2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

云控制系统并行任务分配优化算法与并联控制

王彩璐 陶跃钢 杨鹏 刘作军 周颖

王彩璐, 陶跃钢, 杨鹏, 刘作军, 周颖. 云控制系统并行任务分配优化算法与并联控制. 自动化学报, 2017, 43(11): 1973-1983. doi: 10.16383/j.aas.2017.c160504
引用本文: 王彩璐, 陶跃钢, 杨鹏, 刘作军, 周颖. 云控制系统并行任务分配优化算法与并联控制. 自动化学报, 2017, 43(11): 1973-1983. doi: 10.16383/j.aas.2017.c160504
WANG Cai-Lu, TAO Yue-Gang, YANG Peng, LIU Zuo-Jun, ZHOU Ying. Parallel Task Assignment Optimization Algorithm and Parallel Control for Cloud Control Systems. ACTA AUTOMATICA SINICA, 2017, 43(11): 1973-1983. doi: 10.16383/j.aas.2017.c160504
Citation: WANG Cai-Lu, TAO Yue-Gang, YANG Peng, LIU Zuo-Jun, ZHOU Ying. Parallel Task Assignment Optimization Algorithm and Parallel Control for Cloud Control Systems. ACTA AUTOMATICA SINICA, 2017, 43(11): 1973-1983. doi: 10.16383/j.aas.2017.c160504

云控制系统并行任务分配优化算法与并联控制

doi: 10.16383/j.aas.2017.c160504
基金项目: 

国家自然科学基金 60774007

国家自然科学基金 61305101

详细信息
    作者简介:

    王彩璐  河北工业大学控制科学与工程学院博士研究生.主要研究方向为离散事件系统控制与优化.E-mail:cailu_wang@163.com

    杨鹏  河北工业大学博士.河北工业大学控制科学与工程学院教授.主要研究方向为系统建模与控制, 康复机器人和智能假肢.E-mail:yangp@hebut.edu.cn

    刘作军  南开大学博士.河北工业大学控制科学与工程学院教授.主要研究方向为复杂系统控制与优化.E-mail:liuzuojun@hebut.edu.cn

    周颖  北京科技大学博士.河北工业大学控制科学与工程学院副教授.主要研究方向为智能控制与模式识别.E-mail:zhouying2007@163.com

    通讯作者:

    陶跃钢  中国科学院博士.河北工业大学控制科学与工程学院教授.主要研究方向为离散事件系统建模, 控制与优化.本文通信作者.E-mail:yuegangtao@hebut.edu.cn

Parallel Task Assignment Optimization Algorithm and Parallel Control for Cloud Control Systems

Funds: 

National Natural Science Foundation of China 60774007

National Natural Science Foundation of China 61305101

More Information
    Author Bio:

     Ph. D. candidate at the School of Control Science and Engineering, Hebei University of Technology. Her research interest covers control and optimization of discrete-event systems

     Ph. D. from Hebei University of Technology. Professor at the School of Control Science and Engineering, Hebei University of Technology. His research interest covers system modeling and control, service robot, and intelligent prothesis

     Ph. D. from Nankai University. Professor at the School of Control Science and Engineering, Hebei University of Technology. His research interest covers control and optimization of complex systems

     Ph. D. from University of Science and Technology Beijing. Associate professor at the School of Control Science and Engineering, Hebei University of Technology. Her research interest covers intelligent control and pattern recognition

    Corresponding author: TAO Yue-Gang  Ph. D. from the Academy of Mathematics and Systems Science, Chinese Academy of Sciences. Professor at the School of Control Science and Engineering, Hebei University of Technology. His research interest covers modeling, control and optimization of discrete-event systems. Corresponding author of this paper
  • 摘要: 利用Petri网模拟云控制系统的并行处理过程,引入并行处理系统的时钟周期、吞吐率和任务完成时间性能指标,运用极大-加代数方法分析和优化云控制系统并行处理性能.采用子过程细分的优化方式,通过求解一类最优控制问题,设计并行任务分配优化方案,以保证任务完成时间最短,并给出计算最短任务完成时间的有效算法.同时,采用重复设置多套瓶颈段并联的方式提高并行处理能力,并运用Petri网实现瓶颈子过程的并联控制,且给出并联控制在协同云控制系统中的一个应用.
    1)  本文责任编委 苏宏业
  • 图  1  云控制系统[2]

    Fig.  1  Cloud control systems[2]

    图  2  指令级并行处理

    Fig.  2  Instruction level parallel processing

    图  3  并行处理系统的Petri网模型

    Fig.  3  Petri net of the parallel processing system

    图  4  矩阵${A}$的前趋图$\mathcal{G}({A})$

    Fig.  4  Precedence graph of matrix ${A}$

    图  5  指令相关

    Fig.  5  Instruction dependency

    图  6  发生指令相关的并行处理系统的Petri网模型

    Fig.  6  Petri net of the parallel processing with instruction dependency

    图  7  矩阵${B}$的前趋图$\mathcal{G}({B})$

    Fig.  7  Precedence graph of matrix ${B}$

    图  8  瓶颈子过程细分

    Fig.  8  Segmentation of the bottleneck sub-process

    图  9  瓶颈子过程并联

    Fig.  9  Parallel connection of bottleneck sub-processes

    图  10  子过程并联的Petri网模型

    Fig.  10  Petri net of parallel connection of sub-processes

    图  11  不同时刻并联系统的状态描述

    Fig.  11  State descriptions of the parallel system at various moments

    图  12  三套瓶颈段并联

    Fig.  12  Parallel connection with three bottleneck sub-processes

    图  13  三套瓶颈段并联的Petri网模型

    Fig.  13  Petri net of parallel connection with three bottleneck sub-processes

    图  14  协同云控制系统的框架图[2]

    Fig.  14  The framework of cooperative cloud control system[2]

    图  15  控制任务并联

    Fig.  15  Parallel connection of control tasks

  • [1] Xia Y Q. From networked control systems to cloud control systems. In:Proceedings of the 31st Chinese Control Conference. Las Vegas, Nevada, USA:IEEE, 2012. 5878-5883
    [2] Xia Y Q. Cloud control systems. IEEE/CAA Journal of Automatica Sinica, 2015, 2(2):134-142 doi: 10.1109/JAS.2015.7081652
    [3] Xia Y Q, Fu M Y, Liu G P. Analysis and Synthesis of Networked Control Systems. Berlin:Springer-Verlag, 2011.
    [4] Antonopoulos N, Gillam L. Cloud Computing. Berlin:Springer-Verlag, 2010.
    [5] Floerkemeier C, Langheinrich M, Fleisch E, Mattern F, Sarma S E. The Internet of Things. Berlin:Springer-Verlag, 2008.
    [6] Braubach L, Briot J P, Thangarajah J. Programming Multi-Agent Systems. Berlin:Springer-Verlag, 2010.
    [7] Kaneko K, Tsuda I. Complex Systems:Chaos and Beyond. Berlin:Springer-Verlag, 2001.
    [8] 夏元清.云控制系统及其面临的挑战.自动化学报, 2016, 42(1):1-12 http://www.aas.net.cn/CN/abstract/abstract18791.shtml

    Xia Yuan-Qing. Cloud control systems and their challenges. Acta Automatica Sinica, 2016, 42(1):1-12 http://www.aas.net.cn/CN/abstract/abstract18791.shtml
    [9] Peterson J L. Petri Net Theory and the Modeling of Systems. Englewood Cliffs:Prentice-Hall, 1981.
    [10] Reisig W. Petri Nets:An Introduction. Berlin:Springer-Verlag, 1985.
    [11] Murata T. Petri nets:properties, analysis and applications. Proceedings of the IEEE, 1989, 77(4):541-580 doi: 10.1109/5.24143
    [12] Fan L J, Wang Y Z, Li J Y, Cheng X Q, Lin C. Privacy Petri net and privacy leak software. Journal of Computer Science and Technology, 2015, 30(6):1318-1343 doi: 10.1007/s11390-015-1601-7
    [13] Tavares J J P Z D S, Saraiva T A. Elementary Petri net inside RFID distributed database (PNRD). International Journal of Production Research, 2010, 48(9):2563-2582 doi: 10.1080/00207540903564934
    [14] Gradišar D, Mušič G. Production-process modelling based on production-management data:a Petri-net approach. International Journal of Computer Integrated Manufacturing, 2007, 20(8):794-810 doi: 10.1080/09511920601103064
    [15] Khan N A, Ahmad F. Modeling and simulation of an improved random direction mobility model for wireless networks using colored Petri nets. Simulation, 2016, 92(4):323-336 doi: 10.1177/0037549716634435
    [16] Baruwa O T, Piera M A, Guasch A. Deadlock-free scheduling method for flexible manufacturing systems based on timed colored Petri nets and anytime heuristic search. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2015, 45(5):831-846 doi: 10.1109/TSMC.2014.2376471
    [17] Cuninghame-Green R A. Minimax Algebra. Berlin:Springer-Verlag, 1979.
    [18] Baccelli F, Cohen G, Olsder G J, Quadrat J P. Synchronization and Linearity:An Algebra for Discrete Event Systems. New York:John Wiley and Sons, 1992.
    [19] Heidergott B, Olsder G J, van der Woude J. Max Plus at Work:Modeling and Analysis of Synchronized Systems:A Course on Max-Plus Algebra and Its Applications. New Jersey:Princeton University Press, 2006.
    [20] Gaubert S. Théorie des Systémes Linéaires dans les Dioides[Ph.D. dissertation], Ecole Nationale Supérieure des Mines de Paris, French, 1992.
    [21] 陈文德, 齐向东.离散事件动态系统的周期配置.中国科学(A辑), 1993, 23(1):1-7 http://d.wanfangdata.com.cn/Conference/191447

    Chen Wen-De, Qi Xiang-Dong. Period assignment of discrete event dynamic systems. Science in China (Series A), 1993, 23(1):1-7 http://d.wanfangdata.com.cn/Conference/191447
    [22] Gaubert S, Gunawardena J. The duality theorem for min-max functions. Comptes Rendus de l'Académie des Sciences, Series Ⅰ:Mathematics, 1998, 326(1):43-48 doi: 10.1016/S0764-4442(97)82710-3
    [23] Zhao Q C. A remark on inseparability of min-max systems. IEEE Transactions on Automatic Control, 2004, 49(6):967-970 doi: 10.1109/TAC.2004.829611
    [24] Cohen G, Dubois D, Quadrat J P, Viot M. Linear system theory for discrete event systems. In:Proceedings of the 23rd IEEE Conference on Decision and Control. Las Vegas, Nevada, USA:IEEE, 1984. 539-544
    [25] Necoara I, De Schutter B, van den Boom T, Hellendoorn H. Robust control of constrained max-plus-linear systems. International Journal of Robust and Nonlinear Control, 2009, 19(2):218-242 doi: 10.1002/rnc.v19:2
    [26] 王龙, 郑大钟.线性离散事件动态系统的可达性.高校应用数学学报, 1990, 5(2):292-301

    Wang Long, Zheng Da-Zhong. On the reachability of linear discrete event dynamic systems. Applied Mathematics:A Journal of Chinese Universities, 1990, 5(2):292-301
    [27] Tao Y G, Liu G P, Mu X W. Max-plus matrix method and cycle time assignability and feedback stabilizability for min-max-plus systems. Mathematics of Control, Signals, and Systems, 2013, 25(2):197-229 doi: 10.1007/s00498-012-0098-7
    [28] Adzkiya D, De Schutter B, Abate A. Computational techniques for reachability analysis of max-plus-linear systems. Automatica, 2015, 53:293-302 doi: 10.1016/j.automatica.2015.01.002
    [29] De Schutter B, van den Boom T. Model predictive control for max-plus-linear discrete event systems. Automatica, 2001, 37(7):1049-1056 doi: 10.1016/S0005-1098(01)00054-1
    [30] van den Boom T, De Schutter B. Properties of MPC for max-plus-linear systems. European Journal of Control, 2002, 8(5):453-462 doi: 10.3166/ejc.8.453-462
    [31] Trobec R, Vajteršic M, Zinterhof P. Parallel Computing. Berlin:Springer-Verlag, 2009.
    [32] Olsder G J, Roos C. Cramer and Cayley-Hamilton in the max algebra. Linear Algebra and Its Applications, 1988, 101:87-108 doi: 10.1016/0024-3795(88)90145-0
    [33] De Schutter B, De Moor B. A note on the characteristic equation in the max-plus algebra. Linear Algebra and Its Applications, 1997, 261(1-3):237-250 doi: 10.1016/S0024-3795(96)00407-7
    [34] Cohen G, Dunois D, Quadrat J, Viot M. A linear-system-theoretic view of discrete-event processes and its use for performance evaluation in manufacturing. IEEE Transactions on Automatic Control, 1985, 30(3):210-220 doi: 10.1109/TAC.1985.1103925
    [35] Chen W D, Qi X D, Deng S H. The eigen-problem and period analysis of the discrete-event system. Systems Science and Mathematical Sciences, 1990, 3(3):243-260
    [36] Karp R M. A characterization of the minimum cycle mean in a digraph. Discrete Mathematics, 1978, 23(3):309-311 doi: 10.1016/0012-365X(78)90011-0
    [37] Hassanien A E, Azar A T, Snasael V, Kacprzyk J, Abawajy J H. Big Data in Complex Systems. Berlin:Springer-Verlag, 2015.
  • 加载中
图(15)
计量
  • 文章访问数:  2513
  • HTML全文浏览量:  295
  • PDF下载量:  576
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-30
  • 录用日期:  2016-11-17
  • 刊出日期:  2017-11-20

目录

    /

    返回文章
    返回