2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分数阶微分的TV-L1光流模型的图像配准方法研究

张桂梅 孙晓旭 刘建新 储珺

张桂梅, 孙晓旭, 刘建新, 储珺. 基于分数阶微分的TV-L1光流模型的图像配准方法研究. 自动化学报, 2017, 43(12): 2213-2224. doi: 10.16383/j.aas.2017.c160367
引用本文: 张桂梅, 孙晓旭, 刘建新, 储珺. 基于分数阶微分的TV-L1光流模型的图像配准方法研究. 自动化学报, 2017, 43(12): 2213-2224. doi: 10.16383/j.aas.2017.c160367
ZHANG Gui-Mei, SUN Xiao-Xu, LIU Jian-Xin, CHU Jun. Research on TV-L1 Optical Flow Model for Image Registration Based on Fractional-order Differentiation. ACTA AUTOMATICA SINICA, 2017, 43(12): 2213-2224. doi: 10.16383/j.aas.2017.c160367
Citation: ZHANG Gui-Mei, SUN Xiao-Xu, LIU Jian-Xin, CHU Jun. Research on TV-L1 Optical Flow Model for Image Registration Based on Fractional-order Differentiation. ACTA AUTOMATICA SINICA, 2017, 43(12): 2213-2224. doi: 10.16383/j.aas.2017.c160367

基于分数阶微分的TV-L1光流模型的图像配准方法研究

doi: 10.16383/j.aas.2017.c160367
基金项目: 

国家自然科学基金 61462065

国家自然科学基金 61661036

江西省自然科学基金 20151BAB207036

江西省科技支撑计划重点项目 20161BBF60091

详细信息
    作者简介:

    张桂梅 南昌航空大学江西省图像处理与模式识别重点实验室教授.主要研究方向为计算机视觉, 图像处理与模式识别.E-mail:guimei.zh@163.com

    孙晓旭 南昌航空大学江西省图像处理与模式识别重点实验室硕士研究生.主要研究方向为图像处理与计算机视觉.E-mail:sunxiaoxu@outlook.com

    储珺 南昌航空大学江西省图像处理与模式识别重点实验室教授.主要研究方向为图像处理与计算机视觉.E-mail:chujun99602@163.com

    通讯作者:

    刘建新 西华大学机械工程学院教授.主要研究方向为图像处理与机器视觉.本文通信作者.E-mail: jamson_liu@163.com

Research on TV-L1 Optical Flow Model for Image Registration Based on Fractional-order Differentiation

Funds: 

National Natural Science Foundation of China 61462065

National Natural Science Foundation of China 61661036

Natural Science Foundation of Jiangxi Province 20151BAB207036

the Key Science and Technology Support Program of Jiangxi Province 20161BBF60091

More Information
    Author Bio:

    Professor at the Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition, Nanchang Hangkong University. Her research interest covers computer vision, image processing, and pattern recognition

    Master student at the Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition, Nanchang Hangkong University. His research interest covers image processing and computer vision

    Professor at the Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition, Nanchang Hangkong University. Her research interest covers image processing and computer vision

    Corresponding author: LIU Jian-Xin Professor at the School of Mechanical Engineering, Xihua University. His research interest covers image processing and machine vision. Corresponding author of this paper
  • 摘要: 图像的非刚性配准在计算机视觉和医学图像分析中有着重要的作用.TV-L1(全变分L1范数、Total variation-L1)光流模型是解决非刚性配准问题的有效方法,但TV-L1光流模型的正则项是一阶导数,会导致纹理特征等具有弱导数性质的信息模糊.针对该问题,将G-L(Grünwald-Letnikov)分数阶引入TV-L1光流模型,提出基于G-L分数阶微分的TV-L1光流模型,并应用原始-对偶算法求解该模型.新的模型用G-L分数阶微分代替正则项中的一阶导数,由于分数阶微分比整数阶微分具有更好的细节描述能力,并能有效地、非线性地保留具有弱导数性质的纹理特征,从而提高图像的配准精度.另外,通过实验给出了配准精度与G-L分数阶模板参数之间的关系,从而为模板最佳参数的选取提供了依据.尽管不同类型的图像其最佳参数是不同的,但是其最佳配准阶次一般在1 ~2之间.理论分析和实验结果均表明,提出的新模型能够有效地提高图像配准的精度,适合于包含较多弱纹理和弱边缘信息的医学图像配准,该模型是TV-L1光流模型的重要延伸和推广.
    1)  本文责任编委 张长水
  • 图  1  分数阶微分模板

    Fig.  1  Differential template

    图  2  迭代次数的选择

    Fig.  2  Choice of iteration number

    图  3  分数阶微分算子幅频特性曲线

    Fig.  3  The amplitude-frequency curve of fractional differentiator

    图  4  验图像(其中第一行为参考图像, 第二行为与参考图像对应的浮动图像)

    Fig.  4  Experimental images (The first line are reference images, the second line are floating images corresponding to reference images)

    图  5  Lena图像实验(第一行为浮动图像和配准后图像, 第二行为差值图像. (a)为浮动图像, (b) $\sim$ (e)为配准后的图像; (b) TV-L$^{1}$方法; (c)本文方法($\alpha=1.2, k=1$); (d)本文方法($\alpha=1.2, k=2$); (e)本文方法($\alpha=1.2, k=3$); (f) $\sim$ (j)分别为第一行图像与参考图像(图 4(a))的差值图像)

    Fig.  5  Lena image (The first line is floating image and registered image, the second line is difference image. (a) Floating image, (b) $\sim$ (e) are registered images, (b) TV-L$^{1}$, (c) Our method ($\alpha=1.2, k=1$), (d) Our method ($\alpha=1.2, k=2$), (e) Our method ($\alpha=1.2, k=3$), (f) $\sim$ (j) are difference images)

    图  6  配准精度与模板参数间的关系曲线

    Fig.  6  Curve between registration accuracy with mask parameters

    图  7  Brain1图像实验(第一行为浮动图像和配准后图像, 第二行为差值图像. (a)为浮动图像, (b) $\sim$ (e)为配准后的图像; (b) TV-L$^{1}$方法; (c)本文方法($\alpha=1.3, k=1$); (d)本文方法($\alpha=1.3, k=2$); (e)本文方法($\alpha=1.3, k=3$); (f) $\sim$ (j)分别为第一行图像与参考图像(图 4(b))的差值图像)

    Fig.  7  Brain1 image (The first line is floating image and registered image, the second line is difference image. (a) Floating image, (b) $\sim$ (e) are registered images, (b) TV-L$^{1}$, (c) Our method ($\alpha=1.3, k=1$), (d) Our method ($\alpha=1.3, k=2$), (e) Our method ($\alpha=1.3, k=3$), (f) $\sim$ (j) are difference images)

    图  8  Brain2图像实验(第一行为浮动图像和配准后图像, 第二行为差分图像. (a)为浮动图像, (b) $\sim$ (e)为配准后的图像; (b) TV-L$^{1}$方法; (c)本文方法($\alpha=1.3$, $k=1$); (d)本文方法($\alpha=1.3$, $k=2$); (e)本文方法($\alpha=1.3$, $k=3$); (f) $\sim$ (j)分别为第一行图像与参考图像(图 4(c))的差值图像)

    Fig.  8  Brain2 image. The first line is floating image and registered image, the second line is difference image ((a) floating image, (b) $\sim$ (e) are registered images, (b) TV-L$^{1}$, (c) Our method ($\alpha=1.3$, $k=1$), (d) Our method ($\alpha=1.3$, $k=2$), (e) Our method ($\alpha=1.3$, $k=3$), (f) $\sim$ (j) are difference images)

    表  1  参考图像和配准图像的均方误差(MSE)

    Table  1  Mean square error (MSE) of reference image and registered

    输入图片配准前TV-L $^{1}$本文算法($k$ = 1)本文算法($k$ = 2)本文算法($k$ = 3)
    Lena ($\alpha$ = 1.2)669.3314.8610.369.1711.56
    Brain1 ($\alpha$ = 1.3)295.8527.5118.2015.9320.22
    Brain2 ($\alpha$ = 1.3)813.7731.0211.479.9517.89
    下载: 导出CSV

    表  2  峰值信噪比(PSNR)

    Table  2  Peak signal to noise ratio (PSNR)

    输入图片配准前TV-L $^{1}$本文算法($k$ = 1)本文算法($k$ = 2)本文算法($k$ = 3)
    Lena ($\alpha$ = 1.2)19.3235.5538.1838.8837.50
    Brain1 ($\alpha$ = 1.3)22.7833.7335.3436.1734.89
    Brain2 ($\alpha$ = 1.3)19.0331.2137.7338.1535.60
    下载: 导出CSV
  • [1] 蒲亦非, 王卫星.数字图像的分数阶微分掩模及其数值运算规则.自动化学报, 2007, 33(11):1128-1135 http://www.aas.net.cn/CN/abstract/abstract13448.shtml

    Pu Yi-Fei, Wang Wei-Xing. Fractional differential masks of digital image and their numerical implementation algorithms. Acta Automatica Sinica, 2007, 33(11):1128-1135 http://www.aas.net.cn/CN/abstract/abstract13448.shtml
    [2] 陈青, 刘金平, 唐朝晖, 李建奇, 吴敏.基于分数阶微分的图像边缘细节检测与提取.电子学报, 2013, 41(10):1873-1880 doi: 10.3969/j.issn.0372-2112.2013.10.001

    Chen Qing, Liu Jin-Ping, Tang Zhao-Hui, Li Jian-Qi, Wu Min. Detection and extraction of image edge curves and detailed features using fractional differentiation. Acta Electronica Sinica, 2013, 41(10):1873-1880 doi: 10.3969/j.issn.0372-2112.2013.10.001
    [3] Pu Y F, Siarry P, Zhou J L, Liu Y G, Zhang N, Huang G, Liu Y Z. Fractional partial differential equation denoising models for texture image. Science China Information Sciences, 2014, 57(7):1-19 doi: 10.1007/s11432-014-5112-x
    [4] Liu J, Chen S C, Tan X Y. Fractional order singular value decomposition representation for face recognition. Pattern Recognition, 2008, 41(1):378-395 doi: 10.1016/j.patcog.2007.03.027
    [5] Zhang Y, Pu Y F, Hu J R, Zhou J L. A class of fractional-order variational image inpainting models. Applied Mathematics and Information Sciences, 2012, 6(2):299-306 http://www.researchgate.net/publication/260210952_A_Class_of_Fractional-Order_Variational_Image_Inpainting_Models
    [6] Ren Z M. Adaptive active contour model driven by fractional order fitting energy. Signal Processing, 2015, 117:138-150 doi: 10.1016/j.sigpro.2015.05.009
    [7] 薛鹏, 杨佩, 曹祝楼, 贾大宇, 董恩清.基于平衡系数的Active Demons非刚性配准算法.自动化学报, 2016, 42(9):1389-1400 http://www.aas.net.cn/CN/abstract/abstract18927.shtml

    Xue Peng, Yang Pei, Cao Zhu-Lou, Jia Da-Yu, Dong En-Qing. Active demons non-rigid registration algorithm based on balance coefficient. Acta Automatica Sinica, 2016, 42(9):1389-1400 http://www.aas.net.cn/CN/abstract/abstract18927.shtml
    [8] 张桂梅, 曹红洋, 储珺, 曾接贤.基于Nyström低阶近似和谱特征的图像非刚性配准.自动化学报, 2015, 41(2):429-438 http://www.aas.net.cn/CN/abstract/abstract18621.shtml

    Zhang Gui-Mei, Cao Hong-Yang, Chu Jun, Zeng Jie-Xian. Non-rigid image registration based on low-rank Nyström approximation and spectral feature. Acta Automatica Sinica, 2015, 41(2):429-438 http://www.aas.net.cn/CN/abstract/abstract18621.shtml
    [9] 闫德勤, 刘彩凤, 刘胜蓝, 刘德山.大形变微分同胚图像配准快速算法.自动化学报, 2015, 41(8):1461-1470 http://www.aas.net.cn/CN/abstract/abstract18720.shtml

    Yan De-Qin, Liu Cai-Feng, Liu Sheng-Lan, Liu De-Shan. A fast image registration algorithm for diffeomorphic image with large deformation. Acta Automatica Sinica, 2015, 41(8):1461-1470 http://www.aas.net.cn/CN/abstract/abstract18720.shtml
    [10] Thirion J P. Image matching as a diffusion process:an analogy with Maxwell's demons. Medical Image Analysis, 1998, 2(3):243-260 doi: 10.1016/S1361-8415(98)80022-4
    [11] Wang H, Dong L, O'Daniel J, Mohan R, Garden A A, Ang K K, Kuban D A, Bonnen M, Chang J Y, Cheung R. Validation of an accelerated 'demons' algorithm for deformable image registration in radiation therapy. Physics in Medicine and Biology, 2005, 50(12):2887-2905 doi: 10.1088/0031-9155/50/12/011
    [12] Palos G, Betrouni N, Coulanges M, Vermandel M, Devlaminck V, Rousseau J. Multimodal matching by maximisation of mutual information and optical flow technique. In:Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEMBS). San Francisco, CA, USA:IEEE, 2004. 1679-1682 http://europepmc.org/abstract/MED/17272026
    [13] Pock T, Urschler M, Zach C, Beichel R, Bischof H. A duality based algorithm for TV-L1-optical-flow image registration. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2007. Berlin Heidelberg:Springer-Verlag, 2007. 511-518
    [14] Pérez J S, Meinhardt-Llopis E, Facciolo G. TV-L1 optical flow estimation. Image Processing on Line, 2013, 3:137-150 doi: 10.5201/ipol
    [15] Yip S S F, Coroller T P, Sanford N N, Huynh E, Mamon H, Aerts H J W L, Berbeco R I. Use of registration-based contour propagation in texture analysis for esophageal cancer pathologic response prediction. Physics in Medicine and Biology, 2016, 61(2):906-922 doi: 10.1088/0031-9155/61/2/906
    [16] Horn B K, Schunck B G. Determining optical flow. In:Technical Symposium East. Washington, D.C., USA:International Society for Optics and Photonics, 1981. 319-331
    [17] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D:Nonlinear Phenomena, 1992, 60(1-4):259-268 doi: 10.1016/0167-2789(92)90242-F
    [18] Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 2011, 40(1):120-145 doi: 10.1007/s10851-010-0251-1
    [19] Cafagna D. Fractional calculus:a mathematical tool from the past for present engineers. IEEE Industrial Electronics Magazine, 2007, 1(2):35-40 doi: 10.1109/MIE.2007.901479
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  2641
  • HTML全文浏览量:  294
  • PDF下载量:  860
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-29
  • 录用日期:  2016-10-05
  • 刊出日期:  2017-12-20

目录

    /

    返回文章
    返回