[1]
|
Cognitive Systems for Cognitive Assistants-CoSy[Online], available:http://www.cognitivesystems.org/, January 1, 2016
|
[2]
|
COGNIRON The Cognitive Robot Companion[Online], available:http://www.cogniron.org, January 1, 2016
|
[3]
|
CogX:Cognitive Systems that Self-Understand and Self-Extend[Online], available:http://www.cs.bham.ac.uk/research/groupings/robotics/projects/cogx, January 1, 2016
|
[4]
|
Kostavelis I, Gasteratos A. Semantic mapping for mobile robotics tasks:a survey. Robotics and Autonomous Systems, 2015, 66:86-103 doi: 10.1016/j.robot.2014.12.006
|
[5]
|
李学龙, 史建华, 董永生, 陶大程.场景图像分类技术综述.中国科学:信息科学, 2015, 45(7):827-848 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201507001.htmLi Xue-Long, Shi Jian-Hua, Dong Yong-Sheng, Tao Da-Cheng. A survey on scene image classification. Scientia Sinica:Informationis, 2015, 45(7):827-848 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201507001.htm
|
[6]
|
顾广华, 韩晰瑛, 陈春霞, 赵耀.图像场景语义分类研究进展综述.系统工程与电子技术, 2016, 38(4):936-948 http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201604032.htmGu Guang-Hua, Han Xi-Ying, Chen Chun-Xia, Zhao Yao. Survey on semantic scene classification research. Systems Engineering and Electronics, 2016, 38(4):936-948 http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201604032.htm
|
[7]
|
庄严, 陈东, 王伟, 韩建达, 王越超.移动机器人基于视觉室外自然场景理解的研究与进展.自动化学报, 2010, 36(1):1-11 http://www.aas.net.cn/CN/abstract/abstract13622.shtmlZhuang Yan, Chen Dong, Wang Wei, Han Jian-Da, Wang Yue-Chao. Status and development of natural scene understanding for vision-based outdoor moblie robot. Acta Automatica Sinica, 2010, 36(1):1-11 http://www.aas.net.cn/CN/abstract/abstract13622.shtml
|
[8]
|
Henderson J M, Hollingworth A. High-level scene perception. Annual review of psychology, 1999, 50(1):243-271 doi: 10.1146/annurev.psych.50.1.243
|
[9]
|
Pronobis A, Sjoo K, Aydemir A, Bishop A N, Jensfelt P. A framework for robust cognitive spatial mapping. In:Proceedings of the 14th International Conference on Advanced Robotics. Munich, Germany:IEEE, 2009. 1-8
|
[10]
|
Vasudevan S. Spatial Cognition for Mobile Robots:A Hierarchical Probabilistic Concept-oriented Representation of Space[Ph.D. dissertation], Swiss Federal Institute of Technology in Zurich, 2008.
|
[11]
|
Pronobis A, Jensfelt P. Hierarchical multi-modal place categorization. In:Proceedings of the 5th European Conference on Mobile Robots. Örebro, Sweden:ECMR, 2011. 159-164
|
[12]
|
Swadzba A, Wachsmuth S. Indoor scene classification using combined 3D and gist features. In:Proceedings of the 10th Asian Conference on Computer Vision. Queenstown, New Zealand:Springer, 2010. 201-215
|
[13]
|
Fazl-Ersi E, Tsotsos J K. Histogram of oriented uniform patterns for robust place recognition and categorization. The International Journal of Robotics Research, 2012, 31(4):468-483 doi: 10.1177/0278364911434936
|
[14]
|
Pronobis A. Semantic mapping with mobile robots[Ph.D. dissertation], KTH Royal Institute of Technology, Sweden, 2011.
|
[15]
|
Ulrich I, Nourbakhsh I. Appearance-based place recognition for topological localization. In:Proceedings of the 2000 IEEE International Conference on Robotics and Automation. San Francisco, CA, USA:IEEE, 2000. 1023-1029
|
[16]
|
Laumond J P. Model structuring and concept recognition:two aspects of learning for a mobile robot. In:Proceedings of the 8th International Joint Conference on Artificial Intelligence. Karlsruhe, West Germany:Morgan Kaufmann Publishers Inc., 1983. 839-841
|
[17]
|
Mozos O M, Stachniss C, Burgard W. Supervised learning of places from range data using AdaBoost. In:Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain:IEEE, 2005. 1742-1747
|
[18]
|
Mozos O M, Burgard W. Supervised learning of topological maps using semantic information extracted from range data. In:Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China:IEEE, 2006. 2772-2777
|
[19]
|
Shi L, Kodagoda S, Dissanayake G. Multi-class classification for semantic labeling of places. In:Proceedings of the 11th International Conference on Control Automation, Robotics and Vision. Singapore:IEEE, 2010. 2307-2312
|
[20]
|
Shi L, Kodagoda S, Dissanayake G. Application of semi-supervised learning with voronoi graph for place classification. In:Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve, Portugal:IEEE, 2012. 2991-2996
|
[21]
|
Sousa P, Araiijo R, Nunes U. Real-time labeling of places using support vector machines. In:Proceedings of the 2007 IEEE International Symposium on Industrial Electronics. Vigo, Spain:IEEE, 2007. 2022-2027
|
[22]
|
Premebida C, Faria D R, Souza F A, Nunes U. Applying probabilistic mixture models to semantic place classification in mobile robotics. In:Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany:IEEE, 2015. 4265-4270
|
[23]
|
Uršič P, Leonardis A, Skočaj D, Kristan M. Laser range data based room categorization using a compositional hierarchical model of space. In:Proceedings of the 2015 Austrian Robotics Workshop. Klagenfurt, Austria, 2015. 30-31
|
[24]
|
Soares S G, Araújo R. Semantic place labeling using a probabilistic decision list of AdaBoost classifiers. International Journal of Computer Information Systems and Industrial Management Applications, 2014, 6:548-559
|
[25]
|
Kaleci B, Šenler C M, Dutağaci H, Parlaktuna O. A probabilistic approach for semantic classification using laser range data in indoor environments. In:Proceedings of the 2015 International Conference on Advanced Robotics. Istanbul, Turkey:IEEE, 2015. 375-381
|
[26]
|
Friedman S, Pasula H, Fox D. Voronoi random fields:extracting the topological structure of indoor environments via place labeling. In:Proceedings of the 20th International Joint Conference on Artificial Intelligence. Hyderabad, India:Morgan Kaufmann Publishers Inc., 2007. 2109-2114
|
[27]
|
Luperto M, Li A Q, Amigoni F. A system for building semantic maps of indoor environments exploiting the concept of building typology. In:Proceedings of the 17th Annual RoboCup International Symposium. Eindhoven, Holland:Springer, 2013. 504-515
|
[28]
|
Liao Y Y, Kodagoda S, Wang Y, Shi L, Liu Y. Place classification with a graph regularized deep neural network model. IEEE Transactions on Cognitive and Developmental Systems, to be published.
|
[29]
|
Buschka P, Saffiotti A. A virtual sensor for room detection. In:Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems. Lausanne, Switzerland:IEEE, 2002. 637-642
|
[30]
|
Liu Z Y, von Wichert G. Extracting semantic indoor maps from occupancy grids. Robotics and Autonomous Systems, 2014, 62(5):663-674 doi: 10.1016/j.robot.2012.10.004
|
[31]
|
Hellbach S, Himstedt M, Bahrmann F, Riedel M, Villmann T, Böhme H J. Some room for GLVQ:semantic labeling of occupancy grid maps. In:Proceedings of the 10th International Workshop on Self-Organizing Maps. Mittweida, Germany:Springer, 2014. 133-143
|
[32]
|
Swadzba A, Wachsmuth S. A detailed analysis of a new 3D spatial feature vector for indoor scene classification. Robotics and Autonomous Systems, 2014, 62(5):646-662 doi: 10.1016/j.robot.2012.10.006
|
[33]
|
Torralba A, Murphy K P, Freeman W T, Rubin M A. Context-based vision system for place and object recognition. In:Proceedings of the 2003 IEEE International Conference on Computer Vision. Nice, France:IEEE, 2003. 273-280
|
[34]
|
Quattoni A, Torralba A. Recognizing indoor scenes. In:Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, Florida, USA:IEEE, 2009. 413-420
|
[35]
|
Madokoro H, Utsumi Y, Sato K. Scene classification using unsupervised neural networks for mobile robot vision. In:Proceedings of the 2012 SICE Annual Conference. Akita, Japan:IEEE, 2012. 1568-1573
|
[36]
|
Wu J, Rehg J M. Where am Ⅰ:place instance and category recognition using spatial PACT. In:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA:IEEE, 2008. 1-8
|
[37]
|
Pronobis A, Caputo B, Jensfelt P, Christensen H. A discriminative approach to robust visual place recognition. In:Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China:IEEE, 2006. 3829-3836
|
[38]
|
Pronobis A, Caputo B. Confidence-based cue integration for visual place recognition. In:Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, California, USA:IEEE, 2007. 2394-2401
|
[39]
|
Luo J, Pronobis A, Caputo B, Jensfelt P. Incremental learning for place recognition in dynamic environments. In:Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, California, USA:IEEE, 2007. 721-728
|
[40]
|
Pronobis A, Mozos O M, Caputo B, Jensfelt P. Multi-modal semantic place classification. The International Journal of Robotics Research, 2010, 29(2-3):298-320 doi: 10.1177/0278364909356483
|
[41]
|
Li F F, Pietro P. A Bayesian hierarchical model for learning natural scene categories. In:Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA:IEEE, 2005. 524-531
|
[42]
|
Ranganathan A. Pliss:Detecting and labeling places using online change-point detection. In:Proceedings of the 2010 Robotics:Science and Systems. Zaragoza, Spain:MIT Press, 2010. 185-192
|
[43]
|
Wu J X, Christensen H I, Rehg J M. Visual place categorization:problem, dataset, and algorithm. In:Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, MO, USA:IEEE, 2009. 4763-4770
|
[44]
|
Mozos O M, Mizutani H, Kurazume R, Hasegawa T. Categorization of indoor places using the Kinect sensor. Sensors, 2012, 12(5):6695-6711 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.396.5663
|
[45]
|
Choi W, Chao Y W, Pantofaru C, Savarese S. Understanding indoor scenes using 3D geometric phrases. In:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA:IEEE, 2013. 33-40
|
[46]
|
Costante G, Ciarfuglia T A, Valigi P, Ricci E. A transfer learning approach for multi-cue semantic place recognition. In:Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan:IEEE, 2013. 2122-2129
|
[47]
|
Ali S Y, Marhaban M H, Ahmad S A, Ramli A R. Improved SIFT algorithm for place categorization. In:Proceedings of the 10th Asian Control Conference. Kota Kinabalu, Malaysia:IEEE, 2015. 1-3
|
[48]
|
Sünderhauf N, Dayoub F, McMahon S, Talbot B, Schulz R, Corke P, Wyeth G, Upcroft B, Milford M. Place categorization and semantic mapping on a mobile robot[Online], available:http://arxiv.org/abs/1507.02428, January 1, 2016
|
[49]
|
Carrillo H, Latif Y, Neira J, Castellanos J A. Place categorization using sparse and redundant representations. In:Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, Illinois, USA:IEEE, 2014. 4950-4957
|
[50]
|
Kostavelis I, Charalampous K, Gasteratos A, Tsotsos J K. Robot navigation via spatial and temporal coherent semantic maps. Engineering Applications of Artificial Intelligence, 2016, 48:173-187 doi: 10.1016/j.engappai.2015.11.004
|
[51]
|
Jung H, Mozos O M, Iwashita Y, Kurazume R. Local N-ary Patterns:a local multi-modal descriptor for place categorization. Advanced Robotics, 2016, 30(6):402-415 doi: 10.1080/01691864.2015.1120242
|
[52]
|
Jung H, Mozos O M, Iwashita Y, Kurazume R. Indoor place categorization using co-occurrences of LBPs in gray and depth images from RGB-D sensors. In:Proceedings of the 5th International Conference on Emerging Security Technologies. Alcala de Henares, Spain:IEEE, 2014. 40-45
|
[53]
|
牛杰, 卜雄洙, 钱堃, 李众.一种融合全局及显著性区域特征的室内场景识别方法.机器人, 2015, 37(1):122-128 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201501014.htmNiu Jie, Bu Xiong-Zhu, Qian Kun, Li Zhong. An indoor scene recognition method combining global and saliency region features. Robot, 2015, 37(1):122-128 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201501014.htm
|
[54]
|
Romero-González C, Martínez-Gómez J, García-Varea I, Rodríguez-Ruiz L. 3D spatial pyramid:descriptors generation from point clouds for indoor scene classification. Machine Vision and Applications, 2016, 27(2):263-273 doi: 10.1007/s00138-015-0744-4
|
[55]
|
Martínez-Gómez J, Morell V, Cazorla M, García-Varea I. Semantic localization in the PCL library. Robotics and Autonomous Systems, 2016, 75:641-648 doi: 10.1016/j.robot.2015.09.006
|
[56]
|
Zivkovic Z, Booij O, Kröse B. From images to rooms. Robotics and Autonomous Systems, 2007, 55(5):411-418 doi: 10.1016/j.robot.2006.12.005
|
[57]
|
吴皓, 田国会, 陈西博, 张涛涛, 周风余.基于机器人服务任务导向的室内未知环境地图构建.机器人, 2010, 32(2):196-203 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201002009.htmWu Hao, Tian Guo-Hui, Chen Xi-Bo, Zhang Tao-Tao, Zhou Feng-Yu. Map building of indoor unknown environment based on robot service mission direction. Robot, 2010, 32(2):196-203 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201002009.htm
|
[58]
|
Rituerto A, Murillo A C, Guerrero J J. Semantic labeling for indoor topological mapping using a wearable catadioptric system. Robotics and Autonomous Systems, 2014, 62(5):685-695 doi: 10.1016/j.robot.2012.10.002
|
[59]
|
Zender H, Mozos O M, Jensfelt P, Kruijff G J M, Burgard W. Conceptual spatial representations for indoor mobile robots. Robotics and Autonomous Systems, 2008, 56(6):493-502 doi: 10.1016/j.robot.2008.03.007
|
[60]
|
Mozos Ó M, Triebel R, Jensfelt P, Rottmann A, Burgard W. Supervised semantic labeling of places using information extracted from sensor data. Robotics and Autonomous Systems, 2007, 55(5):391-402 doi: 10.1016/j.robot.2006.12.003
|
[61]
|
Rottmann A, Mozos O M, Stachniss C, Burgard W. Semantic place classification of indoor environments with mobile robots using boosting. In:Proceedings of the 20th National Conference on Artificial Intelligence. Pittsburgh, Pennsylvania, USA:AAAI, 2005. 1306-1311
|
[62]
|
Galindo C, Saffiotti A, Coradeschi S, Buschka P, Fernández-Madrigal J A, Gonzalez J. Multi-hierarchical semantic maps for mobile robotics. In:Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Alberta, Canada:IEEE, 2005. 2278-2283
|
[63]
|
Rogers J G, Christensen H I. A conditional random field model for place and object classification. In:Proceedings of the 2012 IEEE International Conference on Robotics and Automation. St. Paul, Minnesota, USA:IEEE, 2012. 1766-1772
|
[64]
|
Viswanathan P, Meger D, Southey T, Little J J, Mackworth A. Automated spatial-semantic modeling with applications to place labeling and informed search. In:Proceedings of the 6th Canadian Conference on Computer and Robot Vision. Kelowna, British Columbia, Canada:IEEE, 2009. 284-291
|
[65]
|
Viswanathan P, Southey T, Little J, Mackworth A. Automated place classification using object detection. In:Proceedings of the 7th Canadian Conference on Computer and Robot Vision. Ottawa, Ontario, Canada:IEEE, 2010. 324-330
|
[66]
|
Viswanathan P, Southey T, Little J, Mackworth A. Place classification using visual object categorization and global information. In:Proceedings of the 8th Canadian Conference on Computer and Robot Vision. St. Johns, Newfoundland, Canada:IEEE, 2011. 1-7
|
[67]
|
Espinace P, Kollar T, Soto A, Roy N. Indoor scene recognition through object detection. In:Proceedings of the 2010 IEEE International Conference on Robotics and Automation. Anchorage, Alaska, USA:IEEE, 2010. 1406-1413
|
[68]
|
Espinace P, Kollar T, Roy N, Soto A. Indoor scene recognition by a mobile robot through adaptive object detection. Robotics and Autonomous Systems, 2013, 61(9):932-947 doi: 10.1016/j.robot.2013.05.002
|
[69]
|
Charalampous K, Kostavelis I, Chantzakou F E, Volanis E S, Emmanouilidis C, Tsalides P, Gasteratos A. Place categorization through object classification. In:Proceedings of the 2014 IEEE International Conference on Imaging Systems and Techniques. Santorini, Greece:IEEE, 2014. 320-324
|
[70]
|
Kostavelis I, Amanatiadis A, Gasteratos A. How do you help a robot to find a place? A supervised learning paradigm to semantically infer about places. HAIS 2013:Hybrid Artificial Intelligent Systems. Berlin:Springer, 2013, 8073:324-333
|
[71]
|
Ranganathan A, Dellaert F. Semantic modeling of places using objects. In:Proceedings of the 2007 Robotics:Science and Systems Conference. Atlanta, Georgia, USA:MIT Press, 2007.
|
[72]
|
Vasudevan S, Gächter S, Nguyen V, Siegwart R. Cognitive maps for mobile robots——an object based approach. Robotics and Autonomous Systems, 2007, 55(5):359-371 doi: 10.1016/j.robot.2006.12.008
|
[73]
|
Vasudevan S, Siegwart R. Bayesian space conceptualization and place classification for semantic maps in mobile robotics. Robotics and Autonomous Systems, 2008, 56(6):522-537 doi: 10.1016/j.robot.2008.03.005
|
[74]
|
Vasudevan S, Siegwart R. A Bayesian conceptualization of space for mobile robots. In:Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, California, USA:IEEE, 2007. 715-720
|
[75]
|
Klenk M, Hawes N, Lockwood K. Representing and reasoning about spatial regions defined by context. In:Proceedings of the 2011 AAAI Fall Symposium. El Segundo, CA, USA:AAAI, 2011. 154-161
|
[76]
|
Hawes N, Klenk M, Lockwood K, Horn G S, Kellecher J D. Towards a cognitive system that can recognize spatial regions based on context. In:Proceedings of the 26th AAAI Conference on Artificial Intelligence. Toronto, Ontario, Canada:AAAI, 2012. 200-206
|
[77]
|
Ruiz-Sarmiento J R, Galindo C, González-Jiménez J. Joint categorization of objects and rooms for mobile robots. In:Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany:IEEE, 2015. 2523-2528
|
[78]
|
Chen Y X, Pan D R, Pan Y F, Liu S Z, Gu A H, Wang M. Indoor scene understanding via monocular RGB-D images. Information Sciences, 2015, 320:361-371 doi: 10.1016/j.ins.2015.03.023
|
[79]
|
Booij O, Kröse B, Peltason J, Spexard T, Hanheide M. Moving from augmented to interactive mapping. In:Proceedings of the Interactive Robot Learning-Robotics:Science and Systems 2008 Workshop. Zurich, Switzerland:IRL, 2008.
|
[80]
|
Spexard T, Li S Y, Wrede B, Fritsch J, Sagerer G, Booij O, Zivkovic Z, Terwijn B, Krose B. BIRON, where are you? Enabling a robot to learn new places in a real home environment by integrating spoken dialog and visual localization. In:Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China:IEEE, 2006. 934-940
|
[81]
|
Diosi A, Taylor G, Kleeman L. Interactive SLAM using laser and advanced sonar. In:Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain:IEEE, 2005. 1103-1108
|
[82]
|
Milford M, Schulz R, Prasser D, Wyeth G, Wiles J. Learning spatial concepts from RatSLAM representations. Robotics and Autonomous Systems, 2007, 55(5):403-410 doi: 10.1016/j.robot.2006.12.006
|
[83]
|
Nieto-Granda C, Rogers J G, Trevor A J B, Christensen H I. Semantic map partitioning in indoor environments using regional analysis. In:Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China:IEEE, 2010. 1451-1456
|
[84]
|
Topp E A, Huettenrauch H, Christensen H I, Eklundh K S. Bringing together human and robotic environment representations-a pilot study. In:Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China:IEEE, 2006. 4946-4952
|
[85]
|
Gemignani G, Capobianco R, Bastianelli E, Bloisi D D, Iocchi L, Nardi D. Living with robots:interactive environmental knowledge acquisition. Robotics and Autonomous Systems, 2016, 78:1-16 doi: 10.1016/j.robot.2015.11.001
|
[86]
|
Gemignani G, Nardi D, Bloisi D D, Capobianco R, Iocchi L. Interactive semantic mapping:experimental evaluation. In:Proceedings of the 14th International Symposium on Experimental Robotics. Tokyo, Japan:Springer, 2016. 339-355
|
[87]
|
Luperto M, Amigoni F. Exploiting structural properties of buildings towards general semantic mapping systems. In:Proceedings of the 13th International Conference on Intelligent Autonomous Systems. Padova, Italy:Springer, 2016. 375-387
|
[88]
|
Sheng W H, Du J H, Cheng Q, Li G, Zhu C, Liu M Q, Xu G Q. Robot semantic mapping through human activity recognition:a wearable sensing and computing approach. Robotics and Autonomous Systems, 2015, 68:47-58 doi: 10.1016/j.robot.2015.02.002
|
[89]
|
Martinez-Gomez J, Garcia-Varea I, Caputo B. Baseline multimodal place classifier for the 2012 robot vision task. In:Proceedings of the 2012 Conference and Labs of the Evaluation Forum. Rome, Italy:Springer, 2012. 1-10
|
[90]
|
朱博, 戴先中, 李新德.基于"原型"的机器人开放式室内场所感知算法.模式识别与人工智能, 2012, 25(1):1-10 http://www.cnki.com.cn/Article/CJFDTOTAL-MSSB201201002.htmZhu Bo, Dai Xian-Zhong, Li Xin-De. Open interior-places perception algorithm of robot based on prototype. Pattern Recognition and Artificial Intelligence, 2012, 25(1):1-10 http://www.cnki.com.cn/Article/CJFDTOTAL-MSSB201201002.htm
|
[91]
|
朱博, 戴先中, 李新德, 杨伟, 陈芳园.基于"原型"的机器人开放式室内场所感知实验研究.机器人, 2013, 35(4):491-499, 512 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201304015.htmZhu Bo, Dai Xian-Zhong, Li Xin-De, Yang Wei, Chen Fang-Yuan. Experimental study on open interior-places perception of robot based on "prototype". Robot, 2013, 35(4):491-499, 512 http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201304015.htm
|
[92]
|
Mozos O M, Jensfelt P, Zender H, Kruijff G M, Burgard W. From labels to semantics:An integrated system for conceptual spatial representations of indoor environments for mobile robots. In:Proceedings of the ICRA-07 Workshop on Semantic Information in Robotics. Rome, Italy:IEEE, 2007. 33-40
|
[93]
|
庄严, 卢希彬, 李云辉, 王伟.移动机器人基于三维激光测距的室内场景认知.自动化学报, 2011, 37(10):1232-1240 http://www.aas.net.cn/CN/abstract/abstract17612.shtmlZhuang Yan, Lu Xi-Bin, Li Yun-Hui, Wang Wei. Mobile robot indoor scene cognition using 3D laser scanning. Acta Automatica Sinica, 2011, 37(10):1232-1240 http://www.aas.net.cn/CN/abstract/abstract17612.shtml
|
[94]
|
Goertzel B, Lian R T, Arel I, de Garis H, Chen S. A world survey of artificial brain projects, Part Ⅱ:biologically inspired cognitive architectures. Neurocomputing, 2010, 74(1-3):30-49 doi: 10.1016/j.neucom.2010.08.012
|
[95]
|
乔红, 尹沛劼, 李睿, 王鹏.机器人与神经科学交叉的意义——关于智能机器人未来发展的思考.中国科学院院刊, 2015, 30(6):762-771 http://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201506007.htmQiao Hong, Yin Pei-Jie, Li Rui, Wang Peng. What is the Meaning for the Interdisciplinary Research of Robot and Neuroscience? Thoughts on the future development of intelligent robots. Bulletin of Chinese Academy of Sciences, 2015, 30(6):762-771 http://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201506007.htm
|
[96]
|
曾毅, 刘成林, 谭铁牛.类脑智能研究的回顾与展望.计算机学报, 2016, 39(1):212-222 doi: 10.11897/SP.J.1016.2016.00212Zeng Yi, Liu Cheng-Lin, Tan Tie-Niu. Retrospect and outlook of brain-inspired intelligence research. Chinese Journal of Computers, 2016, 39(1):212-222 doi: 10.11897/SP.J.1016.2016.00212
|