2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pairwise马尔科夫模型下的势均衡多目标多伯努利滤波器

张光华 韩崇昭 连峰 曾令豪

张光华, 韩崇昭, 连峰, 曾令豪. Pairwise马尔科夫模型下的势均衡多目标多伯努利滤波器. 自动化学报, 2017, 43(12): 2100-2108. doi: 10.16383/j.aas.2017.c160430
引用本文: 张光华, 韩崇昭, 连峰, 曾令豪. Pairwise马尔科夫模型下的势均衡多目标多伯努利滤波器. 自动化学报, 2017, 43(12): 2100-2108. doi: 10.16383/j.aas.2017.c160430
ZHANG Guang-Hua, HAN Chong-Zhao, LIAN Feng, ZENG Ling-Hao. Cardinality Balanced Multi-target Multi-Bernoulli Filter for Pairwise Markov Model. ACTA AUTOMATICA SINICA, 2017, 43(12): 2100-2108. doi: 10.16383/j.aas.2017.c160430
Citation: ZHANG Guang-Hua, HAN Chong-Zhao, LIAN Feng, ZENG Ling-Hao. Cardinality Balanced Multi-target Multi-Bernoulli Filter for Pairwise Markov Model. ACTA AUTOMATICA SINICA, 2017, 43(12): 2100-2108. doi: 10.16383/j.aas.2017.c160430

Pairwise马尔科夫模型下的势均衡多目标多伯努利滤波器

doi: 10.16383/j.aas.2017.c160430
基金项目: 

国家自然科学基金 61573271

国家自然科学基金 61473217

国家重点基础研究发展计划(973计划) 2013CB329405

国家自然科学基金创新研究群体 61221063

国家自然科学基金 61370037

详细信息
    作者简介:

    张光华    西安交通大学电子与信息工程学院综合自动化研究所博士研究生.主要研究方向为目标跟踪.E-mail:zhangliwen2015@ia.ac.cn

    韩崇昭    西安交通大学电子与信息工程学院教授.主要研究方向为多源信息融合, 随机控制与自适应控制, 非线性频谱分析. E-mail:czhan@xjtu.edu.cn

    曾令豪    西安交通大学电子与信息工程学院综合自动化研究所博士研究生.主要研究方向为目标跟踪.E-mail:zenglh@stu.xjtu.edu.cn

    通讯作者:

    连峰    西安交通大学电子与信息工程学院综合自动化研究所副教授.主要研究方向为目标跟踪.本文通信作者.E-mail:lianfeng1981@xjtu.edu.cn

Cardinality Balanced Multi-target Multi-Bernoulli Filter for Pairwise Markov Model

Funds: 

National Natural Science Foundation of China 61573271

National Natural Science Foundation of China 61473217

National Basic Research Program of China (973 Program) 2013CB329405

Foundation for Innovative Research Groups of the National Natural Science Foundation of China 61221063

National Natural Science Foundation of China 61370037

More Information
    Author Bio:

        Ph.D. candidate at the Institute of Integrated Automation, School of Electronic and Information Engineering, Xi'an Jiaotong University. His main research interest is target tracking

        Professor at the School of Electronic and Information Engineering, Xi'an Jiaotong University. His research interest covers multi-source information fusion, stochastic control and adaptive control, and nonlinear spectral analysis

       Ph.D. candidate at the Institute of Integrated Automation, School of Electronic and Information Engineering, Xi'an Jiaotong University. His main research interest is target tracking

    Corresponding author: LIAN Feng    Associate professor at the Institute of Integrated Automation, School of Electronics and Information Engineering, Xi'an Jiaotong University. His main research interest is target tracking. Corresponding author of this paper
  • 摘要: 由于在实际应用中目标模型不一定满足隐马尔科夫模型(Hidden Markov model,HMM)隐含的马尔科夫假设和独立性假设条件,一种更为一般化的Pairwise马尔科夫模型(Pairwise Markov model,PMM)被提出.它放宽了HMM的结构性限制,可以有效地处理更为复杂的目标跟踪场景.本文针对杂波环境下的多目标跟踪问题,提出一种在PMM框架下的势均衡多目标多伯努利(Cardinality balanced multi-target multi-Bernoulli,CBMeMBer)滤波器,并给出它在线性高斯PMM条件下的高斯混合(Gaussian mixture,GM)实现.最后,采用一种满足HMM局部物理特性的线性高斯PMM,将本文所提算法与概率假设密度(Probability hypothesis density,PHD)滤波器进行比较.实验结果表明本文所提算法的跟踪性能优于PHD滤波器.
    1)  本文责任编委 高会军
  • 图  1  目标运动的真实轨迹

    Fig.  1  Actual target trajectories

    图  2  本文所提算法的估计结果

    Fig.  2  Estimation results of the proposed algorithm

    图  3  势估计

    Fig.  3  Cardinality estimation

    图  4  OSPA距离

    Fig.  4  OSPA distances

    表  1  不同杂波环境下的性能比较

    Table  1  Tracking performance verses clutter's number

    $\lambda $051020
    PMM-CBMeMBerOSPA(m)15.17315.19615.20215.390
    时间(s)0.02030.02210.02370.0244
    HMM-CBMeMBerOSPA(m)16.01016.06516.08616.234
    时间(s)0.01790.01940.02110.0228
    PMM-PHDOSPA(m)15.63115.65415.69815.739
    时间(s)0.02030.02800.03500.0476
    HMM-PHDOSPA(m)16.80616.81716.85516.889
    时间(s)0.00840.01180.01320.0191
    下载: 导出CSV
  • [1] Mahler R P S. Advances in Statistical Multisource-Multitarget Information Fusion. Norwood, MA, USA:Artech House, 2014.
    [2] Mahler R P S. Statistical Multisource-Multitarget Information Fusion. Boston, USA:Artech House, 2007.
    [3] Mahler R P S. Multitarget Bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4):1152-1178 doi: 10.1109/TAES.2003.1261119
    [4] Vo B N, Singh S, Doucet A. Sequential Monte Carlo methods for multitarget filtering with random finite sets. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4):1224-1245 doi: 10.1109/TAES.2005.1561884
    [5] Vo B N, Ma W K. The Gaussian mixture probability hypothesis density filter. IEEE Transactions on Signal Processing, 2006, 54(11):4091-4104 doi: 10.1109/TSP.2006.881190
    [6] Mahler R P S. PHD filters of higher order in target number. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4):1523-1543 doi: 10.1109/TAES.2007.4441756
    [7] Vo B T, Vo B N, Cantoni A. Analytic implementations of the cardinalized probability hypothesis density filter. IEEE Transactions on Signal Processing, 2007, 55(7):3553-3567 doi: 10.1109/TSP.2007.894241
    [8] Vo B T, Vo B N, Cantoni A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Transactions on Signal Processing, 2009, 57(2):409-423 doi: 10.1109/TSP.2008.2007924
    [9] Reuter S, Vo B T, Vo B N, Dietmayer K. The labeled multi-Bernoulli filter. IEEE Transactions on Signal Processing, 2014, 62(12):3246-3260 doi: 10.1109/TSP.2014.2323064
    [10] Zhang G H, Lian F, Han C Z. CBMeMBer filters for nonstandard targets, I:extended targets. In:Proceedings of the 17th IEEE International Conference on Information Fusion (FUSION). Salamanca, Spain:IEEE, 2014. 1-6
    [11] 连峰, 韩崇昭, 李晨.多模型GM-CBMeMBer滤波器及航迹形成.自动化学报, 2014, 40(2):336-347 http://www.aas.net.cn/CN/abstract/abstract18295.shtml

    Lian Feng, Han Chong-Zhao, Li Chen. Multiple-model GM-CBMeMBer filter and track continuity. Acta Automatica Sinica, 2014, 40(2):336-347 http://www.aas.net.cn/CN/abstract/abstract18295.shtml
    [12] Hoang H G, Vo B T, Vo B N. A fast implementation of the generalized labeled multi-Bernoulli filter with joint prediction and update. In:Proceedings of the 18th IEEE International Conference on Information Fusion (FUSION). Washington, USA:IEEE, 2015. 999-1006
    [13] 陈辉, 韩崇昭. CBMeMBer滤波器序贯蒙特卡罗实现新方法的研究.自动化学报, 2016, 42(1):26-36 http://www.aas.net.cn/CN/abstract/abstract18793.shtml

    Chen Hui, Han Chong-Zhao. A new sequential Monte Carlo implementation of cardinality balanced multi-target multi-Bernoulli filter. Acta Automatica Sinica, 2016, 42(1):26-36 http://www.aas.net.cn/CN/abstract/abstract18793.shtml
    [14] Saha S, Gustafsson F. Particle filtering with dependent noise processes. IEEE Transactions on Signal Processing, 2012, 60(9):4497-4508 doi: 10.1109/TSP.2012.2202653
    [15] Pieczynski W, Desbouvries F. Kalman filtering using pairwise Gaussian models. In:Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Hong Kong, China:IEEE, 2003. 8-11
    [16] Desbouvries F, Pieczynski W. Particle filtering in pairwise and triplet Markov chains. In:Proceedings of the 2003 IEEE-EURASIP NSIP workshop. Grado, Italy:IEEE, 2003. 57-60
    [17] Pieczynski W. Pairwise Markov chains. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5):634-639 doi: 10.1109/TPAMI.2003.1195998
    [18] Nemesin V, Derrode S. Robust blind pairwise Kalman algorithms using QR decompositions. IEEE Transactions on Signal Processing, 2013, 61(1):5-9 doi: 10.1109/TSP.2012.2222383
    [19] Derrode S, Pieczynski W. Signal and image segmentation using pairwise Markov chains. IEEE Transactions on Signal Processing, 2004, 52(9):2477-2489 doi: 10.1109/TSP.2004.832015
    [20] Petetin Y, Desbouvries F. Multi-object filtering for pairwise Markov chains. In:Proceedings of the 11th IEEE International Conference on Information Science, Signal Processing and Their Applications (ISSPA). Montreal, QC, Canada:IEEE, 2012. 348-353
    [21] Petetin Y, Desbouvries F. Bayesian Multi-object filtering for pairwise Markov chains. IEEE Transactions on Signal Processing, 2013, 61(18):4481-4490 doi: 10.1109/TSP.2013.2271751
    [22] Jazwinski A H. Stochastic Processes and Filtering Theory. New York, USA:Academic Press, 1970.
    [23] Kalman R E. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 1960, 82(1):35-45 doi: 10.1115/1.3662552
    [24] Schuhmacher D, Vo B T, Vo B N. A consistent metric for performance evaluation of multi-object filters. IEEE Transactions on Signal Processing, 2008, 56(8):3447-3457 doi: 10.1109/TSP.2008.920469
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  2466
  • HTML全文浏览量:  223
  • PDF下载量:  687
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-26
  • 录用日期:  2016-10-09
  • 刊出日期:  2017-12-20

目录

    /

    返回文章
    返回