2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人脸微表情识别综述

徐峰 张军平

徐峰, 张军平. 人脸微表情识别综述. 自动化学报, 2017, 43(3): 333-348. doi: 10.16383/j.aas.2017.c160398
引用本文: 徐峰, 张军平. 人脸微表情识别综述. 自动化学报, 2017, 43(3): 333-348. doi: 10.16383/j.aas.2017.c160398
XU Feng, ZHANG Jun-Ping. Facial Microexpression Recognition: A Survey. ACTA AUTOMATICA SINICA, 2017, 43(3): 333-348. doi: 10.16383/j.aas.2017.c160398
Citation: XU Feng, ZHANG Jun-Ping. Facial Microexpression Recognition: A Survey. ACTA AUTOMATICA SINICA, 2017, 43(3): 333-348. doi: 10.16383/j.aas.2017.c160398

人脸微表情识别综述

doi: 10.16383/j.aas.2017.c160398
基金项目: 

浦江人才计划 16PJD009

国家自然科学基金 61273299

国家自然科学基金 61673118

详细信息
    作者简介:

    徐峰复旦大学计算机科学技术学院硕士研究生.主要研究方向为计算机视觉, 人脸表情识别.E-mail:fengxu@fudan.edu.cn

    通讯作者:

    张军平复旦大学计算机科学技术学院教授.主要研究方向为机器学习, 智能交通, 生物认证与图像识别.本文通信作者.E-mail:jpzhang@fudan.edu.cn

Facial Microexpression Recognition: A Survey

Funds: 

Shanghai Pujiang Program 16PJD009

National Natural Science Foundation of China 61273299

National Natural Science Foundation of China 61673118

More Information
    Author Bio:

    Master student at the School of Computer Science, Fudan University. His research interest covers computer vision and facial expression recognition

    Corresponding author: ZHANG Jun-PingProfessor at the School of Computer Science, Fudan University. His research interest covers machine learning, intelligent transportation systems, biometric authentication, and image processing. Corresponding author of this paper
  • 摘要: 人脸表情是人际交往的重要渠道,识别人脸表情可促进对人心理状态和情感的理解.不同于常规的人脸表情,微表情是一种特殊的面部微小动作,可以作为判断人主观情绪的重要依据,在公共安防和心理治疗领域有广泛的应用价值.由于微表情具有动作幅度小、持续时间短的特点,对微表情的人工识别需要专业的培训,且识别正确率较低.近年来不少研究人员开始利用计算机视觉技术自动识别微表情,极大地提高了微表情的应用可行性.本文综述人脸微表情识别的定义和研究现状,总结微表情识别中的一些关键技术,探讨潜在的问题和可能的研究方向.
    1)  本文责任编委 赖剑煌
  • 图  1  微表情识别中的具体任务

    Fig.  1  Specific tasks in microexpression recognition

    图  2  微表数据集示例

    Fig.  2  Examples of microexpression datasets

    图  3  一个3×3的图像块及其对应的像素值

    Fig.  3  A 3×3 image patch and the corresponding pixel values

    图  4  局部二值模式计算过程

    Fig.  4  Calculation process of local binary pattern

    图  5  LBP-TOP示例[34]

    Fig.  5  Illustration of LBP-TOP[34]

    图  6  LBP-SIP示例

    Fig.  6  Illustration of LBP-SIP

    图  7  中心化二值模式计算过程

    Fig.  7  Calculation process of centralized binary pattern

    表  1  现有微表情数据集

    Table  1  Existing datasets of microexpressions

    数据集 帧率 #被试 #微表情 #非微表情 诱导方式 标注方法
    SMIC 100 6 76 76 自发 情绪
    SMIC2/HS 100 20 164 164 自发 情绪
    SMIC2/VIS 25 10 71 71 自发 情绪
    SMIC2/NIR 25 10 71 71 自发 情绪
    CASME 60 35 195 / 自发 情绪/FACS
    CASMEⅡ 200 35 247 / 自发 情绪/FACS
    USF-HD 29.7 / 100 181 模仿 微/非微表情
    Polikovsky 200 10 / / 模仿 FACS
    下载: 导出CSV

    表  2  现有微表情识别方法的识别准确率 (%) 对比

    Table  2  Recognition accuracy (%) of existing approaches on common datasets

    方法 CASME CASMEⅡ
    LBP-TOP[23] 37.43(4类) 46.46(5类)
    STCLQP[36] 57.31(4类) 58.39(5类)
    LBP-SIP[37] 36.84(4类) 46.56(5类)
    DTCM[38] 64.95(4类) N/A
    TICS[43-44] 61.86(4类) 62.30(4类)
    STLBP-IP[45] N/A 59.51(5类)
    FDM[47] 56.14(5类) 45.93(5类)
    MDMO[48] 64.07(4类) 57.16(4类)
    DTSA[51] 46.90(5类) N/A
    MMPTR[54] N/A 80.2(4类)
    RPCA+LSDF[55] N/A 65.45(4类)
    Riesz小波[58] N/A 46.15(4类)
    EVM[59] N/A 67.21(4类)
    下载: 导出CSV

    表  3  现有微表情识别方法

    Table  3  Existing approaches for microexpression recognition

    方法 预处理方法 特征表达 学习算法 解决问题
    文献[23] ASM、LWM、TIM LBP-TOP SVM、RF、MKL 检测/分类
    文献[27, 70] ASM Strain tensor 阈值 检测
    文献[28] ASM、面部分块 时空梯度 近邻投票 检测/分类
    文献[36] ASM、TIM STCLQP SVM 检测/分类
    文献[37] N/A LBP-SIP SVM 检测/分类
    文献[38] AAM DTCM SVM、RF 检测/分类
    文献[41] ASM Gabor GentlSVM 检测/分类
    文献[42] N/A Gabor LDA、PCA、SVM 分类
    文献[43-44] ASM TICS+LBP-TOP SVM 检测/分类
    文献[45] N/A STLBP-IP SVM 检测/分类
    文献[47] 光流场修正 FDM SVM 检测/分类
    文献[48] DRMF、光流场对齐 MDMO SVM 检测/分类
    文献[51] N/A DTSA变换 ELM 检测/分类
    文献[53] ASM STCCA 最近邻 检测/分类
    文献[54] N/A MMPTR变换 最近邻 检测/分类
    文献[55] ASM、面部分块 RPCA+LSDF SVM 检测/分类
    文献[57] 面部检测、分割 CBP-TOP ELM 分类
    文献[58] N/A Riesz小波 MKL 分类
    文献[59] ASM、LWM、TIM EVM处理后提前特征 SVM 分类
    文献[62] N/A 特征点追踪 MKL 特定AU识别
    文献[64] STASM、Procuste分析 几何形变特征 随机过程计算概率 检测
    文献[66] 特征点定位 基于LBP的差异特征 阈值 检测
    文献[67] DRMF 光流场 基于规则 阶段分割
    文献[68] CLM CLM、LBP 基于规则 顶点定位
    文献[71] N/A 时间平滑的Optical Strain SVM 检测/分类
    下载: 导出CSV
  • [1] Shan C F, Gong S G, McOwan P W. Facial expression recognition based on local binary patterns: a comprehensive study. Image and Vision Computing, 2009, 27(6): 803-816 doi: 10.1016/j.imavis.2008.08.005
    [2] Rahulamathavan Y, Phan R C W, Chambers J A, Parish D J. Facial expression recognition in the encrypted domain based on local fisher discriminant analysis. IEEE Transactions on Affective Computing, 2013, 4(1): 83-92 doi: 10.1109/T-AFFC.2012.33
    [3] Wang S F, Liu Z L, Wang Z Y, Wu G B, Shen P J, He S, Wang X F. Analyses of a multimodal spontaneous facial expression database. IEEE Transactions on Affective Computing, 2013, 4(1): 34-46 doi: 10.1109/T-AFFC.2012.32
    [4] 孙晓, 潘汀, 任福继.基于ROI-KNN卷积神经网络的面部表情识别.自动化学报, 2016, 42(6): 883-891 http://www.aas.net.cn/CN/abstract/abstract18879.shtml

    Sun Xiao, Pan Ting, Ren Fu-Ji. Facial expression recognition using ROI-KNN deep convolutional neural networks. Acta Automatica Sinica, 2016, 42(6): 883-891 http://www.aas.net.cn/CN/abstract/abstract18879.shtml
    [5] 刘帅师, 田彦涛, 王新竹.基于对称双线性模型的光照鲁棒性人脸表情识别.自动化学报, 2012, 38(12): 1933-1940 http://www.aas.net.cn/CN/abstract/abstract17855.shtml

    Liu Shuai-Shi, Tian Yan-Tao, Wang Xin-Zhu. Illumination-robust facial expression recognition based on symmetric bilinear model. Acta Automatica Sinica, 2012, 38(12): 1933-1940 http://www.aas.net.cn/CN/abstract/abstract17855.shtml
    [6] 刘帅师, 田彦涛, 万川.基于Gabor多方向特征融合与分块直方图的人脸表情识别方法.自动化学报, 2011, 37(12): 1455-1463 http://www.aas.net.cn/CN/abstract/abstract17643.shtml

    Liu Shuai-Shi, Tian Yan-Tao, Wan Chuan. Facial expression recognition method based on Gabor multi-orientation features fusion and block histogram. Acta Automatica Sinica, 2011, 37(12): 1455-1463 http://www.aas.net.cn/CN/abstract/abstract17643.shtml
    [7] Taheri S, Patel V M, Chellappa R. Component-based recognition of faces and facial expressions. IEEE Transactions on Affective Computing, 2013, 4(4): 360-371 doi: 10.1109/T-AFFC.2013.28
    [8] El Mostafa M K A, Levine M D. Fully automated recognition of spontaneous facial expressions in videos using random forest classifiers. IEEE Transactions on Affective Computing, 2014, 5(2): 141-154 https://www.researchgate.net/publication/264387505_Fully_Automated_Recognition_of_Spontaneous_Facial_Expressions_in_Videos_Using_Random_Forest_Classifiers
    [9] Ekman P. Darwin, deception, and facial expression. Annals of the New York Academy of Sciences, 2003, 1000: 205-221 https://www.researchgate.net/publication/8882449_Darwin_Deception_and_Facial_Expression
    [10] Haggard E A, Isaacs K S. Micromomentary facial expressions as indicators of ego mechanisms in psychotherapy. Methods of Research in Psychotherapy. US: Springer, 1966. 154-165
    [11] Ekman P, Friesen W. Nonverbal Leakage and Clues to Deception. Technical Report, DTIC Document, 1969.
    [12] Gottman J M, Levenson R W. A two-factor model for predicting when a couple will divorce: exploratory analyses using 14-year longitudinal data. Family Process, 2002, 41(1): 83-96 doi: 10.1111/famp.2002.41.issue-1
    [13] Salter F, Grammer K, Rikowski A. Sex differences in negotiating with powerful males. Human Nature, 2005, 16(3): 306-321 doi: 10.1007/s12110-005-1013-4
    [14] Whitehill J, Serpell Z, Lin Y C, Foster A, Movellan J R. The faces of engagement: automatic recognition of student engagementfrom facial expressions. IEEE Transactions on Affective Computing, 2014, 5(1): 86-98 doi: 10.1109/TAFFC.2014.2316163
    [15] Pool L D, Qualter P. Improving emotional intelligence and emotional self-efficacy through a teaching intervention for university students. Learning and Individual Differences, 2012, 22(3): 306-312 doi: 10.1016/j.lindif.2012.01.010
    [16] Porter S, ten Brinke L. Reading between the lies: identifying concealed and falsified emotions in universal facial expressions. Psychological Science, 2008, 19(5): 508-514 doi: 10.1111/j.1467-9280.2008.02116.x
    [17] Warren G, Schertler E, Bull P. Detecting deception from emotional and unemotional cues. Journal of Nonverbal Behavior, 2009, 33(1): 59-69 doi: 10.1007/s10919-008-0057-7
    [18] Yan W J, Wu Q, Liang J, Chen Y H, Fu X L. How fast are the leaked facial expressions: the duration of micro-expressions. Journal of Nonverbal Behavior, 2013, 37(4): 217-230 https://www.researchgate.net/publication/245536570_How_Fast_Are_the_Leaked_Facial_Expressions_The_Duration_of_Micro-Expressions
    [19] Ekman P. MicroExpression Training Tool (METT). University of California, San Francisco, 2002.
    [20] Frank M G, Herbasz M, Sinuk K, Keller A, Nolan C. I see how you feel: training laypeople and professionals to recognize fleeting emotions. In: Proceedings of the 2009 Annual Meeting of the International Communication Association. New York, 2009. http://www.allacademic.com/meta/p15018_index.htm
    [21] 吴奇, 申寻兵, 傅小兰.微表情研究及其应用.心理科学进展, 2010, 18(9): 1359-1368 http://www.cnki.com.cn/Article/CJFDTOTAL-XLXD201009002.htm

    Wu Qi, Shen Xun-Bing, Fu Xiao-Lan. Micro-expression and its applications. Advances in Psychological Science, 2010, 18(9): 1359-1368 http://www.cnki.com.cn/Article/CJFDTOTAL-XLXD201009002.htm
    [22] 贲晛烨, 杨明强, 张鹏, 李娟.微表情自动识别综述.计算机辅助设计与图形学学报, 2014, 26(9): 1385-1395 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201409001.htm

    Ben Xian-Ye, Yang Ming-Qiang, Zhang Peng, Li Juan. Survey on automatic micro expression recognition methods. Journal of Computer-Aided Design and Computer Graphics, 2014, 26(9): 1385-1395 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201409001.htm
    [23] Pfister T, Li X B, Zhao G Y, Pietikäinen M. Recognising spontaneous facial micro-expressions. In: Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 1449-1456
    [24] Li X B, Pfister T, Huang X H, Zhao G Y, Pietikäinen M. A spontaneous micro-expression database: inducement, collection and baseline. In: Proceedings of the 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Shanghai, China: IEEE, 2013. 1-6
    [25] Yan W J, Wu Q, Liu Y J, Wang S J, Fu X L. CASME database: a dataset of spontaneous micro-expressions collected from neutralized faces. In: Proceedings of the 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Shanghai, China: IEEE, 2013. 1-7
    [26] Yan W J, Li X B, Wang S J, Zhao G Y, Liu Y J, Chen Y H, Fu X L. CASME Ⅱ: An improved spontaneous micro-expression database and the baseline evaluation. PLoS One, 2014, 9(1): e86041 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.685.5991
    [27] Shreve M, Godavarthy S, Goldgof D, Sarkar S. Macro-and micro-expression spotting in long videos using spatio-temporal strain. In: Proceedings of the 2011 IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Santa Barbara, CA, USA: IEEE, 2011. 51-56
    [28] Polikovsky S, Kameda Y, Ohta Y. Facial micro-expression detection in hi-speed video based on facial action coding system (FACS). IEICE Transactions on Information and Systems, 2013, E96-D(1): 81-92 doi: 10.1587/transinf.E96.D.81
    [29] Ekman P, Friesen W V. Facial Action Coding System. Palo Alto: Consulting Psychologists Press, 1977.
    [30] Cootes T F, Taylor C J, Cooper D H, Graham J. Active shape models-their training and application. Computer Vision and Image Understanding, 1995, 61(1): 38-59 doi: 10.1006/cviu.1995.1004
    [31] Goshtasby A. Image registration by local approximation methods. Image and Vision Computing, 1998, 6(4): 255-261
    [32] Zhou Z H, Zhao G Y, Pietikäinen M. Towards a practical lipreading system. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado, USA: IEEE, 2011. 137-144
    [33] Ojala T, Pietikäinen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987 doi: 10.1109/TPAMI.2002.1017623
    [34] Zhao G Y, Pietikäinen M. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 915-928 doi: 10.1109/TPAMI.2007.1110
    [35] Huang X H, Zhao G Y, Hong X P, Pietikäinen M, Zheng W M. Texture description with completed local quantized patterns. Image Analysis. Berlin Heidelberg: Springer, 2013. 1-10
    [36] Huang X H, Zhao G Y, Hong X P, Zheng W M, Pietikäinen M. Spontaneous facial micro-expression analysis using spatiotemporal completed local quantized patterns. Neurocomputing, 2016, 175: 564-578 doi: 10.1016/j.neucom.2015.10.096
    [37] Wang Y D, See J, Phan P C W, Oh Y H. LBP with six intersection points: reducing redundant information in LBP-TOP for micro-expression recognition. In: Proceedings of the 12th Conference on Computer Vision, Singapore. Singapore: Springer, 2014. 21-23
    [38] Lu Z Y, Luo Z Q, Zheng H C, Chen J K, Li W H. A delaunay-based temporal coding model for micro-expression recognition. Computer Vision-ACCV Workshops. Switzerland: Springer International Publishing, 2014.
    [39] Cootes T F, Edwards G J, Taylor C J. Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 681-685 doi: 10.1109/34.927467
    [40] Barber B C, Dobkin D P, Huhdanpaa H. The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 1996, 22(4): 469-483 doi: 10.1145/235815.235821
    [41] Wu W, Shen X B, Fu X L. The machine knows what you are hiding: an automatic micro-expression recognition system. In: Proceedings of the 4th International Conference on Affective Computing and Intelligent Interaction. Memphis, TN, USA: Springer-Verlag, 2011. 152-162
    [42] Zhang P, Ben X Y, Yan R, Wu C, Guo C. Micro-expression recognition system. Optik——International Journal for Light and Electron Optics, 2016, 127(3): 1395-1400 https://www.researchgate.net/publication/283746871_Micro-Expression_Recognition_System
    [43] Wang S J, Yan W J, Li X B, Zhao G Y, Fu X L. Micro-expression recognition using dynamic textures on tensor independent color space. In: Proceedings of the 22nd International Conference on Pattern Recognition. Stockholm, Sweden: IEEE, 2014. 4678-4683
    [44] Wang S J, Yan W J, Li X B, Zhao G Y, Zhou C G, Fu X L, Yang M H, Tao J H. Micro-expression recognition using color spaces. IEEE Transactions on Image Processing, 2015, 24(12): 6034-6047 https://www.ncbi.nlm.nih.gov/pubmed/26540689
    [45] Huang X H, Wang S J, Zhao G Y, Piteikäinen M. Facial micro-expression recognition using spatiotemporal local binary pattern with integral projection. In: Proceedings of the 2015 IEEE International Conference on Computer Vision Workshops. Santiago, Chile: IEEE, 2015. 1-9
    [46] Houam L, Hafiane A, Boukrouche A, Lespessailles E, Jennane R. One dimensional local binary pattern for bone texture characterization. Pattern Analysis and Applications, 2014, 17(1): 179-193 doi: 10.1007/s10044-012-0288-4
    [47] Xu F, Zhang J P, Wang J Z. Microexpression identification and categorization using a facial dynamics map. IEEE Transactions on Affective Computing, PP(99): 1-1, DOI: 10.1109/TAFFC.2016.2518162
    [48] Liu Y J, Zhang J K, Yan W J, Wang S J, Zhao G Y, Fu X L. A main directional mean optical flow feature for spontaneous micro-expression recognition. IEEE Transactions on Affective Computing, 2016, 7(4): 299-310 doi: 10.1109/TAFFC.2015.2485205
    [49] Asthana A, Zafeiriou S, Cheng S Y, Pantic M. Robust discriminative response map fitting with constrained local models. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA: IEEE, 2013. 3444-3451
    [50] Chaudhry R, Ravichandran A, Hager G, Vidal R. Histograms of oriented optical flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, Florida: IEEE, 2009. 1932-1939
    [51] Wang S J, Chen H L, Yan W J, Chen Y H, Fu X L. Face recognition and micro-expression recognition based on discriminant tensor subspace analysis plus extreme learning machine. Neural Processing Letters, 2014, 39(1): 25-43 https://www.researchgate.net/publication/236120483_Face_Recognition_and_Micro-expression_Recognition_Based_on_Discriminant_Tensor_Subspace_Analysis_Plus_Extreme_Learning_Machine
    [52] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications. Neurocomputing, 2006, 70(1-3): 489-501 doi: 10.1016/j.neucom.2005.12.126
    [53] Wang S J, Yan W J, Sun T K, Zhao G Y, Fu X L. Sparse tensor canonical correlation analysis for micro-expression recognition. Neurocomputing, 2016, 214: 218-232 doi: 10.1016/j.neucom.2016.05.083
    [54] Ben X Y, Zhang P, Yan R, Yang M Q, Ge G D. Gait recognition and micro-expression recognition based on maximum margin projection with tensor representation. Neural Computing and Applications, 2015, 127(3): 1-18 https://www.researchgate.net/publication/283903772_Gait_recognition_and_micro-expression_recognition_based_on_maximum_margin_projection_with_tensor_representation
    [55] Wang S J, Yan W J, Zhao G Y, Fu X L, Zhou C G. Micro-expression recognition using robust principal component analysis and local spatiotemporal directional features. Computer Vision——ECCV 2014 Workshops. Switzerland: Springer International Publishing, 2014.
    [56] Fu X F, Wei W. Centralized binary patterns embedded with image euclidean distance for facial expression recognition. In: Proceedings of the 4th International Conference on Natural Computation. Jinan, China: IEEE, 2008. 115-119
    [57] Guo Y C, Xue C H, Wang Y Z, Yu M. Micro-expression recognition based on CBP-TOP feature with ELM. Optik——International Journal for Light and Electron Optics, 2015, 126(23): 4446-4451 doi: 10.1016/j.ijleo.2015.08.167
    [58] Oh Y H, Le Ngo A C, See J, Liong S T, Phan R C W, Ling H C. Monogenic riesz wavelet representation for micro-expression recognition. In: Proceedings of the 2015 IEEE International Conference on Digital Signal Processing. Singapore: IEEE, 2015. 1237-1241
    [59] Li X B, Hong X P, Moilanen A, Huang X H, Pfister T, Zhao G Y, Pietikäinen M. Reading hidden emotions: spontaneous micro-expression spotting and recognition. arXiv Preprint arXiv: 1511.00423 [Online], available: https://arxiv.org/abs/1511.00423, February 20, 2017
    [60] Wu H Y, Rubinstein M, Shih E, Guttag J, Durand F, Freeman W T. Eulerian video magnification for revealing subtle changes in the world. ACM Transactions on Graphics, 2012, 31(4): 65 https://www.researchgate.net/publication/254461914_Eulerian_Video_Magnification_for_Revealing_Subtle_Changes_in_the_World
    [61] Chavali G K, Bhavaraju S K N V, Adusumilli T, Puripanda V. Micro-expression Extraction for Lie Detection Using Eulerian Video (Motion and Color) Magnication [Master dissertation], Blekinge Institute of Technology, Swedish, 2014.
    [62] Yao S Q, He N, Zhang H Q, Yoshie O. Micro-expression recognition by feature points tracking. In: Proceedings of the 10th International Conference on Communications. Bucharest, Romania: IEEE, 2014. 1-4
    [63] Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detec-tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422 doi: 10.1109/TPAMI.2011.239
    [64] Xia Z Q, Feng X Y, Peng J Y, Peng X L, Zhao G Y. Spontaneous micro-expression spotting via geometric deformation modeling. Computer Vision and Image Understanding, 2016, 147: 87-94 doi: 10.1016/j.cviu.2015.12.006
    [65] Milborrow S, Nicolls F. Active shape models with SIFT descriptors and MARS. In: Proceedings of the 2014 International Conference on Computer Vision Theory and Applications. Lisbon, Portugal: IEEE, 2014. 380-387
    [66] Moilanen A, Zhao G Y, Pietikäinen M. Spotting rapid facial movements from videos using appearance-based feature difference analysis. In: Proceedings of the 2nd International Conference on Pattern Recognition. Stockholm, Sweden: IEEE, 2014. 1722-1727
    [67] Patel D, Zhao G Y, Pietikäinen M. Spatiotemporal integration of optical flow vectors for micro-expression detection. Advanced Concepts for Intelligent Vision Systems. Switzerland: Springer International Publishing, 2015. 369-380
    [68] Yan W J, Wang S J, Chen Y H, Zhao G Y, Fu X L. Quantifying micro-expressions with constraint local model and local binary pattern. Computer Vision——ECCV 2014 Workshops. Switzerland: Springer International Publishing, 2014.
    [69] Cristinacce D, Cootes T F. Feature detection and tracking with constrained local models. In: Proceedings of the 2006 BMVC. Edinburgh: BMVA, 2006. 929-938
    [70] Shreve M, Godavarthy S, Manohar V, Goldgof D, Sarkar S. Towards macro-and micro-expression spotting in video using strain patterns. In: Proceedings of the 2009 IEEE Workshop on Applications of Computer Vision. Snowbird, UT, USA: IEEE, 2009. 1-6
    [71] Liong S T, Phan R C W, See J, Oh Y H, Wong K. Optical strain based recognition of subtle emotions. In: Proceedings of the 2014 International Symposium on Intelligent Signal Processing and Communication Systems. Kuching, Sarawak, Malaysia: IEEE, 2014. 180-184
    [72] House C, Meyer R. Preprocessing and descriptor features for facial micro-expression recognition [Online], available: https://web.stanford.edu/class/ee368/Project_Spring_1415/Reports/House_Meyer.pdf, February 20, 2017
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  11122
  • HTML全文浏览量:  2747
  • PDF下载量:  4874
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-15
  • 录用日期:  2016-07-28
  • 刊出日期:  2017-03-20

目录

    /

    返回文章
    返回