2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于精简并发潜结构映射的竖炉焙烧过程综合故障诊断

刘强 秦泗钊

刘强, 秦泗钊. 基于精简并发潜结构映射的竖炉焙烧过程综合故障诊断. 自动化学报, 2017, 43(12): 2160-2169. doi: 10.16383/j.aas.2017.c160505
引用本文: 刘强, 秦泗钊. 基于精简并发潜结构映射的竖炉焙烧过程综合故障诊断. 自动化学报, 2017, 43(12): 2160-2169. doi: 10.16383/j.aas.2017.c160505
LIU Qiang, QIN S. Joe. Comprehensive Fault Diagnosis of Shaft Furnace Roasting Processes Using Simplified Concurrent Projection to Latent Structures. ACTA AUTOMATICA SINICA, 2017, 43(12): 2160-2169. doi: 10.16383/j.aas.2017.c160505
Citation: LIU Qiang, QIN S. Joe. Comprehensive Fault Diagnosis of Shaft Furnace Roasting Processes Using Simplified Concurrent Projection to Latent Structures. ACTA AUTOMATICA SINICA, 2017, 43(12): 2160-2169. doi: 10.16383/j.aas.2017.c160505

基于精简并发潜结构映射的竖炉焙烧过程综合故障诊断

doi: 10.16383/j.aas.2017.c160505
基金项目: 

国家自然科学基金 61304107

中央高校基本科研业务费 N160804002

中央高校基本科研业务费 N160801001

国家自然科学基金 61673097

深圳市科技计划项目 20160207

国家自然科学基金 61573022

国家自然科学基金 61490704

德克萨斯--威斯康辛--加利福尼亚控制联盟(TWCCC),博士后国际交流计划派出项目 20130020

详细信息
    作者简介:

    刘强 东北大学流程工业综合自动化国家重点实验室副教授, 美国南加州大学化工系博士后.主要研究方向为基于数据的复杂工业过程建模与故障诊断.曾获辽宁省优秀博士学位论文奖、自动化学会优秀博士学位论文提名奖等.E-mail:liuq@mail.neu.edu.cn

    通讯作者:

    秦泗钊 美国南加州大学教授, IEEE会士、IFAC会士.主要研究方向为统计过程监控, 故障诊断, 模型预测控制, 系统辨识, 建筑能源优化与控制性能监控.曾获美国国家科学基金成就奖, 中国国家自然科学基金海外杰出青年奖, 清华大学自动化系长江讲座教授, Halliburton/Brown&Root杰出青年教师奖, DuPont(杜邦)青年教授奖.国际期刊Journal of Process Control, IEEE Control Systems Magazine副主编, Journal of Chemometrics编委.本文通信作者.E-mail:sqin@usc.edu

Comprehensive Fault Diagnosis of Shaft Furnace Roasting Processes Using Simplified Concurrent Projection to Latent Structures

Funds: 

National Natural Science Foundation of China 61304107

the Fundamental Research Funds for the Central Universities N160804002

the Fundamental Research Funds for the Central Universities N160801001

National Natural Science Foundation of China 61673097

the Fundamental Disciplinary Research Program of the Shenzhen Committee on Science and Innovation 20160207

National Natural Science Foundation of China 61573022

National Natural Science Foundation of China 61490704

the Texas-Wisconsin-California Control Consortium, the International Postdoctoral Exchange Fellowship Program 20130020

More Information
    Author Bio:

    Associate professor at the State Key Laboratory of Synthetical Automation for Process Industries (Northeastern University), China, and postdoctor in the Department of Chemical Engineering, University of Southern California, USA. His research interest covers statistical process monitoring and fault diagnosis of complex industrial processes. Dr. Liu was the recipient of the Excellent Doctoral Dissertation of the Liaoning Province of China. He was also the recipient of the Excellent Doctoral Dissertation Nomination Award of Automation Society by the Automation Society of China

    Corresponding author: QIN S. Joe  Professor at the University of Southern California, Los Angeles, USA. He is a Fellow of the International Federation of Automatic Control and a Fellow of IEEE. His research interest covers statistical process monitoring, fault diagnosis, model predictive control, system identification, building energy optimization, and control performance monitoring. Professor Qin was a recipient of the NSF CAREER Award, the NSF-China Outstanding Young Investigator Award, the Chang Jiang Professor of Tsinghua University, the Halliburton/Brown and Root Young Faculty Excellence Award, and the DuPont Young Professor Award. He is currently an associate editor of the Journal of Process Control and the IEEE Control Systems Magazine and a member of the editorial board of the Journal of Chemometrics. Corresponding author of this paper
  • 摘要: 竖炉焙烧过程因运行条件异常变化或操作不当会造成上火、冒火、过还原和欠还原等运行故障.这些故障直接影响过程运行安全和产品质量(比如,磁选管回收率),但难以采用基于模型和基于知识的方法建模故障与产品质量的关系,以及诊断故障变量.针对上述问题,本文提出数据驱动的基于并发潜结构映射(Concurrent projection to latent structures,CPLS)的竖炉焙烧过程综合故障诊断方法.首先,将并发潜结构映射分解的过程变量共有子空间与残差空间精简合并来建立磁选管回收率相关的过程变化空间,提出基于精简并发潜结构映射模型的竖炉焙烧过程综合监控方法;接下来,定义相应的重构贡献图并与竖炉焙烧过程相结合,提出CPLS精简重构贡献方法用于竖炉焙烧过程故障变量诊断;最后,利用竖炉焙烧过程半实物仿真平台采集的数据进行实验研究,结果表明所提方法不仅可以诊断出质量相关的故障,而且可诊断出回路设定值之外的故障变量.
    1)  本文责任编委 钟麦英
  • 图  1  竖炉焙烧过程工艺图

    Fig.  1  Flow chart of shaft furnace roasting processes

    图  2  竖炉焙烧过程正常工况与上火故障工况数据

    Fig.  2  Data collected from shaft furnace roasting process under normal operation and fire-emitting fault

    图  3  正常工况监控结果

    Fig.  3  Monitoring results for normal operation condition

    图  4  上火故障监控结果

    Fig.  4  Monitoring results for fire-emitting fault

    图  5  上火故障重构贡献诊断结果

    Fig.  5  Reconstruction contribution based fault diagnosis results for fire-emitting fault

    表  1  竖炉焙烧过程统计指标及其控制限[12]

    Table  1  The statistics and control limits for shaft furnace roasting processes[12]

    统计指标 控制限
    $\begin{array}{l} T_c^2 ={{\pmb t}}_c^{\rm T} {{\pmb \Lambda }}_c^{-1} {{\pmb t}}_c= \\ \quad \, \boldsymbol{x}^{\rm T}{{\pmb R}}_c {{\pmb \Lambda }}_c^{-1} {{\pmb R}}_c^{\rm T} \boldsymbol{x} \\ \end{array}$ $\tau _c^2 =\frac{l_c (n^2-1)}{n(n-l_c)}F_{l_c, n-l_c, \alpha } $
    $\begin{array}{l} T_x^2 ={{\pmb t}}_x^{\rm T} {{\pmb \Lambda }}_x^{-1} {{\pmb t}}_x =\\ \quad \, \boldsymbol{x}^{\rm T}{{\pmb P}}_x {{\pmb \Lambda }}_x^{-1} {{\pmb P}}_x^{\rm T} \boldsymbol{x} \\ \end{array}$ $\tau _x^2 =\frac{l_x (n^2-1)}{n(n-l_x)}F_{l_x, n-l_x, \alpha } $
    $\begin{array}{l} T_y^2 ={{\pmb t}}_y^{\rm T} {{\pmb \Lambda }}_y^{-1} {{\pmb t}}_y =\\ \quad \, {{\tilde {\pmb y}}}_c^{\rm T} {{\pmb P}}_y {{\pmb \Lambda }}_y^{-1} {{\pmb P}}_y^{\rm T} {{\tilde{ \boldsymbol{y}}}}_c \\ \end{array}$ $\tau _y^2 =\frac{l_y (n^2-1)}{n(n-l_y)}F_{l_y, n-l_y, \alpha} $
    $\begin{array}{l} Q_x =\left\| {{{\tilde{ \boldsymbol{x}}}}} \right\|^{{2}} =\\ \quad \, \boldsymbol{x}^{\rm T}\left({{{\pmb I-P}}_x {{\pmb P}}_x^{\rm T} } \right)\boldsymbol{x} \\ \end{array}$ $\delta _x^2 =g_x \cdot \chi _{h_x, \alpha }^2 $
    $\begin{array}{l} Q_y =\left\| {{{\tilde {\boldsymbol{y}}}}} \right\|^{{2}} =\\ \quad \, {{\tilde {\boldsymbol{y}}}}_c^{{\rm T}} \left({{{\pmb I-P}}_y {{\pmb P}}_y^{{\rm T}} } \right){{\tilde {\boldsymbol{y}}}}_c \\ \end{array}$ $\delta _y^2 =g_y \cdot \chi _{h_y, \alpha }^2 $
    下载: 导出CSV
  • [1] 柴天佑, 丁进良, 王宏, 苏春翌.复杂工业过程运行的混合智能优化控制方法.自动化学报, 2008, 34(5):505-515 http://www.aas.net.cn/CN/abstract/abstract13476.shtml

    Chai Tian-You, Ding Jin-Liang, Wang Hong, Su Chun-Yi. Hybrid intelligent optimal control method for operation of complex industrial processes. Acta Automatica Sinica, 2008, 34 (5):505-515 http://www.aas.net.cn/CN/abstract/abstract13476.shtml
    [2] Chai T Y, Ding J L, Wu F H. Hybrid intelligent control for optimal operation of shaft furnace roasting process. Control Engineering Practice, 2011, 19 (3):264-275 doi: 10.1016/j.conengprac.2010.05.002
    [3] 吴峰华, 丁进良, 岳恒, 柴天佑.竖炉焙烧过程智能故障诊断系统.南京航空航天大学学报, 2006, 38 (S1):91-94 http://d.wanfangdata.com.cn/Periodical/njhkht2006z1023

    Wu Feng-Hua, Ding Jin-Liang, Yue Heng, Chai Tian-You. Intelligent fault diagnosis system for roasting process of shaft furnace. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 38 (S1):91-94 http://d.wanfangdata.com.cn/Periodical/njhkht2006z1023
    [4] 严爱军, 王普, 曾宇.竖炉燃烧过程智能故障预报系统.化工学报, 2008, 59 (7):1768-1772 http://www.oalib.com/paper/4208380

    Yan Ai-Jun, Wang Pu, Zeng Yu. Intelligent fault prediction system of combustion process in shaft furnace. Journal of Chemical Industry and Engineering (China), 2008, 59 (7):1768-1772 http://www.oalib.com/paper/4208380
    [5] Lu X L, Liu Q, Chai T Y, Qin S J. Data-driven fault diagnosis of shaft furnace roasting processes using reconstruction and reconstruction-based contribution approaches. IFAC Proceedings Volumes, 2014, 47 (3):8897-8902 doi: 10.3182/20140824-6-ZA-1003.01188
    [6] Qin S J. Survey on data-driven industrial process monitoring and diagnosis. Annual Reviews in Control, 2012, 36 (2):220-234 doi: 10.1016/j.arcontrol.2012.09.004
    [7] 文成林, 吕菲亚, 包哲静, 刘妹琴.基于数据驱动的微小故障诊断方法综述.自动化学报, 2016, 42 (9):1285-1299 http://www.aas.net.cn/CN/abstract/abstract18918.shtml

    Wen Cheng-Lin, Lv Fei-Ya, Bao Zhe-Jing, Liu Mei-Qin. A review of data driven-based incipient fault diagnosis. Acta Automatica Sinica, 2016, 42 (9):1285-1299 http://www.aas.net.cn/CN/abstract/abstract18918.shtml
    [8] MacGregor J F, Kourti T. Statistical process control of multivariate processes. Control Engineering Practice, 1995, 3 (3):403-414 doi: 10.1016/0967-0661(95)00014-L
    [9] Zhou D H, Li G, Qin S J. Total projection to latent structures for process monitoring. AIChE Journal, 2010, 56 (1):168-178 doi: 10.1002/aic.11977/abstract
    [10] Li G, Qin S J, Ji Y D, Zhou D H. Total PLS based contribution plots for fault diagnosis. Acta Automatica Sinica, 2009, 35 (6):759-765 http://or.nsfc.gov.cn/bitstream/00001903-5/71521/1/1000004259143.pdf
    [11] Li G, Qin S J, Zhou D H. Geometric properties of partial least squares for process monitoring. Automatica, 2010, 46 (1):204-210 doi: 10.1016/j.automatica.2009.10.030
    [12] Qin S J, Zheng Y Y. Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures. AIChE Journal, 2013, 59 (2):496-504 doi: 10.1002/aic.v59.2
    [13] Liu Q, Qin S J, Chai T Y. Multiblock concurrent PLS for decentralized monitoring of continuous annealing processes. IEEE Transactions on Industrial Electronics, 2014, 61 (11):6429-6437 doi: 10.1109/TIE.2014.2303781
    [14] 曹玉苹, 黄琳哲, 田学民.一种基于DIOCVA的过程监控方法.自动化学报, 2015, 41 (12):2072-2080 http://www.aas.net.cn/CN/abstract/abstract18780.shtml

    Cao Yu-Ping, Huang Lin-Zhe, Tian Xue-Min. A process monitoring method using dynamic input-output canonical variate analysis. Acta Automatica Sinica, 2015, 41 (12):2072-2080 http://www.aas.net.cn/CN/abstract/abstract18780.shtml
    [15] Zhu Q Q, Liu Q, Qin S J. Concurrent canonical correlation analysis modeling for quality-relevant monitoring. IFAC-PapersOnLine, 2016, 49 (7):1044-1049 doi: 10.1016/j.ifacol.2016.07.340
    [16] Dong Y N, Qin S J. Dynamic-inner partial least squares for dynamic data modeling. IFAC-PapersOnLine, 2015, 48 (8):117-122 doi: 10.1016/j.ifacol.2015.08.167
    [17] 刘强, 秦泗钊.过程工业大数据建模研究展望.自动化学报, 2016, 42(2):161-171 http://www.aas.net.cn/CN/abstract/abstract18807.shtml

    Liu Qiang, Qin S J. Perspectives on big data modeling of process industries. Acta Automatica Sinica, 2016, 42 (2):161-171 http://www.aas.net.cn/CN/abstract/abstract18807.shtml
    [18] 严爱军, 柴天佑.磁选管回收率智能混合预报方法.信息与控制, 2005, 34 (6):759-764 http://d.wanfangdata.com.cn/Periodical/xxykz200506024

    Yan Ai-Jun, Chai Tian-You. Intelligent hybrid prediction method of magnetic tube recovery rate. Information and Control, 2005, 34 (6):759-764 http://d.wanfangdata.com.cn/Periodical/xxykz200506024
    [19] Yue H H, Qin S J. Reconstruction-based fault identification using a combined index. Industrial & Engineering Chemistry Research, 2001, 40 (20):4403-4414 doi: 10.1021/ie000141%2B
    [20] Box G E P. Some theorems on quadratic forms applied in the study of analysis of variance problems, I. effect of inequality of variance in the one-way classification. The Annals of Mathematical Statistics, 1954, 25 (2):290-302 doi: 10.1214/aoms/1177728786
    [21] Alcala C F, Qin S J. Reconstruction-based contribution for process monitoring. Automatica, 2009, 45 (7):1593-1600 doi: 10.1016/j.automatica.2009.02.027
    [22] 周平, 代伟, 柴天佑.竖炉焙烧过程运行优化控制系统的开发及实验研究.控制理论与应用, 2012, 29 (12):1565-1572 http://www.doc88.com/p-9979653061816.html

    Zhou Ping, Dai Wei, Chai Tian-You. Exploration of operational optimization control system for shaft furnace roasting process and its experiment study. Control Theory & Applications, 2012, 29 (12):1565-1572 http://www.doc88.com/p-9979653061816.html
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  2019
  • HTML全文浏览量:  163
  • PDF下载量:  593
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-01
  • 录用日期:  2016-10-14
  • 刊出日期:  2017-12-20

目录

    /

    返回文章
    返回