清, 孙未未, 舒红平. 多模式移动对象不确定性轨迹预测模型. 自动化学报, 2018, 44(4): 608-618. doi: 10.16383/j.aas.2017.c160575
QIAO Shao-Jie, HAN Nan, DING Zhi-Ming, JIN Che-Qing, SUN Wei-Wei, SHU Hong-Ping. A Multiple-motion-pattern Trajectory Prediction Model for Uncertain Moving Objects. ACTA AUTOMATICA SINICA, 2018, 44(4): 608-618. doi: 10.16383/j.aas.2017.c160575
Citation: QIAO Shao-Jie, HAN Nan, DING Zhi-Ming, JIN Che-Qing, SUN Wei-Wei, SHU Hong-Ping. A Multiple-motion-pattern Trajectory Prediction Model for Uncertain Moving Objects. ACTA AUTOMATICA SINICA, 2018, 44(4): 608-618. doi: 10.16383/j.aas.2017.c160575

多模式移动对象不确定性轨迹预测模型

doi: 10.16383/j.aas.2017.c160575
基金项目: 

国家自然科学基金 61772138

国家自然科学基金 61501063

国家高技术研究发展计划(863计划) 2014BAI06B01

成都信息工程大学引进人才科研启动项目 KYTZ201750

成都信息工程大学中青年学术带头人科研基金 J201701

成都信息工程大学引进人才科研启动项目 KYTZ201715

国家自然科学基金 61772091

教育部人文社会科学研究青年基金 14YJCZH046

教育部人文社会科学研究规划基金 15YJAZH058

成都市软科学项目 2015-RK00-00059-ZF

四川高校科研创新团队建设计划资助 18TD0027

国家自然科学基金 91546111

四川省教育厅资助科研项目 14ZB0458

国家自然科学基金 61501064

国家自然科学基金 61100045

详细信息
    作者简介:

    乔少杰  成都信息工程大学网络空间安全学院教授.2009年获得四川大学计算机学院工学博士学位.主要研究方向为轨迹预测, 移动对象数据库, 大数据.E-mail:sjqiao@cuit.edu.cn

    丁治明  北京工业大学计算机学院教授.2002年获得中国科学院计算技术研究所工学博士学位.主要研究方向为轨迹大数据, 移动对象数据库.E-mail:zmding@bjut.edu.cn

    金澈清  华东师范大学数学科学与工程学院教授.2005年获得复旦大学计算机科学技术学院工学博士学位.主要研究方向为基于位置的服务, 不确定数据管理, 数据质量.E-mail:cqjin@sei.ecnu.edu.cn

    孙未未  复旦大学计算机科学技术学院教授.2002年获得复旦大学计算机科学技术学院工学博士学位.主要研究方向为空间数据处理, 基于位置的服务.E-mail:wwsun@fudan.edu.cn

    舒红平  成都信息工程大学软件工程学院教授.2010年获得四川大学计算机学院工学博士学位.主要研究方向为数据挖掘.E-mail:shp@cuit.edu.cn

    通讯作者:

    韩楠  成都信息工程大学管理学院讲师.2012年获得成都中医药大学博士学位.主要研究方向为数据挖掘.本文通信作者.E-mail:hannan@cuit.edu.cn

A Multiple-motion-pattern Trajectory Prediction Model for Uncertain Moving Objects

Funds: 

National Natural Science Foundation of China 61772138

National Natural Science Foundation of China 61501063

National High Technology Research and Development Program of China (863 Program) 2014BAI06B01

Scientific Research Foundation for Advanced Talents of Chengdu University of Information Technology KYTZ201750

Scientific Research Foundation for Young Academic Leaders of Chengdu University of Information Technology J201701

Scientific Research Foundation for Advanced Talents of Chengdu University of Information Technology KYTZ201715

National Natural Science Foundation of China 61772091

Youth Foundation for Humanities and Social Sciences of Ministry of Education 14YJCZH046

Planning Foundation for Humanities and Social Sciences of Ministry of Education of China 15YJAZH058

Soft Science Foundation of Chengdu 2015-RK00-00059-ZF

Innovative Research Team Construction Plan in Universities of Sichuan Province 18TD0027

National Natural Science Foundation of China 91546111

Foundation of Educational Commission of Sichuan Province 14ZB0458

National Natural Science Foundation of China 61501064

National Natural Science Foundation of China 61100045

More Information
    Author Bio:

     Professor at the School of Cybersecurity, Chengdu University of Information Technology. He received his Ph. D. degree from the College of Computer Science, Sichuan University in 2009. His research interest covers trajectory prediction, moving objects databases, and big data

     Professor at the College of Computer Science, Beijing University of Technology. He received his Ph. D. degree from the Institute of Computing Technology, Chinese Academy of Sciences in 2002. His research interest covers trajectory big data and moving objects databases

     Professor at the School of Data Science and Engineering, East China Normal University. He received his Ph. D. degree from the School of Computer Science, Fudan University in 2005. His research interest covers location-based services, uncertain data management, and data quality

     Professor at the School of Computer Science, Fudan University. He received his Ph. D. degree from the School of Computer Science, Fudan University in 2002. His research interest covers spatial data processing and location-based services

     Professor at the School of Software Engineering, Chengdu University of Information Technology. He received his Ph. D. degree from the College of Computer Science, Sichuan University in 2010. His main research interest is data mining

    Corresponding author: HAN Nan  Lecturer at the School of Management, Chengdu University of Information Technology. She received her Ph. D. degree from Chengdu University of Traditional Chinese Medicine University in 2012. Her main research interest is data mining. Corresponding author of this paper
  • 摘要: 以移动设备、车辆、飞机、飓风等移动对象不确定性轨迹预测问题为背景,将大规模移动对象数据作为研究对象,以频繁轨迹模式挖掘、高斯混合回归技术为主要研究手段,提出多模式移动对象轨迹预测模型,关键技术包括:1)针对单一运动模式,提出一种基于频繁轨迹模式树FTP-tree的轨迹预测方法,利用基于密度的热点区域挖掘算法将轨迹点划分成不同的聚簇,构建轨迹频繁模式树,挖掘频繁轨迹模式预测移动对象连续运动位置.不同数据集上实验结果表明基于FTP-tree的轨迹预测算法在保证时间效率的前提下预测准确性明显优于已有预测算法.2)针对复杂多模式运动行为,利用高斯混合回归方法建模,计算不同运动模式的概率分布,将轨迹数据划分为不同分量,利用高斯过程回归预测移动对象最可能运动轨迹.实验证明,相比于基于隐马尔科夫模型和卡尔曼滤波的预测方法,所提方法具有较高的预测准确性和较低的时间代价.
    1)  本文责任编委 黎铭
  • 图  1  Chengdu数据集下不同算法预测准确率比较

    Fig.  1  Prediction accuracy comparison of different algorithms under Chengdu datasets

    图  2  GeoLife数据集下不同算法预测准确率比较

    Fig.  2  Prediction accuracy comparison of different algorithms under GeoLife datasets

    图  3  PathPrediction算法在不同数据集下预测时间比较

    Fig.  3  Prediction tiof PathPrediction algorithm under different datasets

    图  4  Chengdu数据集下不同算法预测时间比较

    Fig.  4  Prediction time comparison of different algorithms under Chengdu datasets

    图  5  GeoLife数据集下不同算法预测时间比较

    Fig.  5  Prediction time comparison of different algorithms under GeoLife datasets

    图  6  不同高斯过程分量下轨迹预测误差比较

    Fig.  6  Prediction error comparison with distinct Gaussian regression components

    图  7  不同算法预测误差比较

    Fig.  7  Prediction bias comparison of different algorithms

    图  8  不同算法预测准确率比较

    Fig.  8  Prediction accuracy comparison of different algorithms

    图  9  不同算法预测时间性能比较

    Fig.  9  Prediction time comparison among different algorithms

    图  10  单一运动模式轨迹预测准确率比较

    Fig.  10  Prediction accuracy comparison beyond single-motion-pattern trajectories

  • [1] Meng X F, Ding Z M, Xu J J. Moving Objects Management:Models, Techniques and Applications. Berlin:Springer-Verlag, 2014. 117-131
    [2] Hu W M, Xiao X J, Fu Z Y, Xie D, Tan T N, Maybank S. A system for learning statistical motion patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(9):1450-1464 doi: 10.1109/TPAMI.2006.176
    [3] Parker A, Subrahmanian V S, Grant J. Fast and accurate prediction of the destination of moving objects. In: Proceedings of the 3rd International Conference on Scalable Uncertainty Management. Berlin, Germany: Springer, 2009. 180-192
    [4] Song C M, Qu Z H, Blumm N, Barabási A L. Limits of predictability in human mobility. Science, 2010, 327(5968):1018-1021 doi: 10.1126/science.1177170
    [5] Centola D. The spread of behavior in an online social network experiment. Science, 2010, 329(5996):1194-1197 doi: 10.1126/science.1185231
    [6] Jeung H, Yiu M L, Zhou X F, Jensen C S. Path prediction and predictive range querying in road network databases. The VLDB Journal, 2010, 19(4):585-602 doi: 10.1007/s00778-010-0181-y
    [7] Zhou J B, Tung A K H, Wu W, Ng W S. A "semi-lazy" approach to probabilistic path prediction in dynamic environments. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2013. 748-756
    [8] Pan T L, Sumalee A, Zhong R X, Indra-payoong N. Short-term traffic state prediction based on temporal-spatial correlation. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3):1242-1254 doi: 10.1109/TITS.2013.2258916
    [9] Qiao S J, Shen D Y, Wang X T, Han N, Zhu W. A self-adaptive parameter selection trajectory prediction approach via hidden Markov models. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1):284-296 doi: 10.1109/TITS.2014.2331758
    [10] 乔少杰, 李天瑞, 韩楠, 高云君, 元昌安, 王晓腾, 唐常杰.大数据环境下移动对象自适应轨迹预测模型.软件学报, 2015, 26(11):2869-2883 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=rjxb201511011&dbname=CJFD&dbcode=CJFQ

    Qiao Shao-Jie, Li Tian-Rui, Han Nan, Gao Yun-Jun, Yuan Chang-An, Wang Xiao-Teng, Tang Chang-Jie. Self-adaptive trajectory prediction model for moving objects in big data environment. Journal of Software, 2015, 26(11):2869-2883 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=rjxb201511011&dbname=CJFD&dbcode=CJFQ
    [11] Ding Z M, Yang B, Güting R H, Li Y G. Network-matched trajectory-based moving-object database:models and applications. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4):1918-1928 doi: 10.1109/TITS.2014.2383494
    [12] Xu J J, Gao Y J, Liu C F, Zhao L, Ding Z M. Efficient route search on hierarchical dynamic road networks. Distributed and Parallel Databases, 2015, 33(2):227-252 doi: 10.1007/s10619-014-7146-x
    [13] Dai J, Yang B, Guo C J, Ding Z M. Personalized route recommendation using big trajectory data. In: Proceedings of the 31st IEEE International Conference on Data Engineering. Seoul, South Korea: IEEE Computer Society, 2015. 543-554
    [14] Tripathy S, Howard C J. Multiple trajectory tracking. Scholarpedia, 2012, 7(4):Article No. 11287 doi: 10.4249/scholarpedia.11287
    [15] Xu J Q, Güting R H. A generic data model for moving objects. Geoinformatica, 2013, 17(1):125-172 doi: 10.1007/s10707-012-0158-7
    [16] 黄玉龙, 张勇刚, 李宁, 赵琳.一种改进的高斯近似滤波方法.自动化学报, 2016, 42(3):385-401 http://www.aas.net.cn/CN/abstract/abstract18828.shtml

    Huang Yu-Long, Zhang Yong-Gang, Li Ning, Zhao Lin. An improved Gaussian approximate filtering method. Acta Automatica Sinica, 2016, 42(3):385-401 http://www.aas.net.cn/CN/abstract/abstract18828.shtml
    [17] 陈成, 何玉庆, 卜春光, 韩建达.基于四阶贝塞尔曲线的无人车可行轨迹规划.自动化学报, 2015, 41(3):486-496 http://www.aas.net.cn/CN/abstract/abstract18627.shtml

    Chen Cheng, He Yu-Qing, Bu Chun-Guang, Han Jian-Da. Feasible trajectory generation for autonomous vehicles based on quartic Bézier curve. Acta Automatica Sinica, 2015, 41(3):486-496 http://www.aas.net.cn/CN/abstract/abstract18627.shtml
    [18] Monfort M, Liu A Q, Ziebart B D. Intent prediction and trajectory forecasting via predictive inverse linear-quadratic regulation. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence. Austin, Texas, USA: AAAI, 2015. 3672-3678
    [19] Qiao S J, Han N, Zhu W, Gutierrez L A. TraPlan:an effective three-in-one trajectory-prediction model in transportation networks. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(3):1188-1198 doi: 10.1109/TITS.2014.2353302
    [20] Han J W, Pei J, Yin Y W, Mao R Y. Mining frequent patterns without candidate generation:a frequent-pattern tree approach. Data Mining and Knowledge Discovery, 2004, 8(1):53-87 doi: 10.1023/B:DAMI.0000005258.31418.83
    [21] Rasmussen C E, Williams C K I. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). Cambridge, USA:The MIT Press, 2005. 12-22
    [22] 余建波, 卢笑蕾, 宗卫周.基于局部与非局部线性判别分析和高斯混合模型动态集成的晶圆表面缺陷探测与识别.自动化学报, 2016, 42(1):47-59 http://www.aas.net.cn/CN/abstract/abstract18795.shtml

    Yu Jian-Bo, Lu Xiao-Lei, Zong Wei-Zhou. Wafer defect detection and recognition based on local and nonlocal linear discriminant analysis and dynamic ensemble of Gaussian mixture models. Acta Automatica Sinica, 2016, 42(1):47-59 http://www.aas.net.cn/CN/abstract/abstract18795.shtml
    [23] Dellaert F. The Expectation Maximization Algorithm, Technical Report GIT-GVU-02-20, Colleage of Computing, Georgia Institute of Technology, USA, 2002.
    [24] Qiao S J, Tang C J, Jin H D, Long T, Dai S C, Ku Y C, Chau M. PutMode:prediction of uncertain trajectories in moving objects databases. Applied Intelligence, 2010, 33(3):370-386 doi: 10.1007/s10489-009-0173-z
    [25] Brinkhoff T. A framework for generating network-based moving objects. GeoInformatica, 2002, 6(2):153-180 doi: 10.1023/A:1015231126594
    [26] Zheng Y, Xie X, Ma W Y. Geolife:a collaborative social networking service among user, location and trajectory. IEEE Data(base) Engineering Bulletin, 2010, 33(2):32-40 http://www.mendeley.com/catalog/geolife-collaborative-social-networking-service-among-user-location-trajectory/
    [27] 邓胡滨, 张磊, 吴颖, 周洁, 刘枫.基于卡尔曼滤波算法的轨迹估计研究.传感器与微系统, 2012, 31(5):4-7 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cgqj201205003&dbname=CJFD&dbcode=CJFQ

    Deng Hu-Bin, Zhang Lei, Wu Ying, Zhou Jie, Liu Feng. Research on track estimation based on Kalman filtering algorithm. Transducer and Microsystem Technologies, 2012, 31(5):4-7 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cgqj201205003&dbname=CJFD&dbcode=CJFQ
  • 加载中
图(10)
计量
  • 文章访问数:  2536
  • HTML全文浏览量:  770
  • PDF下载量:  1304
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-04
  • 录用日期:  2016-12-10
  • 刊出日期:  2018-04-20

目录

    /

    返回文章
    返回