[1]
|
Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks. Nature, 1998, 393 (6684):440-442 doi: 10.1038/30918
|
[2]
|
Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286 (5439):509-512 doi: 10.1126/science.286.5439.509
|
[3]
|
Wang X F, Chen G R. Synchronization in small-world dynamical networks. International Journal of Bifurcation & Chaos, 2002, 12 (1):187-192 https://www.researchgate.net/publication/220273228_Synchronization_in_Small-World_Dynamical_Networks
|
[4]
|
Nishikawa T, Motter A E, Lai Y C, Hoppensteadt F C. Heterogeneity in oscillator networks:are smaller worlds easier to synchronize? Physical Review Letters, 2003, 91 (1):014101 doi: 10.1103/PhysRevLett.91.014101
|
[5]
|
Motter A E, Zhou C S, Kurths J. Enhancing complex-network synchronization. Europhysics Letters, 2005, 69 (3):334-340 doi: 10.1209/epl/i2004-10365-4
|
[6]
|
Arenas A, Díaz-Guilera A, Kurths J, Moreno Y, Zhou C S. Synchronization in complex networks. Physics Reports, 2008, 469 (3):93-153 doi: 10.1016/j.physrep.2008.09.002
|
[7]
|
邓立为, 宋申民.基于输出反馈滑模控制的分数阶超混沌系统同步.自动化学报, 2014, 40 (11):2420-2427 http://www.aas.net.cn/CN/abstract/abstract18518.shtmlDeng Li-Wei, Song Shen-Min. Synchronization of fractional order hyperchaotic systems based on output feedback sliding mode control. Acta Automatica Sinica, 2014, 40 (11):2420-2427 http://www.aas.net.cn/CN/abstract/abstract18518.shtml
|
[8]
|
杜洪越, 孙琬双, 胡革, 齐丽华.两个分数阶复杂动态网络的函数投影同步.自动化学报, 2016, 42 (2):226-234 http://www.aas.net.cn/CN/abstract/abstract18812.shtmlDu Hong-Yue, Sun Wan-Shuang, Hu Ge, Qi Li-Hua. Function projective synchronization of two fractional-order complex dynamical networks. Acta Automatica Sinica, 2016, 42 (2):226-234 http://www.aas.net.cn/CN/abstract/abstract18812.shtml
|
[9]
|
陈冀, 陈典发, 宋敏.复杂网络结构下异质性银行系统稳定性研究.系统工程学报, 2014, 29 (2):171-181 http://www.cnki.com.cn/Article/CJFDTOTAL-XTGC201402004.htmChen Ji, Chen Dian-Fa, Song Min. Heterogenerous bank system stability research under complex networks structure. Journal of Systems Engineering, 2014, 29 (2):171-181 http://www.cnki.com.cn/Article/CJFDTOTAL-XTGC201402004.htm
|
[10]
|
Wang W X, Yang R, Lai Y C, Kovanis V, Grebogi C. Predicting catastrophes in nonlinear dynamical systems by compressive sensing. Physical Review Letters, 2011, 106 (15):154101 doi: 10.1103/PhysRevLett.106.154101
|
[11]
|
Su R Q, Ni X, Wang W X, Lai Y C. Forecasting synchronizability of complex networks from data. Physical Review E, 2012, 85 (5):056220 doi: 10.1103/PhysRevE.85.056220
|
[12]
|
Wu X Q. Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay. Physica A, 2008, 387 (4):997-1008 doi: 10.1016/j.physa.2007.10.030
|
[13]
|
Zhou J, Lu J A. Topology identification of weighted complex dynamical networks. Physica A, 2007, 386 (1):481-491 doi: 10.1016/j.physa.2007.07.050
|
[14]
|
Liu H, Lu J A, Lü J H, Hill D J. Structure identification of uncertain general complex dynamical networks with time delay. Automatica, 2009, 45 (8):1799-1807 doi: 10.1016/j.automatica.2009.03.022
|
[15]
|
Zhao J C, Li Q, Lu J A, Jiang Z P. Topology identification of complex dynamical networks. Chaos, 2010, 20 (2):023119 doi: 10.1063/1.3421947
|
[16]
|
Mei J, Jiang M H, Wang J. Finite-time structure identification and synchronization of drive-response systems with uncertain parameter. Communications in Nonlinear Science & Numerical Simulation, 2013, 18 (4):999-1015 https://www.researchgate.net/publication/257448774_Finite-time_structure_identification_and_synchronization_of_drive-response_systems_with_uncertain_parameter
|
[17]
|
Wu X Q, Zheng W X, Zhou J. Generalized outer synchronization between complex dynamical networks. Chaos, 2009, 19 (1):013109 doi: 10.1063/1.3072787
|
[18]
|
Wu X J, Lu H T. Generalized function projective (lag, anticipated and complete) synchronization between two different complex networks with nonidentical nodes. Communications in Nonlinear Science & Numerical Simulation, 2012, 17 (7):3005-3021 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZNXX201012009018.htm
|
[19]
|
Wu Y Q, Li C P, Wu Y J, Kurths J. Generalized synchronization between two different complex networks. Communications in Nonlinear Science & Numerical Simulation, 2012, 17 (1):349-355
|
[20]
|
Zhang S N, Wu X Q, Lu J A, Feng H, Lü J H. Recovering structures of complex dynamical networks based on generalized outer synchronization. IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers, 2014, 61 (11):3216-3224 doi: 10.1109/TCSI.2014.2334951
|
[21]
|
王健安.时变时滞耦合两个不同复杂网络的自适应广义同步.物理学报, 2012, 61 (2):020509 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201202022.htmWang Jian-An. Adaptive generalized synchronization between two different complex networks with time-varying delay coupling. Acta Physica Sinica, 2012, 61 (2):020509 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201202022.htm
|
[22]
|
徐君群, 张建雄, 庞明宝. 2个时滞复杂动态网络的广义同步.天津大学学报 (自然科学与工程技术版), 2014, 47 (1):81-85 http://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201401014.htmXu Jun-Qun, Zhang Jian-Xiong, Pang Ming-Bao. Generalized synchronization between two different complex delayed networks. Journal of Tianjin University (Science and Technology), 2014, 47 (1):81-85 http://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201401014.htm
|
[23]
|
Zheng S, Wang S G, Dong G G, Bi Q S. Adaptive synchronization of two nonlinearly coupled complex dynamical networks with delayed coupling. Communications in Nonlinear Science & Numerical Simulation, 2012, 17 (1):284-291 https://www.researchgate.net/publication/232408590_Adaptive_synchronization_of_two_nonlinearly_coupled_complex_dynamical_networks_with_delayed_coupling
|
[24]
|
Sun Y Z, Li W, Ruan J. Generalized outer synchronization between complex dynamical networks with time delay and noise perturbation. Communications in Nonlinear Science & Numerical Simulations, 2013, 18 (4):989-998 https://www.researchgate.net/publication/257448775_Generalized_outer_synchronization_between_complex_dynamical_networks_with_time_delay_and_noise_perturbation
|
[25]
|
罗毅平, 周笔锋.时滞扩散性复杂网络同步保性能控制.自动化学报, 2015, 41 (1):147-156 http://www.aas.net.cn/CN/abstract/abstract18592.shtmlLuo Yi-Ping, Zhou Bi-Feng. Guaranteed cost synchronization control of diffusible complex network systems with time delay. Acta Automatica Sinica, 2015, 41 (1):147-156 http://www.aas.net.cn/CN/abstract/abstract18592.shtml
|
[26]
|
Li D M, Lu J A, Wu X Q, Chen G R. Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system. Journal of Mathematical Analysis & Applications, 2006, 323 (2):844-853 https://www.researchgate.net/profile/Xiaoqun_Wu/publication/222529253_Estimating_the_ultimate_bound_and_positively_invariant_set_for_the_Lorenz_and_a_unified_chaotic_system/links/0c9605282cb11a3821000000/Estimating-the-ultimate-bound-and-positively-invariant-set-for-the-Lorenz-and-a-unified-chaotic-system.pdf
|
[27]
|
Chen L, Lu J A, Tse C K. Synchronization:an obstacle to identification of network topology. IEEE Transactions on Circuits and Systems——Ⅱ:Express Briefs, 2009, 56 (4):310-314 doi: 10.1109/TCSII.2009.2015381
|