2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SWT与等价空间的LDTV系统故障检测

薛婷 钟麦英

李娟, 王宇平. 基于样本密度和分类误差率的增量学习矢量量化算法研究. 自动化学报, 2015, 41(6): 1187-1200. doi: 10.16383/j.aas.2015.c140311
引用本文: 薛婷, 钟麦英. 基于SWT与等价空间的LDTV系统故障检测. 自动化学报, 2017, 43(11): 1920-1930. doi: 10.16383/j.aas.2017.c160479
LI Juan, WANG Yu-Ping. An Incremental Learning Vector Quantization Algorithm Based on Pattern Density and Classification Error Ratio. ACTA AUTOMATICA SINICA, 2015, 41(6): 1187-1200. doi: 10.16383/j.aas.2015.c140311
Citation: XUE Ting, ZHONG Mai-Ying. SWT and Parity Space Based Fault Detection for Linear Discrete Time-varying Systems. ACTA AUTOMATICA SINICA, 2017, 43(11): 1920-1930. doi: 10.16383/j.aas.2017.c160479

基于SWT与等价空间的LDTV系统故障检测

doi: 10.16383/j.aas.2017.c160479
基金项目: 

国家自然科学基金 61733009

国家自然科学基金 61421063

国家自然科学基金 61333005

详细信息
    作者简介:

    薛婷 2016年获得北京航空航天大学仪器科学与光电工程学院仪器科学与技术硕士学位.主要研究方向为控制系统故障检测.E-mail:xuet_buaa@126.com

    通讯作者:

    钟麦英 山东科技大学教授.1999年获得东北大学控制理论及工程博士学位.主要研究方向为基于模型的故障诊断, 故障隔离系统及其应用.本文通信作者.E-mail:myzhong@buaa.edu.cn

SWT and Parity Space Based Fault Detection for Linear Discrete Time-varying Systems

Funds: 

National Natural Science Foundation of China 61733009

National Natural Science Foundation of China 61421063

National Natural Science Foundation of China 61333005

More Information
    Author Bio:

    She received her master degree from Beihang University in 2016. Her main research interest is control systems fault detection

    Corresponding author: ZHONG Mai-Ying Professor at Shandong University of Science and Technology. She received her Ph. D. degree in control theory and control engineering from Northestern University in 1999. Her research interest covers model based fault diagnosis, fault tolerant systems and their application. Corresponding author of this paper
  • 摘要: 为提高基于等价空间的线性离散时变(Linear discrete time-varying,LDTV)系统故障检测的检测性能,本文提出一种基于平稳小波变换(Stationary wavelet transform,SWT)与等价空间的LDTV系统故障检测方法.通过引入SWT对基于低阶等价关系构造的残差进行多尺度滤波,将残差产生器设计转化为不同尺度下的多目标最优化问题,保证了各尺度下残差对干扰鲁棒性和对故障灵敏性指标的最小化,同时利用SWT快速算法获得一组多尺度残差信号.进一步,对产生的多尺度残差信号进行多分辨率分析,从而实现较宽频率范围内故障信号的检测,有效降低了故障漏报率.最后,通过仿真实验验证了本文方法的有效性.

  • 本文责任编委 姜斌
  • 图  1  阶跃故障检测结果

    Fig.  1  The FD results of step fualt

    图  2  正弦故障检测结果

    Fig.  2  The FD results of sine fault

    图  3  当$d_1(k)$方差为0.7$^2$时的正弦故障检测结果

    Fig.  3  The FD results of sine fault with the variance of $d_1(k)$ rising to $0.7^2$

    图  4  当$d_2(k)=1.0\cos(k)$时的正弦故障检测结果

    Fig.  4  The FD results of sine fault with the $d_2(k)=1.0\cos(k)$

  • [1] Lan J L, Patton R J. A new strategy for integration of fault estimation within fault-tolerant control. Automatica, 2016, 69:48-59 doi: 10.1016/j.automatica.2016.02.014
    [2] Ding S X. Data-driven design of monitoring and diagnosis systems for dynamic processes:a review of subspace technique based schemes and some recent results. Journal of Process Control, 2014, 24:431-449 doi: 10.1016/j.jprocont.2013.08.011
    [3] 周东华, 刘洋, 何潇.闭环系统故障诊断技术综述.自动化学报, 2013, 39(11):1933-1943 http://www.aas.net.cn/CN/abstract/abstract18232.shtml

    Zhou Dong-Hua, Liu Yang, He Xiao. Review on fault diagnosis techniques for closed-loop systems. Acta Automatica Sinica, 2013, 39(11):1933-1943 http://www.aas.net.cn/CN/abstract/abstract18232.shtml
    [4] Cai J, Ferdowsi H, Sarangapani J. Model-based fault detection, estimation, and prediction for a class of linear distributed parameter systems. Automatica, 2016, 66:122-131 doi: 10.1016/j.automatica.2015.12.028
    [5] Ding S. Model-based Fault Diagnosis Techniques (2nd Edition). London:Springer, 2013.
    [6] 李岳炀, 钟麦英.具有多测量数据包丢失的线性离散时变系统故障检测滤波器设计.自动化学报, 2015, 41(9):1638-1648 http://www.aas.net.cn/CN/abstract/abstract18737.shtml

    Li Yue-Yang, Zhong Mai-Ying. Fault detection filter design for linear discrete time-varying systems with multiple packet dropouts. Acta Automatica Sinica, 2015, 41(9):1638-1648 http://www.aas.net.cn/CN/abstract/abstract18737.shtml
    [7] Li Y Y, Liu S, Wang Z H. Fault detection for linear discrete time-varying systems with intermittent observations and quantization errors. Asian Journal of Control, 2016, 18(1):377-389 doi: 10.1002/asjc.v18.1
    [8] Zhong M Y, Zhou D H, Ding S X. On H fault detection filter for linear discrete time-varying systems. IEEE Transactions on Automatic Control, 2010, 55(7):1689-1695 doi: 10.1109/TAC.2010.2046921
    [9] Wan Y M, Dong W, Wu H, Ye H. Integrated fault detection system design for linear discrete time-varying systems with bounded power disturbances. International Journal of Robust and Nonlinear Control, 2013, 23(16):1781-1802 http://www.academia.edu/4226910/Integrated_fault_detection_system_design_for_linear_discrete_time-varying_systems_with_bounded_power_disturbances
    [10] Chandra N H, Sekhar A S. Fault detection in rotor bearing systems using time frequency techniques. Mechanical Systems and Signal Processing, 2016, 73-73:105-133 http://adsabs.harvard.edu/abs/2016MSSP...72..105C
    [11] Barragan J F, Fontes C H, Embiruçu M. A wavelet-based clustering of multivariate time series using a multiscale SPCA approach. Computers & Industrial Engineering, 2016, 95:144-155 https://www.sciencedirect.com/science/article/pii/S0360835216300560
    [12] You D Y, Gao X D, Katayama S. WPD-PCA-based laser welding process monitoring and defects diagnosis by using FNN and SVM. IEEE Transactions on Industrial Electronics, 2015, 62(1):628-638 doi: 10.1109/TIE.2014.2319216
    [13] Patton R J, Chen J. Review of parity space approaches to fault diagnosis. IFAC Symposia Series, 1992, 6:65-81 http://www.sciencedirect.com/science/article/pii/S1474667017511246
    [14] Zhong M Y, Ding S X, Han Q L, Ding Q. Parity space-based fault estimation for linear discrete time-varying systems. IEEE Transactions on Automatic Control, 2010, 55(7):1726-1731 doi: 10.1109/TAC.2010.2047672
    [15] Vento J, Blesa J, Puig V, Sarrate R. Set-membership parity space hybrid system diagnosis. International Journal of Systems Science, 2015, 46(5):790-807 doi: 10.1080/00207721.2014.977978
    [16] Zhang Z, Jaimoukha I M. On-line fault detection and isolation for linear discrete-time uncertain systems. Automatica, 2014, 50(2):513-518 doi: 10.1016/j.automatica.2013.11.003
    [17] Wang Y L, Gao B Z, Chen H. Data-driven design of parity space-based FDI system for AMT vehicles. IEEE/ASME Transactions on Mechatronics, 2015, 20(1):405-415 doi: 10.1109/TMECH.2014.2329005
    [18] Li Z L, Outbib R, Hissel D, Giurgea S. Diagnosis of PEMFC by using data-driven parity space strategy. In:Proceedings of the 2014 European Control Conference (ECC). Strasbourg, France:IEEE, 2014. 1268-1273 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6862527
    [19] Zhang P, Ye H, Ding S X, Wang G Z, Zhou D H. On the relationship between parity space and H2 approaches to fault detection. Systems & Control Letters, 2006, 55(2):94-100
    [20] Ye H, Wang G Z, Ding S X. A new parity space approach for fault detection based on stationary wavelet transform. IEEE Transactions on Automatic Control, 2004, 49(2):281-286 doi: 10.1109/TAC.2003.822856
    [21] 薛婷, 钟麦英, 李钢.基于小波变换与等价空间的无人机作动器故障检测.控制理论与应用, 2016, 33(9):1193-1199 http://d.wanfangdata.com.cn/Periodical/kzllyyy201609008

    Xue Ting, Zhong Mai-Ying, Li Gang. Wavelet transform and parity space based actuator fault detection for unmanned aerial vehicle. Control Theory and Application, 2016, 33(9):1193-1199 http://d.wanfangdata.com.cn/Periodical/kzllyyy201609008
    [22] Zhang J M, Zhang Y B, Guan Y G. Analysis of time-domain reflectometry combined with wavelet transform for fault detection in aircraft shielded cables. IEEE Sensors Journal, 2016, 16(11):4579-4586 doi: 10.1109/JSEN.2016.2547323
    [23] 杜党波, 张伟, 胡昌华, 周志杰, 司小胜, 张建勋.含缺失数据的小波——卡尔曼滤波故障预测方法.自动化学报, 2014, 40(10):2115-2125 http://www.aas.net.cn/CN/abstract/abstract18486.shtml

    Du Dang-Bo, Zhang Wei, Hu Chang-Hua, Zhou Zhi-Jie, Si Xiao-Sheng, Zhang Jian-Xun. A failure prognosis method based on wavelet-Kalman filtering with missing data. Acta Automatica Sinica, 2014, 40(10):2115-2125 http://www.aas.net.cn/CN/abstract/abstract18486.shtml
    [24] Yusuff A A, Jimoh A A, Munda J L. Fault location in transmission lines based on stationary wavelet transform, determinant function feature and support vector regression. Electric Power Systems Research, 2014, 110:73-83 doi: 10.1016/j.epsr.2014.01.002
    [25] Zhong M Y, Ding Q, Shi P. Parity space-based fault detection for Markovian jump systems. International Journal of Systems Science, 2009, 40(4):421-428 doi: 10.1080/00207720802556237
    [26] Zhong M Y, Song Y, Ding S X. Parity space-based fault detection for linear discrete time-varying systems with unknown input. Automatica, 2015, 59:120-126 doi: 10.1016/j.automatica.2015.06.013
    [27] Mallat S G. A Wavelet Tour of Signal Processing:the Sparse Way (3rd Edition). Amsterdam:Elsevier, 2009.
    [28] Renaud O, Starck J L, Murtagh F. Wavelet-based combined signal filtering and prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2005, 35(6):1241-1251 doi: 10.1109/TSMCB.2005.850182
  • 期刊类型引用(22)

    1. 张欣,张雁,张鑫. 基于亮度与彩色纹理统计的无参考图像评价. 信息技术与信息化. 2023(01): 122-129 . 百度学术
    2. 何锦成,韩永成,张闻文,何伟基,陈钱. 基于通道校正卷积的真彩色微光图像增强. 兵工学报. 2023(06): 1643-1654 . 百度学术
    3. 罗小燕,刘顺,汤文聪,王兴卫. 基于Mask RCNN的矿仓入料口堵塞矿石识别定位研究. 有色金属科学与工程. 2022(01): 101-107 . 百度学术
    4. 陈健,李诗云,林丽,王猛,李佐勇. 模糊失真图像无参考质量评价综述. 自动化学报. 2022(03): 689-711 . 本站查看
    5. 段添耀,柯圆圆. 基于多种颜色模型的马赛克瓷砖选色研究. 江汉大学学报(自然科学版). 2022(04): 45-52 . 百度学术
    6. 来晓. 基于微调优化的深度学习在果蔬识别中的应用. 智能计算机与应用. 2021(04): 117-123 . 百度学术
    7. 贺杰,王桂梅,刘杰辉,杨立洁. 基于图像处理的皮带机上煤量体积计量. 计量学报. 2020(12): 1516-1520 . 百度学术
    8. 柴富杰,邓嘉敏,李建森,刘正发. 数码照相颜色数值与物质浓度辨识的数学模型. 数学的实践与认识. 2019(04): 305-311 . 百度学术
    9. 陈扬,李旦,张建秋. 互补色小波域图像质量盲评价方法. 电子学报. 2019(04): 775-783 . 百度学术
    10. 侯向宁,刘华春. 基于MSER和SVM以及强种子区域生长的车牌定位. 西安工程大学学报. 2019(02): 180-185 . 百度学术
    11. 梁长江,吴雪梅,王芳,宋朱军,张富贵. 基于无人机的田间地膜识别算法研究. 浙江农业学报. 2019(06): 1005-1011 . 百度学术
    12. 刘星星,王烁烁,徐丽明,袁全春,马帅,于畅畅,牛丛,陈晨,袁训腾,曾鉴. 基于OpenCV的动态葡萄干色泽实时识别. 农业工程学报. 2019(23): 177-184 . 百度学术
    13. 李可,陈洪亮,张生伟,万锦锦. 基于SVM的雾天图像分类技术研究. 电光与控制. 2018(03): 37-41+47 . 百度学术
    14. 丁丽. 基于粗集理论的车辆状态检测. 电脑知识与技术. 2018(01): 189-190+208 . 百度学术
    15. 胡晓丽,钟昊,李彤. 基于二值图像连通域的甘蔗螟虫识别计数方法. 桂林电子科技大学学报. 2018(03): 210-214 . 百度学术
    16. 张宪红,张春蕊. 基于六维前馈神经网络模型的图像增强算法. 山东大学学报(工学版). 2018(04): 10-19 . 百度学术
    17. 李玉华,李天华,牛子孺,吴彦强,张智龙,侯加林. 基于色饱和度三维几何特征的马铃薯芽眼识别. 农业工程学报. 2018(24): 158-164 . 百度学术
    18. 郑恩,林靖宇. 基于图像质量约束的无序图像关键帧提取. 计算机工程. 2017(11): 210-215 . 百度学术
    19. 任荣梓,高航. 基于混沌置乱的分量融合图像加密压缩方法. 计算机技术与发展. 2017(08): 106-109+114 . 百度学术
    20. 元朴康,况盛坤,王强,田全慧. 基于GRNN的模糊图像盲评价. 包装工程. 2016(13): 195-200 . 百度学术
    21. 李俊峰,张之祥,沈军民. 基于亮度统计的无参考图像质量评价. 光电子·激光. 2016(10): 1101-1110 . 百度学术
    22. 万泽慧. 试析网络图像的色彩管理要点. 无线互联科技. 2016(04): 32-34 . 百度学术

    其他类型引用(51)

  • 加载中
  • 图(4)
    计量
    • 文章访问数:  2274
    • HTML全文浏览量:  212
    • PDF下载量:  680
    • 被引次数: 73
    出版历程
    • 收稿日期:  2016-06-21
    • 录用日期:  2016-09-19
    • 刊出日期:  2017-11-20

    目录

      /

      返回文章
      返回