2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稀疏表示和结构自相似性的单幅图像盲解卷积算法

常振春 禹晶 肖创柏 孙卫东

常振春, 禹晶, 肖创柏, 孙卫东. 基于稀疏表示和结构自相似性的单幅图像盲解卷积算法. 自动化学报, 2017, 43(11): 1908-1919. doi: 10.16383/j.aas.2017.c160357
引用本文: 常振春, 禹晶, 肖创柏, 孙卫东. 基于稀疏表示和结构自相似性的单幅图像盲解卷积算法. 自动化学报, 2017, 43(11): 1908-1919. doi: 10.16383/j.aas.2017.c160357
CHANG Zhen-Chun, YU Jing, XIAO Chuang-Bai, SUN Wei-Dong. Single Image Blind Deconvolution Using Sparse Representation and Structural Self-similarity. ACTA AUTOMATICA SINICA, 2017, 43(11): 1908-1919. doi: 10.16383/j.aas.2017.c160357
Citation: CHANG Zhen-Chun, YU Jing, XIAO Chuang-Bai, SUN Wei-Dong. Single Image Blind Deconvolution Using Sparse Representation and Structural Self-similarity. ACTA AUTOMATICA SINICA, 2017, 43(11): 1908-1919. doi: 10.16383/j.aas.2017.c160357

基于稀疏表示和结构自相似性的单幅图像盲解卷积算法

doi: 10.16383/j.aas.2017.c160357
基金项目: 

首都卫生发展科研专项 2014-2-4025

国家自然科学基金 61501008

详细信息
    作者简介:

    常振春 清华大学电子工程系硕士研究生.2014年获得清华大学电子工程系学士学位.主要研究方向为图像处理, 模式识别.E-mail:txchangchun@163.com

    肖创柏 北京工业大学计算机学院教授.主要研究方向为数字信号处理, 音视频信号处理, 网络通信.E-mail:cbxiao@bjut.edu.cn

    孙卫东 清华大学电子工程系教授.主要研究方向为图像处理, 模式识别, 空间信息处理应用.E-mail:wdsun@tsinghua.edu.cn

    通讯作者:

    禹晶 北京工业大学计算机学院讲师.2011年获得清华大学电子工程系博士学位.主要研究方向为图像处理与模式识别.本文通信作者.E-mail:jing.yu@bjut.edu.cn

Single Image Blind Deconvolution Using Sparse Representation and Structural Self-similarity

Funds: 

The Capital Health Research and Development of Special 2014-2-4025

National Natural Science Foundation of China 61501008

More Information
    Author Bio:

    Master student in the Department of Electronic Engineering, Tsinghua University. He received his bachelor degree from Tsinghua University in 2014. His research interest covers image processing and pattern recognition

    Professor at the College of Computer Science and Technology, Beijing University of Technology. His research interest covers digital signal processing, audio and video signal processing, and network communication

    Professor in the Department of Electronic Engineering, Tsinghua University. His research interest covers image processing, pattern recognition, spatial information processing and application

    Corresponding author: YU Jing Lecturer at the College of Computer Science and Technology, Beijing University of Technology. She received her Ph. D. degree from Tsinghua University in 2011. Her research interest covers image processing and pattern recognition. Corresponding author of this paper
  • 摘要: 图像盲解卷积研究当模糊核未知时,如何从模糊图像复原出原始清晰图像.由于盲解卷积是一个欠定问题,现有的盲解卷积算法都直接或间接地利用各种先验知识.本文提出了一种结合稀疏表示与结构自相似性的单幅图像盲解卷积算法,该算法将图像的稀疏性先验和结构自相似性先验作为正则化约束加入到图像盲解卷积的目标函数中,并利用图像不同尺度间的结构自相似性,将观测模糊图像的降采样图像作为稀疏表示字典的训练样本,保证清晰图像在该字典下的稀疏性.最后利用交替求解的方式估计模糊核和清晰图像.模拟和真实数据上的实验表明本文算法能够准确估计模糊核,复原清晰的图像边缘,并具有很好的鲁棒性.
    1)  本文责任编委 杨健
  • 图  1  图像不同尺度间的结构自相似性

    Fig.  1  Structural self-similarity cross scales of image

    图  2  清晰图像与模糊图像的结构相似性

    Fig.  2  Structural self-similarity between sharp image and blurry image

    图  3  本文算法流程

    Fig.  3  The pipeline of our method

    图  4  各算法在Levin等[4]数据集上的ER累积分布

    Fig.  4  Cumulative distribution of error ratios on Levin et al.[4] dataset

    图  5  各算法在Sun等[19]数据集上的ER累积分布

    Fig.  5  Cumulative distribution of error ratios on Sun et al.[19] dataset

    图  6  Sun等[19]、Michaeli等[9]以及本文算法实验结果比较

    Fig.  6  Visual comparisons with methods of Sun et al.[19], Michaeli et al.[9] and ours

    图  7  各算法对有噪模糊图像的复原结果比较

    Fig.  7  Visual comparisons with some methods on noisy blurry image

    图  8  不同强度高斯噪声下各算法盲解卷积结果的均方误差

    Fig.  8  Mean squared error of some methods under different noise levels

    图  9  各算法在真实模糊图像(模糊核未知)上的实验结果比较

    Fig.  9  Visual comparisons with some state-of-the-art methods on real-world photos with unknown kernel

    图  10  各算法在真实模糊图像(模糊核未知)上的实验结果比较

    Fig.  10  Visual comparisons with some state-of-the-art methods on real-world photos with unknown kernel

    表  1  各算法“成功率”及平均ER值

    Table  1  "Success rate" and average error rate of different methods

    算法 “成功率” (%) 平均ER值
    本文算法 96.88 2.2181
    Michaeli等[9] 95.94 2.5662
    Sun等[19] 93.44 2.3764
    Xu等[3] 85.63 3.6293
    Levin等[6] 46.72 6.5577
    Cho等[2] 65.47 8.6901
    Krishnan等[25] 24.49 11.5212
    Cho等[24] 11.74 24.7020
    下载: 导出CSV

    表  2  各算法运行时间比较

    Table  2  Comparison of different methods0 running time

    算法 实现方式 运行时间
    Xu等[3] C/C++ 14 s
    Krishnan等[25] Matlab 61 s
    Levin等[6] Matlab 1 270 s
    Sun等[19] Matlab 1 700 s
    Michaeli等[9] Matlab 4 982 s
    Perrone等[8] Matlab 1 431 s
    Perrone等[23] Matlab 4 071 s
    本文算法 Matlab 546 s
    下载: 导出CSV
  • [1] Joshi N, Szeliski R, Kriegman D J. PSF estimation using sharp edge prediction. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA:IEEE, 2008. 1-8 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4587834
    [2] Cho S, Lee S. Fast motion deblurring. ACM Transactions on Graphics, 2009, 28(5):Article No.145 http://portal.acm.org/citation.cfm?doid=1618452.1618491
    [3] Xu L, Jia J Y. Two-phase kernel estimation for robust motion deblurring. In: Proceedings of the 11th European Conference on Computer Vision. Heraklion, Crete, Greece:Springer, 2010. 157-170 http://dl.acm.org/citation.cfm?id=1886077
    [4] Levin A, Weiss Y, Durand F, Freeman W T. Understanding and evaluating blind deconvolution algorithms. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA:IEEE, 2009. 1964-1971 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5206815
    [5] Fergus R, Singh B, Hertzmann A, Rowels S T, Freeman W T. Removing camera shake from a single photograph. ACM Transactions on Graphics, 2006, 25(3):787-794 doi: 10.1145/1141911
    [6] Levin A, Weiss Y, Durand F, Freeman W T. Efficient marginal likelihood optimization in blind deconvolution. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA:IEEE, 2011. 2657-2664 http://dl.acm.org/citation.cfm?id=2192016
    [7] Shan Q, Jia J Y, Agarwala A. High-quality motion deblurring from a single image. ACM Transactions on Graphics, 2008, 27(3):Article No. 73 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.218.6835
    [8] Perrone D, Favaro P. Total variation blind deconvolution:the devil is in the details. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA:IEEE, 2014. 2909-2916 http://ieeexplore.ieee.org/document/6909768/
    [9] Michaeli T, Irani M. Blind deblurring using internal patch recurrence. In: Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland:Springer International Publishing, 2014. 783-798 http://www.researchgate.net/publication/291197096_Blind_Deblurring_Using_Internal_Patch_Recurrence
    [10] Lai W S, Ding J J, Lin Y Y, Chuang Y Y. Blur kernel estimation using normalized color-line priors. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA:IEEE, 2015. 64-72 doi: 10.1109/CVPR.2015.7298601
    [11] Zhang H C, Yang J C, Zhang Y N, Huang T S. Sparse representation based blind image deblurring. In: Proceedings of the 2011 IEEE International Conference on Multimedia and Expo. Barcelona, Spain:IEEE, 2011. 1-6 http://ieeexplore.ieee.org/document/6012035/
    [12] Li H S, Zhang Y N, Zhang H C, Zhu Y, Sun J Q. Blind image deblurring based on sparse prior of dictionary pair. In: Proceedings of the 21st International Conference on Pattern Recognition. Tsukuba, Japan:IEEE, 2012. 3054-3057 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6460809
    [13] 潘宗序, 禹晶, 肖创柏, 孙卫东.基于多尺度非局部约束的单幅图像超分辨率算法.自动化学报, 2014, 40(10):2233-2244 http://www.aas.net.cn/CN/abstract/abstract18498.shtml

    Pan Zong-Xu, Yu Jing, Xiao Chuang-Bai, Sun Wei-Dong. Single-image super-resolution algorithm based on multi-scale nonlocal regularization. Acta Automatica Sinica, 2014, 40(10):2233-2244 http://www.aas.net.cn/CN/abstract/abstract18498.shtml
    [14] 潘宗序, 禹晶, 胡少兴, 孙卫东.基于多尺度结构自相似性的单幅图像超分辨率算法.自动化学报, 2014, 40(4):594-603 http://www.aas.net.cn/CN/abstract/abstract18325.shtml

    Pan Zong-Xu, Yu Jing, Hu Shao-Xing, Sun Wei-Dong. Single image super resolution based on multi-scale structural self-similarity. Acta Automatica Sinica, 2014, 40(4):594-603 http://www.aas.net.cn/CN/abstract/abstract18325.shtml
    [15] 潘宗序, 禹晶, 肖创柏, 孙卫东.基于字典学习与结构自相似性的码本映射超分辨率算法.计算机辅助设计与图形学学报, 2015, 27(6):1032-1038 http://d.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201506009

    Pan Zong-Xu, Yu Jing, Xiao Chuang-Bai, Sun Wei-Dong. Dictionary learning and structural self-similarity-based codebook mapping for single image super resolution. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(6):1032-1038 http://d.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201506009
    [16] Aharon M, Elad M, Bruckstein A. rmK-SVD:an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322 doi: 10.1109/TSP.2006.881199
    [17] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, 53(12):4655-4666 doi: 10.1109/TIT.2007.909108
    [18] Zoran D, Weiss Y. From learning models of natural image patches to whole image restoration. In: Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona, Spain:IEEE, 2011. 479-486 http://dl.acm.org/citation.cfm?id=2356307
    [19] Sun L B, Cho S, Wang J, Hays J. Edge-based blur kernel estimation using patch priors. In: Proceedings of the 2013 IEEE International Conference on Computational Photography. Cambridge, MA, USA:IEEE, 2013. 1-8 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6528301
    [20] Glasner D, Bagon S, Irani M. Super-resolution from a single image. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan:IEEE, 2009. 349-356 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459271
    [21] Olonetsky I, Avidan S. TreeCANN-k-d tree coherence approximate nearest neighbor algorithm. In: Proceedings of the 12th European Conference on Computer Vision. Florence, Italy:Springer, 2012. 602-615 doi: 10.1007%2F978-3-642-33765-9_43
    [22] Liu S G, Wang H B, Wang J, Cho S, Pan C H. Automatic blur-kernel-size estimation for motion deblurring. The Visual Computer, 2015, 31(5):733-746 doi: 10.1007/s00371-014-0998-2
    [23] Perrone D, Diethelm R, Favaro P. Blind deconvolution via lower-bounded logarithmic image priors. In: Proceedings of the 10th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition. Hong Kong, China:Springer International Publishing, 2015. 112-125 doi: 10.1007/978-3-319-14612-6_9
    [24] Cho T S, Paris S, Horn B K P, Freeman W T. Blur kernel estimation using the radon transform. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA:IEEE, 2011. 241-248 doi: 10.1109/CVPR.2011.5995479
    [25] Krishnan D, Tay T, Fergus R. Blind deconvolution using a normalized sparsity measure. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA:IEEE, 2011. 233-240 https://www.computer.org/csdl/proceedings/cvpr/2011/0394/00/05995521-abs.html
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  2634
  • HTML全文浏览量:  322
  • PDF下载量:  500
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-22
  • 录用日期:  2016-09-30
  • 刊出日期:  2017-11-20

目录

    /

    返回文章
    返回