2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

社交网络中隐式事件突发性检测

介飞 谢飞 李磊 吴信东

介飞, 谢飞, 李磊, 吴信东. 社交网络中隐式事件突发性检测. 自动化学报, 2018, 44(4): 730-742. doi: 10.16383/j.aas.2017.c160564
引用本文: 介飞, 谢飞, 李磊, 吴信东. 社交网络中隐式事件突发性检测. 自动化学报, 2018, 44(4): 730-742. doi: 10.16383/j.aas.2017.c160564
JIE Fei, XIE Fei, LI Lei, WU Xin-Dong. Latent Event-related Burst Detection in Social Networks. ACTA AUTOMATICA SINICA, 2018, 44(4): 730-742. doi: 10.16383/j.aas.2017.c160564
Citation: JIE Fei, XIE Fei, LI Lei, WU Xin-Dong. Latent Event-related Burst Detection in Social Networks. ACTA AUTOMATICA SINICA, 2018, 44(4): 730-742. doi: 10.16383/j.aas.2017.c160564

社交网络中隐式事件突发性检测

doi: 10.16383/j.aas.2017.c160564
基金项目: 

国家重点基础研究发展计划(973计划) 2013CB329604

国家自然科学基金 61503116

国家自然科学基金 61503114

详细信息
    作者简介:

    介飞  合肥工业大学计算机与信息学院博士研究生.2014年获得合肥工业大学工学学士学位.主要研究方向为数据挖掘与社交媒体分析.E-mail:hfut_jf@163.com

    谢飞  合肥师范学院计算机科学与技术系副教授.2007年和2011年获得合肥工业大学硕士和博士学位.主要研究方向为数据挖掘与自然语言处理.E-mail:xiefei9815057@sina.com

    李磊  合肥工业大学计算机与信息学院副研究员.2012年获得澳大利亚麦考瑞大学计算专业博士学位.主要研究方向为数据挖掘, 社会计算, 图计算.E-mail:lilei@hfut.edu.cn

    通讯作者:

    吴信东  长江学者, IEEE Fellow, AAAS Fellow, 合肥工业大学计算机与信息学院教授, 美国路易斯安那大学拉菲特分校计算与信息学院教授.1993年获得英国爱丁堡大学人工智能博士学位.主要研究方向为数据挖掘, 知识库系统, 万维网信息探索.本文通信作者.E-mail:xwu@hfut.edu.cn

Latent Event-related Burst Detection in Social Networks

Funds: 

National Basic Research Program of China (973 Program) 2013CB329604

National Natural Science Foundation of China 61503116

National Natural Science Foundation of China 61503114

More Information
    Author Bio:

     Ph. D. candidate at the School of Computer Science and Information Engineering, Hefei University of Technology. He received his bachelor degree from Hefei University of Technology in 2014. His research interest covers data mining and social media analytics

     Associate professor in the Department of Computer Science and Technology, Hefei Normal University. He received his master and Ph. D. degrees from Hefei University of Technology in 2007 and 2011, respectively. His research interest covers data mining and natural language processing

     Associate professor in the Department of Computer Science and Information Engineering, Hefei University of Technology. He received his Ph. D. degree in computing from Macquarie University, Australia in 2012. His research interest covers data mining, social computing, and graph computing

    Corresponding author: WU Xin-Dong  The Yangtze River Scholar, IEEE Fellow, AAAS Fellow, professor at the School of Computer Science and Information Engineering, Hefei University of Technology, professor at the School of Computing and Informatics, University of Louisiana at Lafayette, USA. He received his Ph. D. degree from the University of Edinburgh, UK in 1993. His research interest covers data mining, knowledge based systems, and Web information exploration. Corresponding author of this paper
  • 摘要: 社交网络与人们的生活息息相关,其上的用户行为可用于检测社交网络中的事件突发性,进而准确定位事件的发生区间.但用户行为易受主观及外部因素的影响,有时会出现隐式事件突发性,给事件突发性检测带来困难.本文针对社交网络中的隐式事件突发性问题,在以社交行为特征进行事件突发性检测的基础上,引入关键词特征,动态调整各个时间窗口的候选关键词,将不同事件与不同的关键词特征绑定,避免事件之间及噪音带来的干扰,实现对隐式事件突发性的准确识别.相关实验表明,本文提出的算法可有效改善现有社交网络中事件突发性检测任务的效果.
    1)  本文责任编委 张民
  • 图  1  隐式事件突发性示例

    Fig.  1  An example of latent event-related burst

    图  2  相关定义示意图

    Fig.  2  A schematic diagram of related conceptions

    图  3  关键词特征作用示意图

    Fig.  3  The schematic diagram of keyword feature relations

    图  4  区间优化算法流程图

    Fig.  4  The flow chart of interval optimization algorithm

    图  5  社交网络中事件突发性检测方案流程示意图

    Fig.  5  The flow diagram of event-related burst detection in social networks

    图  6  Comb方法作用示意图

    Fig.  6  The schematic diagram of method Comb

    表  1  数据集HD上各算法实验结果

    Table  1  The experimental results of different algorithms on dataset HD

    实验项目实验结果
    MethodFeature/Strategy$P$$R$$F$
    all0.90000.38460.5389
    post0.83520.34620.4894
    Singlerepost$\textbf{0.9902}$$\textbf{0.5385}$$\textbf{0.6976}$
    url0.68030.38460.4914
    user0.65730.46150.5423
    Multipost+repost+url$\textbf{0.9525}$$\textbf{0.6923}$$ \textbf{0.8018}$
    conjunct1.00000.53850.7000
    Combdisjunct$\textbf{0.8256}$$\textbf{0.9231}$$\textbf{0.8716}$
    hybrid0.99490.69230.8165
    下载: 导出CSV

    表  2  数据集BA上各算法实验结果

    Table  2  The experimental results of different algorithms on dataset BA

    实验项目实验结果
    MethodFeature/Strategy$P$$R$$F$
    all$\textbf{0.9662}$$ \textbf{0.4000}$$\textbf{0.5658}$
    post0.97400.20000.3319
    Singlerepost0.86400.30000.4454
    url0.25740.13330.1757
    user0.73460.33330.4586
    Multipost+repost+url$\textbf{0.8787}$$\textbf{0.4667}$$\textbf{0.6096}$
    conjunct0.95540.26670.4170
    Combdisjunct$\textbf{0.9030} $$ \textbf{0.5333}$$\textbf{0.6706}$
    hybrid0.80510.56670.6652
    下载: 导出CSV

    表  3  单独使用关键词特征时实验结果

    Table  3  The experimental results with only keyword features

    数据集实验结果
    $P$$R$$F$
    HD$\textbf{0.7709}$$\textbf{0.7692}$$\textbf{0.7701}$
    BA$\textbf{0.6327}$$\textbf{0.3667}$$\textbf{0.4643} $
    下载: 导出CSV

    表  4  事件$A$, $B$的关键词提取结果

    Table  4  Extracted keywords of event $A$ and $B$

    时间窗口关键词(Top 3)
    2015-10-21 19时 恒大、决赛、亚冠、广州
    2015-10-21 20时 恒大、决赛、亚冠、广州
    2015-10-21 21时 恒大、决赛、亚冠、进
    2015-10-22 19时 恒大、英国、峰会、工商
    2015-10-22 20时 恒大、集团、英国、峰会
    2015-10-22 21时 恒大、英国、峰会、工商
    下载: 导出CSV
  • [1] Zhao W X, Shu B H, Jiang J, Song Y, Yan H F, Li X M. Identifying event-related bursts via social media activities. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg, PA, USA: ACL, 2012. 1466-1477 http://www.researchgate.net/publication/262285003_Identifying_event-related_bursts_via_social_media_activities
    [2] Kleinberg J. Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery, 2003, 7(4):373-397 doi: 10.1023/A:1024940629314
    [3] Swan R, Allan J. Extracting significant time varying features from text. In: Proceedings of the 8th International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 1999. 38-45 http://www.researchgate.net/publication/2450599_Extracting_Significant_Time_Varying_Features_from_Text
    [4] Swan R, Allan J. Automatic generation of overview time-lines. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA: ACM, 2000. 49-56 http://www.researchgate.net/publication/221299242_Automatic_generation_of_overview_timelines
    [5] Mei Q Z, Zhai C X. Discovering evolutionary theme patterns from text: an exploration of temporal text mining. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. New York, NY, USA: ACM, 2005. 198-207 http://www.researchgate.net/publication/220272030_Discovering_evolutionary_theme_patterns_from_text_an_exploration_of_temporal_text_mining
    [6] Marcus A, Bernstein M S, Badar O, Karger D R, Madden S, Miller R C. Twitinfo: aggregating and visualizing microblogs for event exploration. In: Proceedings of the 2011 SIGCHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2011. 227-236 http://www.researchgate.net/publication/228977615_TwitInfo_Aggregating_and_visualizing_microblogs_for_event_exploration
    [7] Takahashi T, Tomioka R, Yamanishi K. Discovering emerging topics in social streams via link-anomaly detection. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(1):120-130 doi: 10.1109/TKDE.2012.239
    [8] 张鲁民, 贾焰, 周斌, 赵金辉, 洪锋.一种基于情感符号的在线突发事件检测方法.计算机学报, 2013, 36(8):1659-1667 http://edu.wanfangdata.com.cn/Periodical/Detail/jsjxb201308010

    Zhang Lu-Min, Jia Yan, Zhou Bin, Zhao Jin-Hui, Hong Feng. Online bursty events detection based on emoticons. Chinese Journal of Computers, 2013, 36(8):1659-1667 http://edu.wanfangdata.com.cn/Periodical/Detail/jsjxb201308010
    [9] Chen F, Neill D B. Non-parametric scan statistics for event detection and forecasting in heterogeneous social media graphs. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2014. 1166-1175 http://dl.acm.org/citation.cfm?id=2623619
    [10] Zhang X M, Li Z J, Chao W H, Xia J L. Popularity prediction of burst event in microblogging. In: Proceedings of the 15th International Conference on Web-Age Information Management. Macau, China: Springer, 2014. 484-487 doi: 10.1007%2F978-3-319-08010-9_53
    [11] Aiello L M, Petkos G, Martin C, Corney D, Papadopoulos S, Skraba R, Goker A, Kompatsiaris I, Jaimes A. Sensing trending topics in twitter. IEEE Transactions on Multimedia, 2013, 15(6):1268-1282 doi: 10.1109/TMM.2013.2265080
    [12] 冯冲, 石戈, 郭宇航, 龚静, 黄河燕.基于词向量语义分类的微博实体链接方法.自动化学报, 2016, 42(6):915-922 http://www.aas.net.cn/CN/abstract/abstract18882.shtml

    Feng Chong, Shi Ge, Guo Yu-Hang, Gong Jing, Huang He-Yan. An entity linking method for microblog based on semantic categorization by word embeddings. Acta Automatica Sinica, 2016, 42(6):915-922 http://www.aas.net.cn/CN/abstract/abstract18882.shtml
    [13] Fung G P C, Yu J X, Yu P S, Lu H J. Parameter free bursty events detection in text streams. In: Proceedings of the 31st International Conference on Very Large Data Bases. New York, NY, USA: ACM, 2005. 181-192 http://www.researchgate.net/publication/221309682_Parameter_Free_Bursty_Events_Detection_in_Text_Streams
    [14] Urabe Y, Yamanishi K, Tomioka R, Iwai H. Real-time change-point detection using sequentially discounting normalized maximum likelihood coding. In: Proceedings of the 15th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Berlin, Heidelberg, Germany: Springer-Verlag, 2011. 185-197
    [15] Mathioudakis M, Koudas N. TwitterMonitor: trend detection over the twitter stream. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data. New York, NY, USA: ACM, 2010. 1155-1158 http://www.researchgate.net/publication/221213158_TwitterMonitor_trend_detection_over_the_twitter_stream
    [16] Allan J, Carbonell J G, Doddington G, Yamron J, Yang Y M. Topic detection and tracking pilot study final report. In: Proceedings of the 1998 DARPA Broadcast News Transcription and Understanding Workshop. Lansdowne, Virginia, USA: DARPA, 1998. 194-218
    [17] Atefeh F, Khreich W. A survey of techniques for event detection in twitter. Computational Intelligence, 2015, 31(1):132-164 doi: 10.1111/coin.v31.1
    [18] Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation. Journal of Machine Learning Research, 2003, 3:993-1022 http://ci.nii.ac.jp/naid/20001460587
    [19] Zhao W X, Chen R S, Fan K, Yan H F, Li X M. A novel burst-based text representation model for scalable event detection. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: ACL, 2012, 2: 43-47
    [20] Zhao W X, Jiang J, Weng J S, He J, Lim E P, Yan H F, Li X M. Comparing twitter and traditional media using topic models. In: Proceedings of the 33rd European Conference on Advances in Information Retrieval. Berlin, Heidelberg, Germany: Springer-Verlag, 2011. 338-349
    [21] Diao Q M, Jiang J, Zhu F D, Lim E P. Finding bursty topics from microblogs. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: ACL, 2012, 1: 536-544
    [22] Hong L J, Ahmed A, Gurumurthy S, Smola A J, Tsioutsiouliklis K. Discovering geographical topics in the twitter stream. In: Proceedings of the 21st International Conference on World Wide Web. New York, NY, USA: ACM, 2012. 769 -778
    [23] Weng J S, Lee B S. Event detection in twitter. In: Proceedings of the 2011 International AAAI Conference on Web and Social Media. Palo Alto, CA, USA: AAAI, 2011. 401-408
    [24] Wang Z H, Shou L D, Chen K, Chen G, Mehrotra S. On summarization and timeline generation for evolutionary tweet streams. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(5):1301-1315 doi: 10.1109/TKDE.2014.2345379
    [25] Sakaki T, Okazaki M, Matsuo Y. Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web. New York, NY, USA: ACM, 2010. 851-860
    [26] Becker H, Naaman M, Gravano L. Beyond trending topics: real-world event identification on twitter. In: Proceedings of the 2011 International AAAI Conference on Web and Social Media. Palo Alto, CA, USA: AAAI, 2011. 438-441
    [27] 付举磊, 刘文礼, 郑晓龙, 樊瑛, 汪寿阳.基于文本挖掘和网络分析的"东突"活动主要特征研究.自动化学报, 2014, 40(11):2456-2468 http://www.aas.net.cn/CN/abstract/abstract18522.shtml

    Fu Ju-Lei, Liu Wen-Li, Zheng Xiao-Long, Fan Ying, Wang Shou-Yang. Analyzing the characteristics of "east Turkistan" activities using text mining and network analysis. Acta Automatica Sinica, 2014, 40(11):2456-2468 http://www.aas.net.cn/CN/abstract/abstract18522.shtml
    [28] 胡艳丽, 白亮, 张维明.一种话题演化建模与分析方法.自动化学报, 2012, 38(10):1690-1697 http://www.aas.net.cn/CN/abstract/abstract17778.shtml

    Hu Yan-Li, Bai Liang, Zhang Wei-Ming. Modeling and analyzing topic evolution. Acta Automatica Sinica, 2012, 38(10):1690-1697 http://www.aas.net.cn/CN/abstract/abstract17778.shtml
    [29] Thelwall M, Buckley K, Paltoglou G. Sentiment in twitter events. Journal of the American Society for Information Science and Technology, 2011, 62(2):406-418 doi: 10.1002/asi.21462
    [30] Bollen J, Mao H N, Zeng X J. Twitter mood predicts the stock market. Journal of Computational Science, 2011, 2(1):1-8 doi: 10.1016/j.jocs.2010.12.007
    [31] 吴信东, 李毅, 李磊.在线社交网络影响力分析.计算机学报, 2014, 37(4):735-752

    Wu Xin-Dong, Li Yi, Li Lei. Influence analysis of online social networks. Chinese Journal of Computers, 2014, 37(4):735-752
    [32] Perozzi B, Al-Rfou R, Skiena S. Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2014. 701-710
    [33] 辛宇, 杨静, 谢志强.基于标签传播的语义重叠社区发现算法.自动化学报, 2014, 40(10):2262-2275 http://www.aas.net.cn/CN/abstract/abstract18501.shtml

    Xin Yu, Yang Jing, Xie Zhi-Qiang. An overlapping semantic community structure detecting algorithm by label propagation. Acta Automatica Sinica, 2014, 40(10):2262-2275 http://www.aas.net.cn/CN/abstract/abstract18501.shtml
    [34] 黄立威, 李彩萍, 张海粟, 刘玉超, 李德毅, 刘艳博.一种基于因子图模型的半监督社区发现方法.自动化学报, 2016, 42(10):1520-1531 http://www.aas.net.cn/CN/abstract/abstract18939.shtml

    Huang Li-Wei, Li Cai-Ping, Zhang Hai-Su, Liu Yu-Chao, Li De-Yi, Liu Yan-Bo. A semi-supervised community detection method based on factor graph model. Acta Automatica Sinica, 2016, 42(10):1520-1531 http://www.aas.net.cn/CN/abstract/abstract18939.shtml
    [35] Tsur O, Rappoport A. What's in a hashtag?: content based prediction of the spread of ideas in microblogging communities. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining. Seattle, Washington, USA: ACM, 2012. 643-652
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  2175
  • HTML全文浏览量:  250
  • PDF下载量:  655
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-31
  • 录用日期:  2017-03-21
  • 刊出日期:  2018-04-20

目录

    /

    返回文章
    返回