A New Method of Anti-interference Matching Under Foreground Constraint for Target Tracking
-
摘要: 传统模型匹配跟踪方法没有充分考虑目标与所处图像的关系,尤其在复杂背景下,发生遮挡时易丢失目标.针对上述问题,提出一种前景约束下的抗干扰匹配(Anti-interference matching under foreground constraint,AMFC)目标跟踪方法.该方法首先选取图像帧序列前m帧进行跟踪训练,将每帧图像基于颜色特征分割成若干超像素块,利用均值聚类组建簇集合,并通过该集合建立判别外观模型;然后,采用EM(Expectation maximization)模型建立约束性前景区域,通过基于LK(Lucas-Kanade)光流法框架下的模型匹配寻找最佳匹配块.为了避免前景区域中相似物体的干扰,提出一种抗干扰匹配的决策判定算法提高匹配的准确率;最后,为了对目标的描述更加准确,提出一种新的在线模型更新算法,当目标发生严重遮挡时,在特征集中加入适当特征补偿,使得更新的外观模型更为准确.实验结果表明,该算法克服了目标形变、目标旋转移动、光照变化、部分遮挡、复杂环境的影响,具有跟踪准确和适应性强的特点.Abstract: The relation between a moving target and its image has not been fully considered in traditional model-matching tracking methods. The tracking drift problem may frequently occur when the target is occluded under a complex background. In this paper, a novel target tracking method, anti-interference matching under foreground constraint (AMFC), is proposed to solve this kind of problem. First, the method selects several initial frames from a vedio sequence for tracking training. Each of these frames is divided into several super-pixel blocks based on its color feature. These super-pixel blocks are combined into cluster sets by a mean shift algorithm to construct a discrimination appearance model. Then, a constrained foreground region is established using the expectation maximization (EM) model and a matching process is conducted based on the Lucas-Kanade (LK) optical flow method in order to select the optimum matching block. A decision-making algorithm is introduced to avoid the interference caused by similar targets in the foreground region, so as to increase the accuracy of the matching process. Moreover, in order to provide a more accurate target representation, an algorithm for appearance model online-updating is proposed. When a severe occlusion occurs, this algorithm can append appropriate feature compensations to the feature sets to improve the accuracy of the appearance model. Experimental results indicate that the proposed approach can provide superior tracking accuracy and adaptability, especially in the context of target deformation, target rotational movements, illumination changes, partial occlusion, and complex background.
-
-
表 1 实验图像序列信息
Table 1 The information of the test image sequences
图像序列 光照变化 遮挡 形变 复杂背景 旋转 Girl $\surd$ $\surd$ Deer $\surd$ $\surd$ Bird2 $\surd$ $\surd$ Football $\surd$ $\surd$ Lemming $\surd$ $\surd$ $\surd$ $\surd$ Woman $\surd$ $\surd$ Bolt $\surd$ $\surd$ $\surd$ CarDark $\surd$ David1 $\surd$ $\surd$ $\surd$ David2 $\surd$ Singer1 $\surd$ $\surd$ $\surd$ Basketball $\surd$ $\surd$ $\surd$ $\surd$ 表 2 不同跟踪算法的平均中心误差
Table 2 Average center errors of different tracking algorithms
图像序列 ASLA FRAG SCM VTD L1APG CT OAB TLD LOT SPT AMFC Girl 36.76 24.27 $\mathbf{3.47}$ 8.64 25.51 19.45 4.68 7.66 20.28 4.73 4.76 Deer $\mathbf{6.74}$ 87.64 37.62 7.93 38.76 52.13 16.77 25.34 29.44 28.76 11.92 Bird2 20.12 14.96 11.53 46.24 25.44 37.87 26.16 10.23 47.61 $\mathbf{6.32}$ 6.97 Football 16.62 15.38 9.64 13.57 11.31 17.44 9.28 13.82 7.15 11.27 $\mathbf{6.28}$ Lemming 47.52 112.63 75.43 60.73 142.28 37.82 73.74 32.68 14.48 $\mathbf{9.41}$ 11.39 Woman 76.57 118.28 22.24 107.69 115.57 104.58 30.94 137.47 118.41 23.36 $\mathbf{21.71}$ Bolt 62.42 73.62 9.37 49.17 132.48 38.74 129.56 141.24 17.62 15.23 $\mathbf{8.44}$ CarDark 5.30 6.23 6.32 28.72 $\mathbf{3.44}$ 18.70 39.86 21.36 24.18 21.58 8.35 David1 $\mathbf{3.57}$ 84.41 4.38 48.95 5.76 9.69 31.26 8.92 37.84 23.29 9.36 David2 8.94 67.51 6.72 3.51 $\mathbf{3.23}$ 69.83 36.34 6.73 3.97 8.48 9.21 Singer1 45.62 57.83 17.85 12.53 49.84 31.07 36.27 22.17 16.64 $\mathbf{10.14}$ 10.25 Basketball 106.62 18.42 116.24 9.48 84.47 79.41 37.13 95.46 127.83 12.38 $\mathbf{7.73}$ 平均 36.40 56.77 26.73 33.10 53.17 43.06 39.33 43.59 38.79 14.58 9.70 注:粗体为最优结果. 表 3 不同跟踪算法的跟踪重叠率
Table 3 Tracking overlap ratio of different tracking algorithms
图像序列 ASLA FRAG SCM VTD L1APG CT OAB TLD LOT SPT AMFC Girl 0.31 0.41 $\mathbf{0.74}$ 0.69 0.39 0.29 0.73 0.56 0.43 0.71 0.73 Deer $\mathbf{0.69}$ 0.11 0.47 0.63 0.45 0.34 0.56 0.41 0.50 0.53 0.61 Bird2 0.66 0.70 0.74 0.41 0.63 0.44 0.58 0.80 0.43 $\mathbf{0.84}$ 0.83 Football 0.61 0.63 0.71 0.65 0.68 0.62 0.68 0.65 0.73 0.69 $\mathbf{0.75}$ Lemming 0.71 0.43 0.53 0.57 0.39 0.74 0.56 0.77 0.83 $\mathbf{0.86}$ 0.86 Woman 0.27 0.14 0.59 0.15 0.15 0.17 0.48 0.12 0.14 0.59 $\mathbf{0.61}$ Bolt 0.53 0.47 0.76 0.55 0.23 0.58 0.20 0.16 0.72 0.73 $\mathbf{0.77}$ CarDark $\mathbf{0.82}$ 0.82 0.81 0.43 $\mathbf{0.82}$ 0.72 0.38 0.46 0.44 0.43 0.79 David1 $\mathbf{0.83}$ 0.23 0.82 0.53 0.80 0.77 0.57 0.79 0.55 0.62 0.76 David2 0.68 0.21 0.69 0.73 $\mathbf{0.74}$ 0.02 0.33 0.69 0.73 0.68 0.64 Singer1 0.58 0.55 0.73 0.74 0.57 0.64 0.63 0.69 0.72 $\mathbf{0.76}$ 0.76 Basketball 0.19 0.63 0.17 0.67 0.25 0.27 0.59 0.21 0.14 0.68 $\mathbf{0.69}$ 平均 0.57 0.45 0.65 0.56 0.51 0.47 0.52 0.53 0.53 0.68 0.73 表 4 不同跟踪算法的平均运行速度
Table 4 Average running speeds of different tracking algorithms
图像序列 ASLA FRAG SCM VTD L1APG CT OAB TLD LOT SPT AMFC Girl 5.31 6.32 0.65 2.74 1.76 38.21 17.51 26.84 0.79 0.47 3.68 Deer 6.24 4.78 0.97 2.67 1.64 31.63 14.72 27.17 0.83 0.41 3.56 Bird2 5.74 5.43 0.67 2.58 1.49 27.06 9.94 26.58 0.65 0.56 3.09 Football 6.15 5.68 0.61 3.14 1.61 36.73 19.67 26.63 0.93 0.76 3.41 Lemming 6.78 6.27 0.69 2.77 1.75 28.15 10.46 26.70 0.71 0.37 3.39 Woman 8.45 6.41 0.57 2.16 1.53 32.42 11.31 26.32 0.66 0.43 4.37 Bolt 7.04 3.97 0.46 2.21 1.63 27.18 8.66 24.74 0.61 0.29 3.06 CarDark 7.23 4.23 0.48 2.49 1.74 26.79 10.35 25.13 0.59 0.36 2.95 David1 7.84 4.48 0.53 3.47 2.03 34.22 14.75 26.47 0.67 0.54 3.86 David2 5.87 5.25 0.48 2.68 1.44 36.36 16.68 25.89 0.73 0.66 2.97 Singer1 5.31 4.96 0.52 2.91 1.73 28.19 10.43 26.31 0.71 0.43 3.42 Basketball 7.91 6.23 0.89 2.34 2.04 25.81 9.09 24.53 0.62 0.34 2.89 -
[1] 尹宏鹏, 陈波, 柴毅, 刘兆栋.基于视觉的目标检测与跟踪综述.自动化学报, 2016, 42(10):1466-1489 http://www.aas.net.cn/CN/Y2016/V42/I10/1466Yin Hong-Peng, Chen Bo, Chai Yi, Liu Zhao-Dong. Vision-based object detection and tracking:a review. Acta Automatica Sinica, 2016, 42(10):1466-1489 http://www.aas.net.cn/CN/Y2016/V42/I10/1466 [2] 黄丹丹, 孙怡.基于判别性局部联合稀疏模型的多任务跟踪.自动化学报, 2016, 42(3):402-415 http://www.aas.net.cn/CN/Y2016/V42/I3/402Huang Dan-Dan, Sun Yi. Tracking via multitask discriminative local joint sparse appearance model. Acta Automatica Sinica, 2016, 42(3):402-415 http://www.aas.net.cn/CN/Y2016/V42/I3/402 [3] 徐建强, 陆耀.一种基于加权时空上下文的鲁棒视觉跟踪算法.自动化学报, 2015, 41(11):1901-1912 http://www.aas.net.cn/CN/Y2015/V41/I11/1901Xu Jian-Qiang, Lu Yao. Robust visual tracking via weighted spatio-temporal context learning. Acta Automatica Sinica, 2015, 41(11):1901-1912 http://www.aas.net.cn/CN/Y2015/V41/I11/1901 [4] Yuan X H, Kong L B, Feng D C, Wei Z C. Automatic feature point detection and tracking of human actions in time-of-flight videos. IEEE/CAA Journal of Automatica Sinica, 2017, 4(4):677-685 doi: 10.1109/JAS.2017.7510625 [5] Zoidi O, Tefas A, Pitas I. Visual object tracking based on local steering kernels and color histograms. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(5):870-882 doi: 10.1109/TCSVT.2012.2226527 [6] Duffner S, Garcia C. Using discriminative motion context for online visual object tracking. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(12):2215-2225 doi: 10.1109/TCSVT.2015.2504739 [7] Wang X C, Tuüretken E, Fleuret F, Fua P. Tracking interacting objects using intertwined flows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(11):2312-2326 doi: 10.1109/TPAMI.2015.2513406 [8] Khan Z H, Gu I Y H. Nonlinear dynamic model for visual object tracking on Grassmann manifolds with partial occlusion handling. IEEE Transactions on Cybernetics, 2013, 43(6):2005-2019 doi: 10.1109/TSMCB.2013.2237900 [9] 王美华, 梁云, 刘福明, 罗笑南.部件级表观模型的目标跟踪方法.软件学报, 2015, 26(10):2733-2747 http://doi.cnki.net/Resolution/Handler?doi=10.13328/j.cnki.jos.004737Wang Mei-Hua, Liang Yun, Liu Fu-Ming, Luo Xiao-Nan. Object tracking based on component-level appearance model. Journal of Software, 2015, 26(10):2733-2747 http://doi.cnki.net/Resolution/Handler?doi=10.13328/j.cnki.jos.004737 [10] 张焕龙, 胡士强, 杨国胜.基于外观模型学习的视频目标跟踪方法综述.计算机研究与发展, 2015, 52(1):177-190 doi: 10.7544/issn1000-1239.2015.20130995Zhang Huan-Long, Hu Shi-Qiang, Yang Guo-Sheng. Video object tracking based on appearance models learning. Journal of Computer Research and Development, 2015, 52(1):177-190 doi: 10.7544/issn1000-1239.2015.20130995 [11] 施华, 李翠华, 韦凤梅, 王华伟.基于像素可信度和空间位置的运动目标跟踪基于外观模型学习的视频目标跟踪方法综述.计算机研究与发展, 2005, 42(10):1726-1732 http://cdmd.cnki.com.cn/Article/CDMD-10561-1012452907.htmShi Hua, Li Cui-Hua, Wei Feng-Mei, Wang Hua-Wei. Moving object tracking based on location and confidence of pixels. Journal of Computer Research and Development, 2005, 42(10):1726-1732 http://cdmd.cnki.com.cn/Article/CDMD-10561-1012452907.htm [12] Babenko B, Yang M H, Belongie S. Visual tracking with online multiple instance learning. In: Proceedings of the 22nd IEEE International Conference on Computer Vision and Pattern Recognition. Miami, Florida, USA: IEEE, 2009. 983-990 [13] Oron S, Bar-Hillel A, Levi D, Avidan S. Locally orderless tracking. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012. 1940-1947 [14] 徐如意, 陈靓影.稀疏表示的Lucas-Kanade目标跟踪.中国图象图形学报, 2013, 18(3):283-289 doi: 10.11834/jig.20130306Xu Ru-Yi, Chen Liang-Ying. Lucas-Kanade tracking based on sparse representation. Journal of Image and Graphics, 2013, 18(3):283-289 doi: 10.11834/jig.20130306 [15] Wang S, Lu H C, Yang F, Yang M H. Superpixel tracking. In: Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 1323-1330 [16] Levinshtein A, Stere A, Kutulakos K N, Fleet D J, Dickinson S J, Siddiqi K, et al. Turbopixels:fast superpixels using geometric flows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12):2290-2297 doi: 10.1109/TPAMI.2009.96 [17] Baker Simon B, Matthews Iain M. Lucas-Kanade 20 years on:a unifying framework. International Journal of Computer Vision, 2004, 56(3):221-255 doi: 10.1023/B:VISI.0000011205.11775.fd [18] 刘万军, 刘大千, 费博雯, 曲海成.基于局部模型匹配的几何活动轮廓跟踪.中国图象图形学报, 2015, 20(5):652-663 doi: 10.11834/jig.20150508Liu Wan-Jun, Liu Da-Qian, Fei Bo-Wen, Qu Hai-Cheng. Geometric active contour tracking based on locally model matching. Journal of Image and Graphics, 2015, 20(5):652-663 doi: 10.11834/jig.20150508 [19] Comaniciu D, Meer P. Mean shift:a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(45):603-619 [20] Wu Y, Lim J, Yang M H. Online object tracking: a benchmark. In: Proceedings of the 2013 IEEE International Conference on Computer Vision and Pattern Recognition. Oregon, Portland, USA: IEEE, 2013. 2411-2418 [21] Jia X, Lu H C, Yang M H. Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012. 1822-1829 [22] Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 798-805 [23] Zhong W, Lu H C, Yang M H. Robust object tracking via sparsity-based collaborative model. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012. 1838-1845 [24] Kwon J, Lee K M. Visual tracking decomposition. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010. 1269-1276 [25] Bao C L, Wu Y, Ling H B, Ji H. Real time robust L1 tracker using accelerated proximal gradient approach. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012. 1830-1837 [26] Zhang K H, Zhang L, Yang M H. Real-time compressive tracking. In: Proceedings of the 2012 European Conference on Computer Vision. Florence, Italy: Springer, 2012. 864-877 [27] Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boosting. In: Proceedings of the 2006 British Machine Vision Conference. Edinburgh, UK: BMVA Press, 2006. 47-56 [28] Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7):1409-1422 doi: 10.1109/TPAMI.2011.239 [29] 高君宇, 杨小汕, 张天柱, 徐常胜.基于深度学习的鲁棒性视觉跟踪方法.计算机学报, 2016, 39(7):1419-1434 doi: 10.11897/SP.J.1016.2016.01419Gao Jun-Yu, Yang Xiao-Shan, Zhang Tian-Zhu, Xu Chang-Sheng. Robust visual tracking method via deep learning. Chinese Journal of Computers, 2016, 39(7):1419-1434 doi: 10.11897/SP.J.1016.2016.01419 [30] 李庆武, 朱国庆, 周妍, 霍冠英.基于特征在线选择的目标压缩跟踪算法.自动化学报, 2015, 41(11):1961-1970 http://www.aas.net.cn/CN/Y2015/V41/I11/1961Li Qing-Wu, Zhu Guo-Qing, Zhou Yan, Huo Guan-Ying. Object compressive tracking via online feature selection. Acta Automatica Sinica, 2015, 41(11):1961-1970 http://www.aas.net.cn/CN/Y2015/V41/I11/1961 期刊类型引用(40)
1. 郭宇丰,董亚杰,李艳,李浩,王娜,王联旭. 基于边缘计算的智能化建筑安全监控系统. 昆明冶金高等专科学校学报. 2024(04): 89-94 . 百度学术
2. 梁玉泽,冀俊忠. 基于原型学习与深度特征融合的脑功能连接分类方法研究. 自动化学报. 2022(02): 504-514 . 本站查看
3. 朱子健,刘琪,陈红芬,张贵阳,王福宽,霍炬. 基于并行融合网络的航拍红外车辆小目标检测方法. 光子学报. 2022(02): 190-202 . 百度学术
4. 王贲武,黄峰. 基于深度网络跨层特征融合的氩弧焊点分类. 计算机集成制造系统. 2022(04): 1011-1019 . 百度学术
5. 赵腾飞,胡国玉,周建平,刘广,陈旭东,董娅兰. 卷积神经网络算法在核桃仁分类中的研究. 中国农机化学报. 2022(06): 181-189 . 百度学术
6. 陈恩志,王春阳,李晨晨,吴夏铭. 改进的LeNet-5网络在图像分类中的研究. 长春理工大学学报(自然科学版). 2022(05): 74-79 . 百度学术
7. 吴晓婷,冯晓毅,黄安,张雪毅,董晶,刘丽. 人脸亲子关系验证研究综述. 自动化学报. 2022(12): 2886-2910 . 本站查看
8. 杨晨旭,蔡克参,张红云,苗夺谦. 基于人脸图像的二阶段性别分类算法. 计算机科学与探索. 2021(03): 524-532 . 百度学术
9. 冯新扬,邵超. 跨卷积网络特征融合的SAR图像目标识别. 系统仿真学报. 2021(03): 554-561 . 百度学术
10. 计浩浩,张诚,卿粼波,王正勇,韩龙玫. 基于机器学习的城市空间品质大规模量化方法. 计算机工程与设计. 2021(04): 1096-1102 . 百度学术
11. 沈锐,陈亚军. 一种基于批量归一化的LeNet网络改进方法. 四川文理学院学报. 2021(02): 136-140 . 百度学术
12. 黄庭鸿,聂卓赟,王庆国,李帅,晏来成,郭东生. 基于区块自适应特征融合的图像实时语义分割. 自动化学报. 2021(05): 1137-1148 . 本站查看
13. 皮瑶,刘惠康,李倩. 基于柔性薄膜阵列压力传感器的抱闸故障诊断. 高技术通讯. 2021(08): 836-843 . 百度学术
14. 谢沛松,胡黄水,张金栋. 改进LeNet-5网络模型图像分类. 长春工业大学学报. 2021(05): 455-461 . 百度学术
15. 贾小军,叶利华,邓洪涛,刘子豪,陆锋杰. 基于卷积神经网络的蓝印花布纹样基元分类. 纺织学报. 2020(01): 110-117 . 百度学术
16. 林景栋,吴欣怡,柴毅,尹宏鹏. 卷积神经网络结构优化综述. 自动化学报. 2020(01): 24-37 . 本站查看
17. 姚丽莎,徐国明,赵凤. 基于卷积神经网络局部特征融合的人脸表情识别. 激光与光电子学进展. 2020(04): 338-345 . 百度学术
18. 张文琪,陈平,吴泱序. 基于跨层卷积神经网络的石刻碑文识别. 测试技术学报. 2020(03): 197-203 . 百度学术
19. 乔俊飞,郭子豪,汤健. 面向城市固废焚烧过程的二噁英排放浓度检测方法综述. 自动化学报. 2020(06): 1063-1089 . 本站查看
20. 郎波,张娜,段新新. 基于融合机制的多模型神经网络人物群体分类模型. 计算机系统应用. 2020(08): 127-134 . 百度学术
21. 刘教民,刘艳晖,朱叶. 基于单模型集成的年龄估计框架. 河北工业大学学报. 2020(04): 40-46 . 百度学术
22. 魏巍,徐卫峰. 卷积神经网络在类风湿性关节炎X光影像自动识别的应用及效果分析. 医院管理论坛. 2020(07): 72-74 . 百度学术
23. 阴紫微,陈淑荣. 基于双路卷积神经网络的人脸性别识别. 现代计算机. 2020(24): 64-68+85 . 百度学术
24. 杨旭,尚振宏. 基于改进AlexNet的人脸表情识别. 激光与光电子学进展. 2020(14): 243-250 . 百度学术
25. 郭鹏程,张文琪,李毅红. 基于跨层网络的危险物品X射线自动识别. 科学技术与工程. 2020(33): 13718-13724 . 百度学术
26. 石学超,周亚同,池越. 基于多层特征融合可调监督函数卷积神经网络的人脸性别识别. 计算机应用研究. 2019(03): 940-944 . 百度学术
27. 马中启,朱好生,杨海仕,王琪,胡燕海. 基于多特征融合密集残差CNN的人脸表情识别. 计算机应用与软件. 2019(07): 197-201 . 百度学术
28. 季珂,韩龙玫,卿粼波,刘美,吴晓红. 基于视频的行人视力状况分析展示系统. 计算机系统应用. 2019(07): 51-57 . 百度学术
29. 刘金利,张培玲. 改进LeNet-5网络在图像分类中的应用. 计算机工程与应用. 2019(15): 32-37+95 . 百度学术
30. 文元美,欧阳文,凌永权. 面向表情识别的双通道卷积卷积神经网络. 计算机工程与设计. 2019(07): 2046-2051 . 百度学术
31. 黄倩露,王强. 基于跨连特征融合网络的面部表情识别. 计算机工程与设计. 2019(10): 2969-2973 . 百度学术
32. 李雨冲,闫昭帆,严国萍. 基于边缘的双路卷积神经网络及其可视化. 计算机工程与科学. 2019(10): 1837-1845 . 百度学术
33. 王建霞,陈慧萍,李佳泽,张晓明. 基于多特征融合卷积神经网络的人脸表情识别. 河北科技大学学报. 2019(06): 540-547 . 百度学术
34. 李勇,林小竹,蒋梦莹. 基于跨连接LeNet-5网络的面部表情识别. 自动化学报. 2018(01): 176-182 . 本站查看
35. 高述勇,周粉粉,符朝兴,孟含. 卷积网络样本数和迭代数与识别结果关系研究. 青岛大学学报(工程技术版). 2018(01): 51-54 . 百度学术
36. 刘继华,王丰锦,孔洁. 基于BPSO降维的软件故障倾向模块DNN预测. 计算机工程与设计. 2018(08): 2660-2667 . 百度学术
37. 曲建岭,余路,袁涛,田沿平,高峰. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法. 仪器仪表学报. 2018(07): 134-143 . 百度学术
38. 郭磊,贺宏伟,王玉军,王昌元,杨秀云,刘露. 基于并行卷积神经网络的X线图像成像部位识别. 中国医疗器械杂志. 2018(02): 92-94+98 . 百度学术
39. 吴章辉,李志清,杨晓玲,刘雨桐. 树状卷积神经网络的车标识别应用. 计算机系统应用. 2017(10): 166-171 . 百度学术
40. 刘万军,梁雪剑,曲海成. 自适应增强卷积神经网络图像识别. 中国图象图形学报. 2017(12): 1723-1736 . 百度学术
其他类型引用(44)
-