2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于证据推理的动态系统安全性在线评估方法

赵福均 周志杰 胡昌华 常雷雷 王力

陈光荣, 王军政, 汪首坤, 赵江波, 沈伟, 李静. 自适应鲁棒控制器设计新方法在电液伺服系统中的应用. 自动化学报, 2016, 42(3): 375-384. doi: 10.16383/j.aas.2016.c150473
引用本文: 赵福均, 周志杰, 胡昌华, 常雷雷, 王力. 基于证据推理的动态系统安全性在线评估方法. 自动化学报, 2017, 43(11): 1950-1961. doi: 10.16383/j.aas.2017.c160384
CHEN Guang-Rong, WANG Jun-Zheng, WANG Shou-Kun, ZHAO Jiang-Bo, SHEN Wei, LI Jing. Application of a New Adaptive Robust Controller Design Method to Electro-hydraulic Servo System. ACTA AUTOMATICA SINICA, 2016, 42(3): 375-384. doi: 10.16383/j.aas.2016.c150473
Citation: ZHAO Fu-Jun, ZHOU Zhi-Jie, HU Chang-Hua, CHANG Lei-Lei, WANG Li. Online Safety Assessment Method Based on Evidential Reasoning for Dynamic Systems. ACTA AUTOMATICA SINICA, 2017, 43(11): 1950-1961. doi: 10.16383/j.aas.2017.c160384

基于证据推理的动态系统安全性在线评估方法

doi: 10.16383/j.aas.2017.c160384
基金项目: 

中国博士后科学基金面上项目 2015M570847

国家自然科学基金 61773388

装备预研基金 9140A19030314JB47276

飞行器海上测量与控制联合实验室开放基金 FOM2015OF017

国家自然科学基金 60736026

国家自然科学基金 71601180

飞行器海上测量与控制联合实验室开放基金 FOM2014OF14

陕西省自然科学基金项目 2015JM6354

国家自然科学基金 61370031

详细信息
    作者简介:

    赵福均  火箭军工程大学控制工程系硕士研究生.主要研究方向为证据推理, 信息融合, 安全性评估.E-mail:fujunzhao@hotmail.com

    胡昌华  火箭军工程大学控制工程系教授.1996年获得西北工业大学博士学位.主要研究方向为故障诊断与预测, 可靠性工程, 寿命预测和容错控制.E-mail:hch6603@263.net

    常雷雷  火箭军工程大学装备管理工程系讲师.2014年获得国防科学技术大学博士学位.主要研究方向为置信规则库学习与优化, 武器装备体系评估与优化.E-mail:leileichang@hotmail.com

    王力  火箭军工程大学控制工程系硕士研究生.主要研究方向为证据推理, 置信规则库.E-mail:29894431@qq.com

    通讯作者:

    周志杰  火箭军工程大学控制工程系副教授.2010年获得清华大学博士学位.主要研究方向为置信规则库, 证据推理, 动态系统建模, 动态系统故障预测, 最优监测及视情维护.本文通信作者.E-mail:zhouzj04@mails.tsinghua.edu.cn

Online Safety Assessment Method Based on Evidential Reasoning for Dynamic Systems

Funds: 

China Postdoctoral Science Foundation 2015M570847

National Natural Science Foundation of China 61773388

Assembly Research Foundation 9140A19030314JB47276

the Open Funding Programme of Joint Laboratory of Flight Vehicle Ocean-based Measurement and Control FOM2015OF017

National Natural Science Foundation of China 60736026

National Natural Science Foundation of China 71601180

the Open Funding Programme of Joint Laboratory of Flight Vehicle Ocean-based Measurement and Control FOM2014OF14

Natural Science Foundation of Shaanxi Province 2015JM6354

National Natural Science Foundation of China 61370031

More Information
    Author Bio:

     Master student in the Department of Control Engineering, Rocket Force University of Engineering. His research interest covers evidential reasoning, information fusion, and safety assessment

     Professor in the Department of Control Engineering, Rocket Force University of Engineering. He received his Ph. D. degree from North Western Polytechnic University in 1996. His research interest covers fault diagnosis and prediction, reliability engineering, life prognosis and fault tolerant control

     Lecturer in the Department of Management Engineering, Rocket Force University of Engineering. He received his Ph. D. degree from the National University of Defense Technology in 2014. His research interest covers belief rule base, weapons and equipment system of system engineering related assessment and optimization

     Master student in the Department of Control Engineering, Rocket Force University of Engineering. His research interest covers evidential reasoning, belief rule base

    Corresponding author: ZHUO Zhi-Jie  Associate professor in the Department of Control Engineering, Rocket Force University of Engineering. He received his Ph. D. degree from Tsinghua University in 2010. His research interest covers belief rule base, evidential reasoning, dynamic system modeling, fault prognosis and optimal maintenance of dynamic system. Corresponding author of this paper
  • 摘要: 综合考虑动态系统历史记录、当前状态以及未来退化趋势信息来对其安全性进行在线评估是极其重要的.本文提出了一种基于证据推理(Evidential reasoning,ER)的安全性在线评估方法.该方法先融合多个安全性指标获得各个时刻的安全性状态,而后融合系统"历史"、"当前"、"未来"时刻的安全性状态,评估得到系统的综合安全性水平.首先,建立了基于三阶Volterra滤波器的在线预测模型,预测指标未来信息;然后,建立了指标最优自适应权重求取模型,计算并更新指标实时权重;最后,提出了基于证据推理方法的融合框架,对"历史"、"当前"、"未来"时刻的信息进行融合,得到系统当前时刻的综合安全性评估结果.通过对某惯性平台系统的安全性评估实例验证了所提方法的有效性.
  • 广义系统[1]的研究是从20世纪70年代[2]开始的, 在近40年的历史中广义系统理论研究得到了迅速发展, 并取得了一系列的丰硕成果[3-5].广义系统理论已成为现代控制理论中一个独立的研究领域, 这些研究成果主要集中在广义定常系统[6]、广义周期时变系统[7-8]和广义时变系统[9-10].随着科学技术的发展和工程技术的需要, 广义时变系统时域控制研究也受到了广泛的关注.

    时域稳定性最早是由Kamenkov在文献[11]中提出来的, 至今已有很多可观的成果.文献[12-15]提出了时域稳定和时域有界的定义, 并对一般线性时变系统的时域稳定进行研究.文献[16-18]给出了带脉冲的线性时变系统的时域稳定的定义, 并利用 $L_{2}$ 增益给出时域稳定的判定定理.文献[19-22]探讨了带有干扰的参数不确定性系统时域稳定及时域控制的问题, 文献[23-24]利用微分矩阵不等式研究了一类带有跳变的线性时变系统的时域稳定. Ambrosino等研究了状态依赖时变脉冲动力系统的时域稳定性问题[25], 并在文献[26-29]中对时间依赖和状态依赖脉冲动力系统的时域稳定进行了对比和分析.文献[30-31]利用分段线性化将时变矩阵转化为一组标准的矩阵不等式, 解决了小区间内时变矩阵不等式的求解问题.时变脉冲系统中的研究方法多是时变系统与正常脉冲系统的自然推广, 文中所研究的广义时变脉冲系统不仅是时变脉冲系统的推广, 而且还考虑到广义系统自身的脉冲效应, 因此给研究和实验带来了一定的困难.

    本文主要研究状态依赖广义时变脉冲系统的时域稳定问题.在考虑广义系统自身无脉冲效应的前提下, 运用微分矩阵不等式方法给出了广义时变脉冲系统时域稳定的充分条件, 并设计了状态反馈控制器.最后根据分段线性化将小区间内广义时变矩阵不等式转化为广义时不变线性矩阵不等式, 应用Matlab LMI工具箱编程进行求解.

    $\boldsymbol{R} ^{n}$ 表示 $n$ -维欧几里得空间, $\boldsymbol{R}^{+}$ 是正实数集, $R > 0$ 是对称正定矩阵. ${N}$ 是自然数. $J=[t_0, t_0 +T]$ 表示时间域, 其中, $T \in \boldsymbol{R}^{+}$ .

    考虑如下形式的状态依赖广义时变脉冲系统:

    $ \begin{align} \left\{ \begin{array}{l} E\dot{{\boldsymbol x}}(t)=A(t){\boldsymbol x}(t), \quad {\boldsymbol x}(t)\notin \mathcal{S}_k\\ {\boldsymbol x}^{+}_{k}(t)=A_{d, k}{\boldsymbol x}(t), \quad {\boldsymbol x}(t)\in \mathcal{S}_k\\ {\boldsymbol x}(t_{0})={\boldsymbol x}_{0}, \quad k=1, 2, \cdot\cdot\cdot, N \end{array} \right. \end{align} $

    (1)

    其中, ${\boldsymbol x}(t)\in \boldsymbol{R}^{n}$ 为状态向量; $A(\cdot):t\in \boldsymbol{R}^{+}\mapsto \boldsymbol{R}^{n\times n}$ 是连续的函数矩阵, $A_{d, k}\in \boldsymbol{R}^{n\times n}, k=1, 2, \cdot\cdot\cdot, {N} $ 是时不变矩阵; $E$ 为奇异矩阵; ${S}_{k}\subseteq \boldsymbol{R}^{n}, k=1, 2, \cdot\cdot\cdot, {N}$ 是单连通互不相交的跳变集合 $({\boldsymbol x}_{0}\notin \mathcal{S}_{k})$ .根据脉冲时刻定义如下跳变时间集合:

    $ \mathcal{T}_{x(\cdot)}=\{t\in \boldsymbol{R}^{+}|{\boldsymbol x}(t)\in \mathcal{S}_{k}, k=1, 2, \cdot\cdot\cdot, {N}\} $

    定义1.如果 ${\boldsymbol x}_{0}^{\rm T}E^{\rm T}R{\boldsymbol x}_{0}\leq c_{1}$ 推出 ${\boldsymbol x}^{\rm T}(t)E^{\rm T}\Gamma(t){\boldsymbol x}(t) < c_{1}$ , 对 $\forall t\in J$ , 则称系统 (1) 是对于 $(c_1, J, R, \Gamma(\cdot))$ 时域稳定的.其中 $c_{1}>0, R$ 是对称正定矩阵, $\Gamma(\cdot)$ 是定义在 $J$ 上的函数矩阵, $\Gamma(t_0) < R$ .

    定义2.如果存在常数 $s$ 对于任意 $t\in J$ 使得 $\det (sE-A(t)) \neq 0$ , 则广义时变系统 $E\dot{{\boldsymbol x}}(t)=A(t){\boldsymbol x}(t)$ 是一致正则的.

    系统 (1) 一致正则与Campbell意义下的解析可解是等价的, 广义时变系统的一致正则性和 $A(t)$ 的连续性保证了其解的存在唯一性, 下面的讨论假定系统是一致正则的.我们将系统作如下分解:

    $ \begin{align*} &MEN\!=\!\left[\begin{array}{ccc} I&0\\0&0 \end{array}\right], MA(t)N\!=\!\left[\begin{array}{ccc} A_{11}(t)& A_{12}(t)\\A_{21}(t)& A_{22}(t)\end{array}\right]\\ &N^{-1}{\boldsymbol x}(t)=\left[\begin{array}{ccc}{\boldsymbol x}_{1}(t)& {\boldsymbol x}_{2}(t)\end{array}\right]\end{align*} $

    其中, $M, N$ 均为可逆矩阵, 则系统 (1) 等价于如下系统:

    $ \begin{align*} \begin{aligned} &\dot{{\boldsymbol x}}_{1}(t)=A_{11}(t){\boldsymbol x}_{1}(t)+A_{12}(t) {\boldsymbol x}_{2}(t)\\ &0 = A_{21}(t) {\boldsymbol x}_{1}(t)+A_{22}(t){\boldsymbol x}_{2}(t) \end{aligned} \end{align*} $

    显然, 系统 (1) 对于任意初始条件无脉冲的充要条件是 $A_{22}(t)$ 可逆.

    另外考虑一类带有外部干扰的状态依赖广义时变脉冲系统

    $ \begin{align} \left\{ \begin{array}{l} E\dot{{\boldsymbol x}}(t)=A(t){\boldsymbol x}(t)+G(t){\boldsymbol\omega}(t), \quad {\boldsymbol x}(t)\notin \mathcal{S}_k\\ {\boldsymbol x}^{+}_{k}(t)=A_{d, k}{\boldsymbol x}(t), \quad {\boldsymbol x}(t)\in \mathcal{S}_k\\ {\boldsymbol x}(t_{0})={\boldsymbol x}_{0}, \quad k=1, 2, \cdot\cdot\cdot, {N} \end{array} \right. \end{align} $

    (2)

    外部干扰 ${\boldsymbol \omega}(t)$ 满足:

    $ \begin{align} \begin{array}{l} \int_{t_0}^{t_0 +T}{\boldsymbol \omega}^{\rm T}(s){\boldsymbol \omega}(s){\rm d}s\leq d, \quad d\geq 0 \end{array} \end{align} $

    (3)

    定义3.如果 ${\boldsymbol x}_{0}^{\rm T}E^{\rm T}R{\boldsymbol x}_{0}\leq c_{1}$ 推出 ${{\boldsymbol{x}}^{\text{T}}}(t){{E}^{\text{T}}}\Gamma (t)\boldsymbol{x}(t) < {{c}_{2}}$ , 对 $\forall t\in J$ , 则称系统 (2) 是对于 $(c_1, c_2, {\boldsymbol \omega(t)}, J, R, \Gamma(\cdot))$ 时域稳定的.其中 $0 < c_{1} < c_{2}, R$ 是对称正定矩阵, $\Gamma(\cdot)$ 是定义在 $J$ 上的函数矩阵, $\Gamma(t_0) < R$ , 外部干扰 ${\boldsymbol \omega}(t)$ 满足式 (3).

    本节分别对系统 (1) 和 (2) 给出时域稳定的充分条件.

    定理1.对于系统 (1), 如果存在分段连续可微对称非奇异函数矩阵 $P(\cdot)$ 在 $J$ 上满足下列一组矩阵不等式, $\forall t\in J$ .

    $ E^{\rm T}P(t)=P^{\rm T}(t)E\geq 0 $

    (4a)

    $ A^{\rm T}(t)P(t)+P^{\rm T}(t)A(t)+E^{\rm T}\dot{P}(t) < 0 $

    (4b)

    $ \begin{array}{l} A_{d, k}^{\rm T}E^{\rm T}P(t)A_{d, k}-E^{\rm T}P(t) < 0\\ \qquad {\boldsymbol x}(t)\in \mathcal{S}_k, \qquad k=1, 2, \cdot\cdot\cdot, {N} \end{array} $

    (4c)

    $ E^{\rm T}\Gamma(t)\leq E^{\rm T}P(t)\leq E^{\rm T}P(t_0) < E^{\rm T}R $

    (4d)

    则称系统 (1) 对于 $(c_1, J, R, \Gamma(\cdot))$ 时域稳定.

    证明.  由定理条件 (4a) 和下式

    $ \begin{align*} M^{\rm -T}P(t)N=\left[\begin{array}{cc}P_{1}(t)&P_{2}(t)\\ P_{3}(t)&P_{4}(t)\end{array}\right] \end{align*} $

    有 $P_2(t)=0$ 和 $P_1(t)$ 对称, 将条件 (4b) 进行分解可得:

    $ \begin{align*} \begin{aligned} &N^{\rm T}A^{\rm T}(t)M^{\rm T}M^{\rm -T}P(t)N +\\ &\quad N^{\rm T}P^{\rm T}(t)M^{-1}MA(t)N+\\ &\quad N^{\rm T}E^{\rm T}M^{\rm T}M^{\rm -T}\dot{P}(t)N =\\ &\quad \left[\begin{array}{cc}A_{11}^{\rm T}(t)&A_{21}^{\rm T}(t)\\A_{12}^{\rm T}(t)&A_{22}^{\rm T}(t)\end{array}\right]\left[\begin{array}{cc}P_{1}(t)&P_{2}(t)\\P_{3}(t)&P_{4}(t)\end{array}\right]+\\ &\quad \left[\begin{array}{cc}P_{1}^{\rm T}(t)&P_{3}^{\rm T}(t)\\P_{2}^{\rm T}(t)&P_{4}^{\rm T}(t)\end{array}\right]\left[\begin{array}{cc}A_{11}(t)&A_{12}(t)\\A_{21}(t)&A_{22}(t)\end{array}\right]+\\ &\quad \left[\begin{array}{cc}I&0\\0&0\end{array}\right]\left[\begin{array}{cc}\dot{P}_{1}(t)&\dot{P}_{2}(t)\\ \dot{P}_{3}(t)&\dot{P}_{4}(t)\end{array}\right]=\\ &\quad \left[\begin{array}{cc}\ast&\ast\\\ast&A_{22}^{\rm T}(t)P_{4}(t)+P_{4}^{\rm T}(t)A_{22}(t)\end{array}\right] < 0 \end{aligned} \end{align*} $

    由上式显然有 $A_{22}^{\rm T}(t)P_{4}(t)+P_{4}^{\rm T}(t)A_{22}(t) < 0$ .因此, $A_{22}(t)$ 可逆, 系统对任意初始状态无脉冲.

    构造下列广义Lyapunov函数

    $ \begin{align*} V(t, {\boldsymbol x})={\boldsymbol x}^{\rm T}(t)E^{\rm T}P(t){\boldsymbol x}(t) \end{align*} $

    当 $t\notin \mathcal{T}_{x(\cdot)}$ , 即系统状态向量 ${\boldsymbol x}(t)$ 没有达到跳变集合.则对 $V(t, {\boldsymbol x})$ 求导:

    $ \begin{align*} &\dot V(t, {\boldsymbol x})={\boldsymbol x}^{\rm T}(t)[A^{\rm T}(t)P(t)+P^{\rm T}(t)A(t)+\\ &\qquad E^{\rm T}\dot{P}(t)]{\boldsymbol x}(t) \end{align*} $

    由条件 (4b) 可知 $\dot V(t, {\boldsymbol x})< 0$ .

    然而当 $t\in\mathcal{T}_{x(\cdot)}$ , 即系统依赖状态发生跳变, 由条件 (4c) 可得:

    $ \begin{align*} & V (t, {\boldsymbol x}^+_k)-V (t, {\boldsymbol x})={\boldsymbol x}^{\rm T}(t)\times\\ & \qquad [A_{d, k}^{\rm T}E^{\rm T}P (t) A_{d, k}-E^{\rm T}P (t)]{\boldsymbol x}(t) < 0 \end{align*} $

    则可以推出 $V(t, {\boldsymbol x})$ 在 $J$ 上是严格递减的.

    对于系统 (1) 给定初始条件 $t_0$ 使得 ${\boldsymbol x}_{0}^{\rm T}E^{\rm T}R{\boldsymbol x}_{0}\leq c_{1}$ , 对所有的 $t\in J$ 都有:

    $ \begin{align*} \begin{aligned} {\boldsymbol x}^{\rm T}(t)E^{\rm T}\Gamma(t){\boldsymbol x}(t)&\leq {\boldsymbol x}^{\rm T}(t)E^{\rm T}P(t){\boldsymbol x}(t)\leq\\ & {\boldsymbol x}_{0}^{\rm T}E^{\rm T}P(t_0){\boldsymbol x}_{0} < \\ &{\boldsymbol x}_{0}^{\rm T}E^{\rm T}RE{\boldsymbol x}_{0} < c_1 \end{aligned} \end{align*} $

    因此系统 (1) 对于 $(c_1, J, R, \Gamma(\cdot))$ 时域稳定.

    定理2.对于系统 (2), 如果存在分段连续可微对称非奇异函数矩阵 $P(\cdot)$ 在 $J$ 上满足下列不等式, $\forall t\in J$ .

    $ E^{\rm T}P(t)=P^{\rm T}(t)E\geq 0 $

    (5a)

    $ \begin{bmatrix} \Pi(t)&P^{\rm T}(t)G(t)\\ G^{\rm T}(t)P(t)&-I \end{bmatrix}< 0 $

    (5b)

    $ \begin{array}{l} A_{d, k}^{\rm T}E^{\rm T}P(t)A_{d, k}-E^{\rm T}P(t)< 0\\ \qquad {\boldsymbol x}(t)\in \mathcal{S}_k, \qquad k=1, 2, \cdot\cdot\cdot, {N} \end{array} $

    (5c)

    $ E^{\rm T}\Gamma(t)\leq E^{\rm T}P(t)\leq E^{\rm T}P(t_0) < E^{\rm T}R $

    (5d)

    则称系统 (2) 是对于 $(c_1, c_2, {\boldsymbol \omega}(t), J, R, \Gamma(\cdot))$ 时域稳定的.其中

    $ \begin{align*} \Pi(t)=A^{\rm T}(t)P(t)+P^{\rm T}(t)A(t)+E^{\rm T}\dot{P}(t) \end{align*} $

    证明.由条件 (5b) 可知 $\Pi(t) < 0$ , 同理可证系统 (2) 对任意初始状态无脉冲.

    考虑下列广义Lyapunov函数

    $ \begin{align*} V(t, {\boldsymbol x})={\boldsymbol x}^{\rm T}(t)E^{\rm T}P(t){\boldsymbol x}(t) \end{align*} $

    当 $t\notin \mathcal{T}_{x(\cdot)}$ , 即系统状态向量 ${\boldsymbol x}(t)$ 没有达到跳变集合.则对 $V(t, {\boldsymbol x})$ 求导:

    $ \begin{align*} \begin{array}{l} \dot V(t, {\boldsymbol x})={\boldsymbol x}^{\rm T}(t)\Pi(t){\boldsymbol x}(t)+{\boldsymbol \omega}^{\rm T}(t)G^{\rm T}(t)P(t)\times\\ {\boldsymbol x}(t)+{\boldsymbol x}^{\rm T}(t)P^{\rm T}(t)G(t){\boldsymbol \omega}(t) \end{array} \end{align*} $

    构造下列向量

    $ \begin{align*} {\boldsymbol z}(t)=\left[\begin{array}{c}{\boldsymbol x}(t)\\ {\boldsymbol \omega}(t) \end{array}\right] \end{align*} $

    由式 (5b) 得:

    $ \begin{array}{lll} {\boldsymbol z}^{\rm T}(t) \left[\begin{array}{cc}\Pi(t)&P^{\rm T}(t)G(t)\\ G^{\rm T}(t)P(t)&-I\end{array}\right]{\boldsymbol z}(t)=\\ \quad \dot V(t, {\boldsymbol x})-{\boldsymbol \omega}^{\rm T}(t){\boldsymbol \omega}(t) < 0 \end{array} $

    显然有:

    $ \begin{align*} \dot V(t, {\boldsymbol x}) < {\boldsymbol \omega}^{\rm T}(t){\boldsymbol \omega}(t) \end{align*} $

    对上式在 $[t_0, t]$ 上求积分得:

    $ \begin{align*} \int_{t_0}^{t}\dot V(s, {\boldsymbol x}){\rm d}s < \int_{t_0}^{t}{\boldsymbol \omega}^{\rm T}(s){\boldsymbol \omega}(s){\rm d}s \end{align*} $

    $ \begin{align*} \begin{aligned} V(t, {\boldsymbol x})& < V(t_0, {\boldsymbol x})+\int_{t_0}^{t}{\boldsymbol \omega}^{\rm T}(s){\boldsymbol \omega}(s){\rm d}s < \\ &{\boldsymbol x}_{0}^{\rm T}E^{\rm T}P(t_0){\boldsymbol x}_{0}+d < \\ &{\boldsymbol x}_{0}^{\rm T}E^{\rm T}R{\boldsymbol x}_{0}+d < \\ &c_1+d \end{aligned} \end{align*} $

    当 $t\in\mathcal{T}_{x(\cdot)}$ , 即系统状态发生跳变

    $ \begin{align*} \begin{aligned} V(t, {\boldsymbol x}^+)&= {\boldsymbol x}^{\rm T}(t)A_{d, k}^{\rm T}E^{\rm T}P(t)A_{d, k}{\boldsymbol x}(t)< \\ &{\boldsymbol x}^{\rm T}(t)E^{\rm T}P(t){\boldsymbol x}(t) < V(t, {\boldsymbol x}) < \\ &c_1+d \end{aligned} \end{align*} $

    则 $\exists c_2>c_1$ 使得 $V(t, {\boldsymbol x})$ 在 $J$ 上有 $V(t, {\boldsymbol x}) < c_2$ .

    对系统 (2) 给定初始条件 $t_0$ 使得 ${\boldsymbol x}_{0}^{\rm T}E^{\rm T}R{\boldsymbol x}_{0}\leq c_{1}$ , 对所有的 $t\in J$ 都有:

    $ \begin{align*} {\boldsymbol x}^{\rm T}(t)E^{\rm T}\Gamma (t){\boldsymbol x}(t)\leq {\boldsymbol x}^{\rm T}(t)E^{\rm T}P(t){\boldsymbol x}(t) < c_2\end{align*} $

    则称系统 (2) 对于 $(c_1, c_2, {\boldsymbol\omega}(t), J, R, \Gamma(\cdot))$ 时域稳定.

    接下来应用S-procedure理论[30]进一步研究系统 (1) 和系统 (2) 的时域稳定.

    引理1[25].存在一个连续闭集 $\mathcal{S}\subseteq \boldsymbol{R}^n$ 、对称矩阵 $Q_0\in \boldsymbol{R}^{n\times n}$ 、 $Q_i\in \boldsymbol{R}^{n\times n}$ 满足:

    $ {\boldsymbol x}^{\rm T}(t)Q_{0}{\boldsymbol x}(t) < 0, \quad {\boldsymbol x}(t)\in \mathcal{S} $

    (6a)

    $ {\boldsymbol x}^{\rm T}(t)Q_{i}{\boldsymbol x}(t) < 0, \quad {\boldsymbol x}(t)\in \mathcal{S}, \quad i=1, \cdot\cdot\cdot, p $

    (6b)

    则一定存在非负标量 $c_i, i=1, \cdot\cdot\cdot, p$ , 使得:

    $ \begin{align} Q_0-\sum_{i=1}^{p}c_iQ_i < 0 \end{align} $

    (6c)

    显然条件 (6c) 可以推出条件 (6a). S-procedure就是通过判断条件 (6c) 的可行性来验证条件 (6a) 是否成立的.一般来说, 条件 (6c) 比条件 (6a) 更容易检验.所以, 通过应用S-procedure理论可以找到检验 (6a) 成立的更有效的方法.

    由引理1的结论, 考虑条件 (4c), 当给定 $k$ 时, 令

    $ \begin{align*} \begin{array}{l} Q_0=A_{d, k}^{\rm T}E^{\rm T}P(t)A_{d, k}-E^{\rm T}P(t), \quad \mathcal{S}=\mathcal{S}_k \end{array} \end{align*} $

    则条件 (4c) 等价于如下不等式:

    $ \begin{align*} \begin{array}{l} A_{d, k}^{\rm T}E^{\rm T}P(t)A_{d, k}- E^{\rm T}P(t)-\sum\limits_{i=1}^{p}c_{i, k}(t)Q_{i, k} < 0 \end{array} \end{align*} $

    于是可以推出如下定理.

    定理3.如果存在对称矩阵集合 $Q_{i, k}, i=1, \cdot\cdot\cdot, p_k, k=1, \cdot\cdot\cdot, {N}$ 满足引理1条件, 并且存在一个连续可微对称非奇异函数矩阵 $P(\cdot)$ 和非负标量 $c_{i, k}(\cdot)\geq 0 $ 有:

    $ E^{\rm T}P(t)=P^{\rm T}(t)E\geq 0 $

    (7a)

    $ A^{\rm T}(t)P(t)+P^{\rm T}(t)A(t)+E^{\rm T}\dot{P}(t) < 0 $

    (7b)

    $ \begin{array}{l} A_{d, k}^{\rm T}E^{\rm T}P(t)A_{d, k}- E^{\rm T}P(t)-\sum\limits_{i=1}^{p}c_{i, k}(t)Q_{i, k}<0\\ \qquad {\boldsymbol x}(t)\in \mathcal{S}_k, \quad k=1, 2, \cdot\cdot\cdot, {N} \end{array} $

    (7c)

    $ E^{\rm T}\Gamma(t)\leq E^{\rm T}P(t)\leq E^{\rm T}P(t_0)< E^{\rm T}R $

    (7d)

    成立, 则系统 (1) 对于 $(c_1, J, R, \Gamma(\cdot))$ 时域稳定.其中 $J=[t_0\quad t_0 +T]$ .

    注1.由引理1知定理3的条件有利于这类问题的求解.在定理1中, 跳变时需要解无穷多个矩阵不等式, 而在定理3中, 跳变时只需解在指定集合上的有限个矩阵不等式.同理, 由定理2可以推出如下定理.

    定理4.如果存在对称矩阵集合 $Q_{i, k}, i=1, \cdot\cdot\cdot, p_k, k=1, \cdot\cdot\cdot, {N}$ 满足引理1条件, 并且存在一个连续可微对称非奇异函数矩阵 $P(\cdot)$ 和非负标量 $c_{i, k}(\cdot)\geq 0$ 有:

    $ E^{\rm T}P(t)=P^{\rm T}(t)E\geq 0 $

    (8a)

    $ \begin{bmatrix} \Pi(t)&P^{\rm T}(t)G(t)\\ G^{\rm T}(t)P(t)&-I \end{bmatrix} < 0 $

    (8b)

    $ \begin{array}{l} A_{d, k}^{\rm T}E^{\rm T}P(t)A_{d, k}-E^{\rm T}P(t)-\sum\limits_{i=1}^{p}c_{i, k}(t)Q_{i, k} < 0\\ \qquad {\boldsymbol x}(t)\in \mathcal{S}_k, \quad k=1, 2, \cdot\cdot\cdot, {N} \end{array} $

    (8c)

    $ E^{\rm T}\Gamma(t)\leq E^{\rm T}P(t)\leq E^{\rm T}P(t_0) < E^{\rm T}R $

    (8d)

    成立, 则称系统 (2) 对于 $(c_1, c_2, {\boldsymbol \omega}(t), J, R, \Gamma(\cdot))$ 时域稳定.其中 $\Pi(t)$ 与定理2相同.

    考虑如下状态依赖广义时变脉冲系统

    $ \begin{align} \left\{ \begin{array}{l} E\dot{{\boldsymbol x}}(t)=A(t){\boldsymbol x}(t)+G(t){\boldsymbol \omega}(t)+\\ \qquad B(t)u(t), \quad {\boldsymbol x}(t)\notin \mathcal{S}_k\\ {\boldsymbol x}^{+}_{k}(t)=A_{d, k}{\boldsymbol x}(t), \quad {\boldsymbol x}(t)\in \mathcal{S}_k\\ {\boldsymbol x}(t_{0})={\boldsymbol x}_{0}\quad k=1, 2, \cdot\cdot\cdot, {N} \end{array} \right. \end{align} $

    (9)

    对上述系统找到一个状态反馈控制律

    $ \begin{align*} {\boldsymbol u}(t)=K(t){\boldsymbol x}(t) \end{align*} $

    使得闭环系统

    $ \begin{align} \left\{ \begin{array}{l} E\dot{{\boldsymbol x}}(t)=A_c(t){\boldsymbol x}(t)+G(t){\boldsymbol \omega}(t), \quad {\boldsymbol x}(t)\notin \mathcal{S}_k\\ {\boldsymbol x}^{+}_{k}(t)=A_{d, k}{\boldsymbol x}(t), \quad {\boldsymbol x}(t)\in \mathcal{S}_k\\ {\boldsymbol x}(t_{0})={\boldsymbol x}_{0}, \quad k=1, 2, \cdot\cdot\cdot, {N} \end{array} \right. \end{align} $

    (10)

    是时域稳定, 其中 $A_c(t)=A(t)+B(t)K(t)$ .

    定理5.对于系统 (10), 如果存在分段连续可微对称非奇异的函数矩阵 $\bar{P}(\cdot)$ 、函数矩阵 $L_{k}(\cdot)$ 和非负标量 $C_{i, k}\leq 0$ 满足下列不等式组, $\forall t\in J$ .

    $ \begin{bmatrix} \Pi_{1}(t)&G(t)\\ G^{\rm T}(t)&-I \end{bmatrix} < 0 $

    (11a)

    $ \begin{array}{l} A_{d, k}^{\rm T}E^{\rm T}\bar{P}^{-1}(t)A_{d, k}-E^{\rm T}\bar{P}^{-1}(t)-\\ \qquad \quad \sum\limits_{i=1}^{p}c_{i, k}(t)Q_{i, k} < 0\\ \qquad {\boldsymbol x}(t)\in S_k, \quad k=1, 2, \cdot\cdot\cdot, {N} \end{array} $

    (11b)

    $ E^{\rm T}\Gamma(t)\leq E^{\rm T}\bar{P}^{-1}(t)\leq E^{\rm T}\bar{P}^{-1}(t_0) < E^{\rm T}R $

    (11c)

    则称系统 (10) 对于 $(c_1, c_2, {\boldsymbol\omega}(t), J, R, \Gamma(\cdot))$ 时域稳定, 且状态反馈控制律为

    $ \begin{align} K_k(t)=L_k(t)\bar{P}^{-1}(t) \end{align} $

    (12)

    其中, $\Pi_1(t)=-E\dot{\bar{P}}(t)+\bar{P}^{\rm T}(t)A^{\rm T}(t)+A(t)\bar{P}(t)+L^{\rm T}_{k}(t)B^{\rm T}(t)+B(t)L_{k}(t)$ .

    证明.对于 $t\in J_k$ , 将状态反馈控制律 $K_{k}(t)=L_{k}(t)\bar{P}^{-1}(t)$ 带入式 (9), 可以得到闭环系统 (10), 其中, $A_{c}(t)=A(t)+B(t)L_{i}(t)\bar{P}(t)^{-1}$ .显然 (11a) 等价于下列不等式:

    $ \begin{align} \left[\begin{array}{cc}\Pi_{2}(t)&G(t)\\ G^{\rm T}(t)&-I\end{array}\right] < 0 \end{align} $

    (13)

    其中

    $ \begin{align*} \Pi_{2}(t)=-E\dot{\bar{P}}(t)+\bar{P}^{\rm T}(t)A_{c}^{\rm T}(t)+A_{c}(t)\bar{P}(t) \end{align*} $

    令 $P(t)=\bar{P}^{-1}(t)$ , 将式 (13) 分别左乘 ${\rm diag}\{\bar{P}^{\rm -T}(t), I\}$ , 右乘 ${\rm diag} \{\bar{P}^{-1}(t), I\}$ , 得到下列不等式:

    $ \begin{align*} \left[\begin{array}{cc}\Pi_{3}(t)&\bar{P}^{\rm-T}(t)G(t)\\ G^{\rm T}(t)\bar{P}^{-1}(t)&-I\end{array}\right] < 0 \end{align*} $

    其中, $ \Pi_{3}(t)=-\bar{P}^{\rm -T}(t)E\dot{\bar{P}}(t)\bar{P}^{-1}(t)+ A_{c}^{\rm T}(t) \bar{P}^{-1}(t)+\bar{P}^{\rm -T}(t)A_{c}(t).$

    因为 $P(t)=\bar{P}^{-1}(t)$ , 故

    $ \begin{align*} I=\bar{P}(t)P(t), \quad 0=\dot{\bar{P}}(t)P(t)+\bar{P}(t)\dot{P}(t) \end{align*} $

    又因为 $E^{\rm T}P(t)=P^{\rm T}(t)E\geq0$ , 我们很容易可以得出:

    $ \begin{align*} -P^{\rm T}(t)E\dot{\bar{P}}(t)P(t)=-E^{\rm T}P(t)\dot{\bar{P}}(t)P(t)=E^{\rm T}\dot{P}(t)\end{align*} $

    由此可得:

    $ \begin{align} \left[\begin{array}{cc}\Pi_{4}(t)&P^{\rm T}(t)G(t)\\ G^{\rm T}(t)P(t)&-I\end{array}\right] < 0 \end{align} $

    (14)

    其中

    $ \begin{align*} \Pi_{4}(t)=E^{\rm T}\dot{P}(t)+A_c^{\rm T}(t)P(t)+P(t)A_c(t) \end{align*} $

    另一方面, 因为 $P(t)=\bar{P}^{-1}(t)$ , 条件 (11b) 和 (11c) 等价于式 (7c) 和 (7d).综上所述, 闭环系统 (10) 是对于 $(c_1, c_2, {\boldsymbol\omega}(t), J, R, \Gamma(\cdot))$ 时域稳定的.

    为了将小区间内的时变矩阵不等式转化为标准的矩阵不等式组.可以将小区间内的时变矩阵不等式做如下处理.假设 $P(t)$ (或 $\bar{P}(t)$ ) 是分段线性的, $P(t)$ (或 $\bar{P}(t)$ ) 在 $\mathcal{T}_{x(\cdot)}$ 处发生跳变 (以下只给出 $P(t)$ (或 $\bar{P}(t)$ ) 的形式, $L(t)$ 、 $\dot{P}(t)$ 形式与 $P(t)$ 类似).

    $ \begin{align*} \label{eq} \left\{ \begin{aligned} & P(0)({\rm or}\ (\bar{P}(0)))=\Pi_{1}^{0}\\ & P(t)({\rm or}\ (\bar{P}(t)))=\Pi_{k}^{0}+\Pi_{k}^{s}(t-(k-1)T_{s}), \\ & \qquad \qquad k\in N : kx \bar{k}, \quad t\in[(k-1)T_{s}, kT_{s}]\\ & P(t)({\rm or}\ (\bar{P}(t)))=\Pi_{\bar{k}+1}^{0}+\Pi_{\bar{k}+1}^{0}(t-\bar{k}T_{s}), t\in[\bar{k}T_{s}, T] \end{aligned} \right. \end{align*} $

    因此上述条件可以转化为一组标准的矩阵不等式求解问题.由于 $E^{\rm T}P(t)=P^{\rm T}(t)E\geq0$ ( $E^{\rm T}\Pi_{k}^{0}=\Pi_{k}^{0\rm T}E\geq0$ $E^{\rm T}\Pi_{k}^{s}=\Pi_{k}^{s{\rm T}}E\geq0$ ) 是一组非严格的矩阵不等式, 这样对于求解会造成一定的麻烦.为了将非严格的矩阵不等式组转化为严格的矩阵不等式组, 我们介绍如下引理.

    引理2[31].如果 $X\in \boldsymbol{R}^{n\times n}$ 是对称矩阵且满足 $E_{L}^{\rm T}XE_{L}>0$ , $T\in {\bf R }^{(n-r)\times(n-r)}$ 是非奇异矩阵.则 $XE+M^{\rm T}TS^{\rm T}$ 也是非奇异的且它的逆可以表示为

    $ \begin{align*} (XE+M^{\rm T}TS^{\rm T})^{-1}=XE^{\rm T}+STM \end{align*} $

    其中, $X$ 是对称矩阵, $T$ 是非奇异矩阵.

    $ \begin{align*} E_{R}^{\rm T}XE_{R}=(E_{L}^{\rm T}XE_{L})^{-1}, \ T=(S^{\rm T}S)^{-1}T^{-1}(MM^{\rm T})^{-1}\end{align*} $

    $M$ 和 $S$ 是行满秩矩阵满足 $ME=0$ , $ES=0$ ; $E$ 可以分解为 $E=E_{L}E_{R}^{\rm T}$ , 其中 $E_{L}\in \boldsymbol{R}^{n\times r}$ , $E_{R}\in {\bf R }^{n\times r}$ 是列满秩的.

    令 $\Pi_{k}^{0}=X_{k}^{0}E+M^{\rm T}T_{k}^{0}S^{\rm T}$ , $\Pi_{k}^{s}=X_{k}^{s}E+M^{\rm T}T_{k}^{s}S^{\rm T}$ .根据引理2可以得到 $(X_{k}^{0}E+M^{\rm T}T_{k}^{0}S^{\rm T})^{-1}=X_{k}^{0}E^{\rm T}+ST_{k}^{0}M$ 和 $(X_{k}^{s}E+M^{\rm T}T_{k}^{s}S^{\rm T})^{-1}=X_{k}^{s}E^{\rm T}+ST_{k}^{0}M$ .这样 $E^{\rm T}P(t)=P^{\rm T}(t)E\geq0$ 就得到了满足.因此, 非严格的矩阵不等式组转化为了严格的矩阵不等式组.利用Matlab LMI工具箱, 就可以对 $X_{k}^{s}, T_{k}^{0}, T_{k}^{s}, X_{k}^{0}$ (或 $X_{k}^{0}, X_{k}^{s}, T_{k}^{0}, T_{k}^{s}), \Lambda_{k}^{0}, \Lambda_{k}^{s}$ 进行求解, 从而得到 $P(t)$ (或 $(\bar{P}(t))$ 和 $L(t)$ .

    例1.考虑广义时变脉冲系统 (9),

    $ \begin{align*} &E=\left[\begin{array}{ccc} 1&0\\0&0 \end{array}\right], \quad A=\left[\begin{array}{ccc} 1&-1.5\\0.5&t \end{array}\right]\\ &A_{d, 1}=\left[\begin{array}{ccc} 0.8&0\\-1&0.5 \end{array}\right], \quad G=\left[\begin{array}{ccc} 1\\1 \end{array}\right] B=\left[\begin{array}{ccc} 0\\1 \end{array}\right] \end{align*} $

    跳变集合

    $ \begin{align*} \mathcal{S}_1= \left(\begin{array}{*{20}c}\left(\begin{array}{*{20}c}0.5\\ 0.2\end{array}\right), &\left(\begin{array}{*{20}c}0.4\\ 0.4 \end{array}\right)\end{array}\right) \end{align*} $

    其中, 选取 ${\boldsymbol\omega}(t)=1$ , $J=[0 {\rm s}\quad 5 {\rm s}]$ , $R=\left[{array}{ccc} 2&0\\0&2 {array}\right]$ , $c_1=3$ , $c_2=4$ .由引理1可选取

    $ \begin{align*} Q=\left[\begin{array}{ccc} 0.4000&-0.7000\\-0.7000&1.0000 \end{array}\right]\end{align*} $

    显然

    $ \begin{align*} E_{R}=E_{L}=\left[\begin{array}{ccc} 1\\0 \end{array}\right] \end{align*} $

    我们选 $M^{\rm T}=S=[0 \quad 1]^{\rm T}$ .则存在 $\Gamma(t)=\left[{array}{ccc} 1&0\\0&1{array}\right]$ , 根据Matlab LMI工具箱求解矩阵不等式组, 可得正数 $c_1(\cdot)$ 及矩阵 $P(\cdot), L_1(\cdot)$ , 使得式 (11) 成立, 则闭环系统 (10) 是时域稳定的, 且状态反馈控制律 $K(t)=[K_1(t)\quad K_2(t)]$ 见图 1.

    图 1  控制器 $K_{1}(t)$ , $K_{2}(t)$
    Fig. 1  Control gain $K_{1}(t)$ , $K_{2}(t)$

    本文针对状态依赖广义时变脉冲系统时域稳定问题进行研究, 给出了广义时变脉冲系统时域稳定充分条件及状态反馈控制器的设计.并且对上述充分条件提出DLMIs优化计算的方法, 使得这类问题在数值计算上易于处理.利用分段线性化将小区间内广义时变矩阵不等式转化为广义时不变线性矩阵不等式来求解.最后给出数值算例来验证结论的有效性.


  • 本文责任编委 周东华
  • 图  1  新的安全性在线评估模型结构

    Fig.  1  The structure of the new online safety assessment model

    图  2  新的在线安全性评估方法实现步骤

    Fig.  2  Implementation steps of the new online safety assessment method

    图  3  漂移系数测试数据

    Fig.  3  Test data of drift coefficients

    图  4  漂移系数在线预测

    Fig.  4  Online prediction of drift coefficients

    图  5  漂移系数预测误差

    Fig.  5  Prediction error of the drift coefficients

    图  6  漂移系数的最优自适应权重

    Fig.  6  Optimal adaptive weight of the drift coefficients

    图  7  惯性平台系统安全性状态的分布式评估结果

    Fig.  7  Distributed safety state results of the inertial platform system

    图  8  惯性平台系统安全性分布式评估结果

    Fig.  8  Distributed safety assessment results of the inertial platform system

    图  9  平台系统安全性评估期望效用

    Fig.  9  Expected utility of safety assessment of the platform system

    表  1  漂移系数评估等级对应的参考点

    Table  1  The referential points of drift coefficients

    语义值 ${F_1}$ ${F_2}$ ${F_3}$
    ${K_0}$对应的效用(d/h)0.020.040.06
    ${K_1}$对应的效用(d/h*g)0.0150.030.05
    下载: 导出CSV
  • [1] 周东华, 史建涛, 何潇.动态系统间歇故障诊断技术综述.自动化学报, 2014, 40(2):161-171 http://www.aas.net.cn/CN/abstract/abstract18279.shtml

    Zhou Dong-Hua, Shi Jian-Tao, He Xiao. Review of intermittent fault diagnosis techniques for dynamic systems. Acta Automatica Sinica, 2014, 40(2):161-171 http://www.aas.net.cn/CN/abstract/abstract18279.shtml
    [2] 李文博, 王大轶, 刘成瑞.动态系统实际故障可诊断性的量化评价研究.自动化学报, 2015, 41(3):497-507 http://www.aas.net.cn/CN/abstract/abstract18628.shtml

    Li Wen-Bo, Wang Da-Yi, Liu Cheng-Rui. Quantitative evaluation of actual fault diagnosability for dynamic systems. Acta Automatica Sinica, 2015, 41(3):497-507 http://www.aas.net.cn/CN/abstract/abstract18628.shtml
    [3] 司小胜, 胡昌华, 周志杰.基于证据推理的故障预报模型.中国科学:信息科学, 2010, 40(7):954-967

    Si Xiao-Sheng, Hu Chang-Hua, Zhou Zhi-Jie. Fault prediction model based on evidential reasoning approach. Science China Information Sciences, 2010, 40(7):954-967
    [4] Siu N. Risk assessment for dynamic systems:an overview. Reliability Engineering & System Safety, 1994, 43(1):43-73 http://d.wanfangdata.com.cn/OAPaper/oai_doaj-articles_ba2355fe34705770023b1e5ffac29588
    [5] Eryilmaz S. Dynamic assessment of multi-state systems using phase-type modeling. Reliability Engineering and System Safety, 2015, 140:71-77 doi: 10.1016/j.ress.2015.03.037
    [6] Wu D D, Chen S H, Olson D L. Business intelligence in risk management:some recent progresses. Information Sciences, 2014, 256:1-7 doi: 10.1016/j.ins.2013.10.008
    [7] Zhou Z J, Chang L L, Hu C H, Han X X, Zhou Z G. A new BRB-ER-based model for assessing the lives of products using both failure data and expert knowledge. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 46(11):1529-1543 doi: 10.1109/TSMC.2015.2504047
    [8] Vališ. Contribution to reliability and safety assessment of systems. Safety & Reliability, 2007, 27(3):23-35 http://d.wanfangdata.com.cn/OAPaper/oai_doaj-articles_96e6a29d79409e9369683e36726e859a
    [9] Hu J Q, Zhang L B, Liang W. An adaptive online safety assessment method for mechanical system with pre-warning function. Safety Science, 2012, 50(3):385-399 doi: 10.1016/j.ssci.2011.09.018
    [10] Stamatelatos M, Dezfuli H, Apostolakis G, Everline C, Guarro S, Mathias D, Mosleh A, Paulos T, Riha D, Smith C, Vesely W, Youngblood R. Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners, NASA/SP-2011-3421, NASA Center for AeroSpace Information, 2011.
    [11] Fullwood R R. Probabilistic Safety Assessment in the Chemical and Nuclear Industries. Boston, MA:Butterworth-Heinemann, 2000.
    [12] Durga Rao K, Gopika V, Sanyasi Rao V V S, Kushwahaa H S, Vermab A K, Srividyab A. Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment. Reliability Engineering & System Safety, 2009, 94(4):872-883
    [13] Verma A K, Ajit S, Karanki D R. Probabilistic safety assessment. Reliability and Safety Engineering (Second edition). London:Springer-Verlag, 2016. 333-372 http://d.wanfangdata.com.cn/Periodical/zngydxxb-e201105043
    [14] 王晨. 基于状态监测的输变电设备状态评估及故障预警[硕士学位论文], 华北电力大学, 中国, 2015

    Wang Chen. Condition Assessment of Transmission Equipment based on Condition Monitoring and Failure Alert[Master dissertation], School of Electrical and Electronic Engineering, China, 2015
    [15] 江寅虎. 基于状态监测的旋转部件可靠性评估方法研究[硕士学位论文], 大连理工大学, 中国, 2014

    Jiang Yin-Hu. Reliability Evaluation Method Research based on Condition Monitoring for Rotating Parts[Master dissertation], Dalian University of Technology, China, 2014
    [16] 万明杰, 周光辉, 程元森, 靳小莉.基于运行状态信息的数控珩磨机液压系统可靠性预测方法.应用科技, 2013, 39(6):30-33 http://d.wanfangdata.com.cn/Periodical/yykj201206006

    Fang Ming-Jie, Zhou Guang-Hui, Chen Yuan-Sen, Jin Xiao-Li. Reliability prediction for hydraulic system of CNC honing machine based on the operational status information. Applied Science and Technology, 2013, 39(6):30-33 http://d.wanfangdata.com.cn/Periodical/yykj201206006
    [17] Hermans E, Van den Bossche F, Wets G. Combining road safety information in a performance index. Accident Analysis & Prevention, 2008, 40(4):1337-1344
    [18] Yang J B, Liu J, Wang J, Sii H S, Wang H W. Belief rule-base inference methodology using the evidential reasoning approach-RIMER. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2006, 36(2):266-285 doi: 10.1109/TSMCA.2005.851270
    [19] Yang J B, Wang Y M, Xu D L, Chin K S. The evidential reasoning approach for MADA under both probabilistic and fuzzy uncertainties. European Journal of Operational Research, 2006, 171(1):309-343 doi: 10.1016/j.ejor.2004.09.017
    [20] Zhou Z J, Hu C H, Yang J B, Xu D L, Zhou D H. Online updating belief-rule-base using the RIMER approach. IEEE Transactions on System, Man, and Cybernetics-Part A:Systems and Humans, 2011, 41(6):1225-1243 doi: 10.1109/TSMCA.2011.2147312
    [21] Zhou Z J, Hu C H, Zhang B C, Xu D L, Chen Y W. Hidden behavior prediction of complex systems based on hybrid information. IEEE Transactions on Cybernetics, 2013, 43(2):402-411 doi: 10.1109/TSMCB.2012.2208266
    [22] 王敏. 大电网在线安全评估的理论与方法研究[硕士学位论文], 华中科技大学, 中国, 2013

    Wang Min. Research on Theory and Methods of Online Dynamic Security Assessment of Large Scale Power System[Master dissertation], Huazhong University of Science & Technology, China, 2013
    [23] Wang Y M, Elhag T M S. Evidential reasoning approach for bridge condition assessment. Expert Systems with Applications, 2008, 34(1):689-699 doi: 10.1016/j.eswa.2006.10.006
    [24] Nowak R D, Van Veen B D. Volterra filter equalization:a fixed point approach. IEEE Transactions on Signal Processing, 1997, 45(2):377-388 doi: 10.1109/78.554302
    [25] 韦保林, 罗晓曙, 王秉宏, 全宏俊, 郭伟, 傅金阶.一种基于三阶Volterra滤波器的混沌时间序列自适应预测方法.物理学报, 2002, 51(10):2205-2210 doi: 10.3321/j.issn:1000-3290.2002.10.007

    Wei Bao-Lin, Luo Xiao-Shu, Wang Bing-Hong, Quan Hong-Jun, Guo Wei, Fu Jin-Jie. A method based on the third-order Volterra filter for adaptive predictions of chaotic time series. Acta Physica Sinica, 2002, 51(10):2205-2210 doi: 10.3321/j.issn:1000-3290.2002.10.007
    [26] 张家树, 肖先赐.用于混沌时间序列自适应预测的一种少参数二阶Volterra滤波器.物理学报, 2001, 50(7):1248-1254 doi: 10.7498/aps.50.1248

    Zhang Jia-Shu, Xiao Xian-Ci. A reduced parameter second-order Volterra filter with application to nonlinear adaptive prediction of chaotic time series. Acta Physica Sinica, 2001, 50(7):1248-1254 doi: 10.7498/aps.50.1248
    [27] Kalluri S, Arce G R. A general class of nonlinear normalized adaptive filtering algorithms. IEEE Transactions on Signal Processing, 1999, 47(8):2262-2272 doi: 10.1109/78.774769
    [28] Yang J B, Xu D L. Evidential reasoning rule for evidence combination. Artificial Intelligence, 2013, 205:1-29 doi: 10.1016/j.artint.2013.09.003
    [29] Lo T P, Guo S J. Effective weighting model based on the maximum deviation with uncertain information. Expert Systems with Applications, 2010, 37(12):8445-8449 doi: 10.1016/j.eswa.2010.05.034
    [30] Sheret M. The coefficient of variation:weighting considerations. Social Indicators Research, 1984, 15(3):289-295 doi: 10.1007/BF00668675
    [31] Yang J B. Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties. European Journal of Operational Research, 2001, 131(1):31-61 doi: 10.1016/S0377-2217(99)00441-5
    [32] Wang Y M, Yang J B, Xu D L. Environmental impact assessment using the evidential reasoning approach. European Journal of Operational Research, 2006, 174(3):1885-1913 doi: 10.1016/j.ejor.2004.09.059
    [33] Zhou Z J, Hu C H, Wang W B, Zhang B C, Xu D L, Zheng J F. Condition-based maintenance of dynamic systems using online failure prognosis and belief rule base. Expert Systems with Applications, 2012, 39(6):6140-6149 doi: 10.1016/j.eswa.2011.11.068
    [34] Yang J B, Xu D L. Nonlinear information aggregation via evidential reasoning in multiattribute decision analysis under uncertainty. IEEE Transactions on Systems, Man, and Cybernetics——Part A:Systems and Humans, 2002, 32(3):376-393 doi: 10.1109/TSMCA.2002.802809
    [35] 宋亚飞, 王晓丹, 雷蕾, 邢雅琼.基于证据理论和混淆矩阵的传感器可靠性评估.控制与决策, 2015, 30(6):1111-1115 http://d.wanfangdata.com.cn/Periodical/kzyjc201506022

    Song Ya-Fei, Wang Xiao-Dan, Lei Lei, Xing Ya-Qiong. Evaluating dynamic reliability of sensors based on evidence theory and confusion matrix. Control and Decision, 2015, 30(6):1111-1115 http://d.wanfangdata.com.cn/Periodical/kzyjc201506022
    [36] Elouedi Z, Mellouli K, Smets P. Assessing sensor reliability for multisensor data fusion within the transferable belief model. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2004, 34(1):782-787 doi: 10.1109/TSMCB.2003.817056
    [37] 徐晓滨, 王玉成, 文成林.评估诊断证据可靠性的信息融合故障诊断方法.控制理论与应用, 2011, 28(4):504-510 http://d.wanfangdata.com.cn/Periodical/kzllyyy201104010

    Xu Xiao-Bin, Wang Yu-Cheng, Wen Cheng-Lin. Information-fusion method for fault diagnosis based on reliability evaluation of evidence. Control Theory & Applications, 2011, 28(4):504-510 http://d.wanfangdata.com.cn/Periodical/kzllyyy201104010
  • 加载中
  • 图(9) / 表(1)
    计量
    • 文章访问数:  2516
    • HTML全文浏览量:  267
    • PDF下载量:  600
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-05-09
    • 录用日期:  2016-07-28
    • 刊出日期:  2017-11-20

    目录

    /

    返回文章
    返回