2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于道路结构特征的智能车单目视觉定位

俞毓锋 赵卉菁 崔锦实 査红彬

俞毓锋, 赵卉菁, 崔锦实, 査红彬. 基于道路结构特征的智能车单目视觉定位. 自动化学报, 2017, 43(5): 725-734. doi: 10.16383/j.aas.2017.c160413
引用本文: 俞毓锋, 赵卉菁, 崔锦实, 査红彬. 基于道路结构特征的智能车单目视觉定位. 自动化学报, 2017, 43(5): 725-734. doi: 10.16383/j.aas.2017.c160413
YU Yu-Feng, ZHAO Hui-Jing, CUI Jin-Shi, ZHA Hong-Bin. Road Structural Feature Based Monocular Visual Localization for Intelligent Vehicle. ACTA AUTOMATICA SINICA, 2017, 43(5): 725-734. doi: 10.16383/j.aas.2017.c160413
Citation: YU Yu-Feng, ZHAO Hui-Jing, CUI Jin-Shi, ZHA Hong-Bin. Road Structural Feature Based Monocular Visual Localization for Intelligent Vehicle. ACTA AUTOMATICA SINICA, 2017, 43(5): 725-734. doi: 10.16383/j.aas.2017.c160413

基于道路结构特征的智能车单目视觉定位

doi: 10.16383/j.aas.2017.c160413
基金项目: 

国家高技术研究发展计划(863计划 2012AA011801

国家自然科学基金 61573027

详细信息
    作者简介:

    俞毓锋 北京大学信息科学技术学院博士研究生.2011年获北京大学学士学位.主要研究方向为智能车和计算机视觉.E-mail:yuyufeng@pku.edu.cn

    崔锦实 北京大学机器感知与智能教育部重点实验室副教授.2004年获清华大学博士学位.主要研究方向为计算机视觉与智能系统.E-mail:cjs@cis.pku.edu.cn

    査红彬:查红彬 北京大学机器感知与智能教育部重点实验室教授.1990年获日本九州大学博士学位.主要研究方向为计算机视觉, 智能人机交互.E-mail:zha@cis.pku.edu.cn

    通讯作者:

    赵卉菁 北京大学机器感知与智能教育部重点实验室研究员.1999年获日本东京大学博士学位.主要研究方向为智能车, 机器感知和移动机器人.E-mail:zhaohj@cis.pku.edu.cn

Road Structural Feature Based Monocular Visual Localization for Intelligent Vehicle

Funds: 

Supported by National High Technology Research and Development Program of China (863 Program) 2012AA011801

National Natural Science Foundation of China 61573027

More Information
    Author Bio:

    Ph. D. candidate at the School of Electronics Engineering and Computer Science, Peking University. He received his bachelor degree from Peking University in 2011. His research interest covers intelligent vehicle and computer vision

    Associate professor at the Key Laboratory of Machine Perception (Ministry of Education), Peking University. She received her Ph. D. degree from Tsinghua University in 2004. Her research interest covers computer vision and intelligent systems

    Professor at the Key Laboratory of Machine Perception (Ministry of Education), Peking University. He received his Ph. D. degree from Kyushu University, Japan in 1990. His research interest covers computer vision and intelligent human-machine interaction

    Corresponding author: ZHAO Hui-Jing Professor at the Key Laboratory of Machine Perception (Ministry of Education), Peking University. She received her Ph. D. degree from the University of Tokyo, Japan in 1999. Her research interest covers intelligent vehicle, machine perception, and mobile robot. Corresponding author of this paper
  • 摘要: 高精度定位是实现自动驾驶的关键.在城市密集区域,全球定位系统(Global positioning system,GPS)等卫星定位系统受到遮挡、干扰、多路径反射等影响,无法保障自动驾驶所需的定位精度.视觉定位技术通过图像特征匹配进行位置估计,被广泛研究.然而传统基于特征点的方法容易受到移动目标的干扰,在高动态交通场景中的应用面临挑战.在结构化道路场景中,车道等线特征普遍存在,为人类驾驶员的视觉理解与决策提供重要线索.受该思路的启发,本文利用场景中的三垂线和点特征构建道路结构特征(Road structural feature,RSF),并在此基础上提出一个基于道路结构特征的单目视觉定位算法.本文利用在北京市区的典型路口、路段、街道等场所采集的车载视频数据进行实验验证,以同步采集的高精度GPS惯性导航组合定位系统数据为参照,与传统视觉定位算法进行比较.结果表明,本文算法在朝向估计上明显优于传统算法,对环境中的动态干扰有更高的鲁棒性.在卫星信号易受干扰的区域,可以有效地弥补GPS等定位系统的不足,为满足自动驾驶所需的车道级定位要求提供重要的技术手段.
    1)  本文责任编委 王飞跃
  • 图  1  单帧图像的点特征和线特征

    Fig.  1  Point feature and Line feature of one on-road image

    图  2  算法框架

    Fig.  2  System outline

    图  3  道路局部三垂线结构预测, 包含直道和路口两种情况

    Fig.  3  Map-based RSF prediction, including straightway and intersection

    图  4  道路结构特征采样样例, 包含三条线段和两个特征点

    Fig.  4  Sample of RSF candidate, including three line segments and two points

    图  5  车体与相机的坐标系定义

    Fig.  5  Coordinate frames of the vehicle and the camera

    图  6  路口实验场景与定位结果

    Fig.  6  The scenario and localization results of intersection environment

    图  7  路口场景朝向计算结果

    Fig.  7  Yaw results in intersection environment

    图  8  线特征鸟瞰投影结果

    Fig.  8  Projected line segments on bird eye view

    图  9  拥堵路段中的定位结果

    Fig.  9  Localization results in high traffic environment

    图  10  拥堵路段中的朝向计算结果

    Fig.  10  Yaw results in high traffic environment

    图  11  密集街道中的定位结果

    Fig.  11  Localization results in downtown streets

    图  12  不同场景下三垂线特征检测结果

    Fig.  12  Perpendicular line segment detection results in different situations

    表  1  三组实验的平移和朝向误差

    Table  1  Translation and rotation errors

    路口实验 拥堵路段 密集街道
    平移(%) 朝向(°/m) 平移(%) 朝向(°/m) 平移(%) 朝向(°/m)
    均差, 95% 均差, 95% 均差, 95% 均差, 95% 均差, 95% 均差, 95%
    libviso23.94, 7.850.0144, 0.032318.60, 34.090.0249, 0.04286.63, 11.700.0137, 0.0227
    Orb-SLAM3.18, 5.330.0101, 0.0218
    Our1.07, 2.940.0024, 0.00490.89, 1.820.0016, 0.00400.69, 1.230.0031, 0.0075
    下载: 导出CSV
  • [1] 李宇波, 朱效洲, 卢惠民, 张辉.视觉里程计技术综述.计算机应用研究, 2012, 29(8): 2801-2805, 2810 http://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201208002.htm

    Li Yu-Bo, Zhu Xiao-Zhou, Lu Hui-Min, Zhang Hui. Review on visual odometry technology. Application Research of Computers, 2012, 29(8): 2801-2805, 2810 http://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201208002.htm
    [2] Moravec H P. Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover, Technical Report ADA092604, Department of Computer Science, Stanford University, USA, 1980.
    [3] Matthies L, Shafer S. Error modeling in stereo navigation. IEEE Journal on Robotics and Automation, 1987, 3(3): 239-248 doi: 10.1109/JRA.1987.1087097
    [4] Nistér D, Naroditsky O, Bergen J. Visual odometry. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC, USA: IEEE, 2004. 652-659
    [5] Nistér D, Naroditsky O, Bergen J. Visual odometry for ground vehicle applications. Journal of Field Robotics, 2006, 23(1): 3-20 doi: 10.1002/(ISSN)1556-4967
    [6] Triggs B, McLauchlan P F, Hartley R I, Fitzgibbon A W. Bundle adjustment-a modern synthesis. Vision Algorithms: Theory and Practice. Berlin Heidelberg, Germany: Springer-Verlag, 2000. 298-372
    [7] Mouragnon E, Lhuillier M, Dhome M, Dekeyser F, Sayd P. Real time localization and 3D reconstruction. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, NY, USA: IEEE, 2006. 363-370
    [8] Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981, 24(6): 381-395 doi: 10.1145/358669.358692
    [9] Ozden K E, Schindler K, Van Gool L. Multibody structure-from-motion in practice. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(6): 1134-1141 doi: 10.1109/TPAMI.2010.23
    [10] Kundu A, Krishna K M, Jawahar C V. Realtime multibody visual SLAM with a smoothly moving monocular camera. In: Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 2080-2087
    [11] Engel J, Schöps T, Cremers D. LSD-SLAM: large-scale direct monocular SLAM. In: Proceedings of the 13th European Conference on Computer Vision. Berlin Heidelberg, Germany: Springer, 2014. 834-849
    [12] Mur-Artal R, Montiel J M M, Tardós J D. ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163 doi: 10.1109/TRO.2015.2463671
    [13] Geiger A. Libviso2: library for visual odometry 2 [Online], available: http://www.cvlibs.net/software/libviso, January 3, 2017
    [14] Ramalingam S, Bouaziz S, Sturm P, Brand M. Skyline2gps: localization in urban canyons using omni-skylines. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010. 3816-3823
    [15] Ramalingam S, Bouaziz S, Sturm P. Pose estimation using both points and lines for geo-localization. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011. 4716-4723
    [16] Achar S, Jawahar C V, Krishna K M. Large scale visual localization in urban environments. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011. 5642-5648
    [17] Ziegler J, Lategahn H, Schreiber M, Keller C G, Knöppel C, Hipp J, Haueis M, Stiller C. Video based localization for bertha. In: Proceedings of the 2014 IEEE Intelligent Vehicles Symposium. Dearborn, MI, USA: IEEE, 2014. 1231-1238
    [18] Geiger A. Monocular road Mosaicing for urban environments. In: Proceedings of the 2009 IEEE Intelligent Vehicles Symposium. Xi'an, China: IEEE, 2009. 140-145
    [19] Zhang J, Song D Z. On the error analysis of vertical line pair-based monocular visual odometry in urban area. In: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, MO, USA: IEEE, 2009. 3486-3491
    [20] Barinova O, Lempitsky V, Tretiak E, Kohli P. Geometric image parsing in man-made environments. In: Proceedings of the 11th European Conference on Computer Vision. Berlin Heidelberg, Germany: Springer, 2010. 57-70
    [21] Tretyak E, Barinova O, Kohli P, Lempitsky V. Geometric image parsing in man-made environments. International Journal of Computer Vision, 2012, 97(3): 305-321 doi: 10.1007/s11263-011-0488-1
    [22] von Gioi R G, Jakubowicz J, Morel J M, Randall G. LSD: a line segment detector [Online], available: http://www.ipol.im/pub/art/2012/gjmr-lsd/, January 3, 2017
    [23] Geiger A, Ziegler J, Stiller C. Stereoscan: dense 3d reconstruction in real-time. In: Proceedings of the 2011 IEEE Intelligent Vehicles Symposium. Baden-Baden, Germany: IEEE, 2011. 963-968
    [24] Geiger A, Lauer M, Wojek C, Stiller C, Urtasun R. 3D traffic scene understanding from movable platforms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(5): 1012-1025 doi: 10.1109/TPAMI.2013.185
    [25] Corral-Soto E R, Elder J H. Automatic single-view calibration and rectification from parallel planar curves. In: Proceedings of the 13th European Conference on Computer Vision. Berlin Heidelberg, Germany: Springer, 2014. 813-827
    [26] 庄严, 陈东, 王伟, 韩建达, 王越超.移动机器人基于视觉室外自然场景理解的研究与进展.自动化学报, 2010, 36(1): 1-11 http://www.aas.net.cn/CN/abstract/abstract13622.shtml

    Zhuang Yan, Chen Dong, Wang Wei, Han Jian-Da, Wang Yue-Chao. Status and development of natural scene understanding for vision-based outdoor moblie robot. Acta Automatica Sinica, 2010, 36(1): 1-11 http://www.aas.net.cn/CN/abstract/abstract13622.shtml
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  2511
  • HTML全文浏览量:  756
  • PDF下载量:  1460
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-23
  • 录用日期:  2016-12-27
  • 刊出日期:  2017-05-01

目录

    /

    返回文章
    返回