-
摘要: 为了有效解决文物碎片自动重组中由于断裂部位受损造成几何信息丢失,采用传统几何驱动方法容易失效的问题,本文提出一种基于形状骨架图匹配的文物碎片自动重组方法,将碎片匹配问题转化为碎片表面纹饰中非完整纹元的互补匹配问题.首先,通过提取文物碎片表面特征线得到碎片表面的纹饰信息;然后根据完整纹元的特征确定非完整纹元互补匹配的约束条件,采用视觉骨架剪枝的方法提取完全位于断裂部位的非完整纹元的形状骨架图,基于形状骨架图语法及匹配约束条件判定非完整纹元是否互补匹配;接着,将碎片上非完整纹元的顺序作为上层约束条件,采用基于带剪枝深度优先的搜索方法搜索匹配碎片;最后,以邻接碎片上非完整纹元间公共弦的端点作为邻接约束点,采用最小二乘法计算刚体变换参数得到碎片的初始位置,并采用迭代最近点方法将邻接碎片精确对齐.实验结果表明,该方法能够有效解决断裂部位存在缺损文物碎片的自动重组问题.Abstract: In order to effectively address the problem that traditional geometry-driven methods fail to reassemble the fragments with incompleteness in fracture surfaces or break-curves, an automatic reassembly method based on skeleton graph of shape matching is proposed, which transfers the matching of fragments into complementary matching of incomplete geometry texels. Firstly, the surface ornamentation information is obtained by extracting the feature lines of the fragments. Secondly, the constraints for matching texels are designed according to the features of complete texels, and a visual skeleton pruning method is utilized to generate the skeletons of the shapes of the incomplete texels and the grammar of skeleton graphs is introduced. Then, the sequence of the incomplete texels is used as the upper constraint and a depth-first searching method with pruning for adjacent fragments is presented. Finally, the endpoints of the common chords of the incomplete texels on the adjacent fragments are used as the initial matching points in order to calculate the initial position of the fragment. After that, the iterated closest point (ICP) method is employed to precisely align the adjacent fragments. Experimental results show that the proposed method can successfully solve the reassembly problem of the fragments with incompleteness in fractured surfaces and break-curves.
-
Key words:
- Reassembly of fragments /
- feature lines /
- surface adjacency constraints /
- shape matching
-
表 1 兵马俑碎片模型数据
Table 1 Data of fragment models of warriors
编号 碎片数量 碎片点云数据总量 含非完整纹元数量 G10-54 4 140 764 22 G10-39 5 418 576 33 G10-36 7 301 783 23 表 2 本文算法运行时间 (s)
Table 2 Execute time of the proposed algorithm (s)
编号 Stage ${\rm{\# }} $1 Stage ${\rm{\# }} $2 Stage ${\rm{\# }} $3 总时间 G10-54 20.513 13.671 5.118 39.302 G10-39 70.732 20.889 7.142 98.763 G10-36 58.132 12.482 5.331 75.945 -
[1] Üçoluk G, Toroslu I H. Automatic reconstruction of broken 3-D surface objects. Computers & Graphics, 1999, 23(4):573-582 http://www.academia.edu/7961995/Automatic_reconstruction_of_broken_3-D_surface_objects [2] Cooper D B, Willis A, Andrews S, Baker J, Cao Y, Han D J, Kang K B, Kong W X, Leymarie F F, Orriols X, Velipasalar S, Vote E L, Joukowsky M S, Kimia B B, Laidlaw D H, Mumford D. Bayesian pot-assembly from fragments as problems in perceptual-grouping and geometric-learning. In:Proceedings of the 16th International Conference on Pattern Recognition. Quebec City, Canada:IEEE, 2002. 297-302 [3] 樊少荣, 茹少峰, 周明全, 耿国华.破碎刚体三角网格曲面模型的特征轮廓线提取方法.计算机辅助设计与图形学学报, 2005, 17(9):2003-2009 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJF200509017.htmFan Shao-Rong, Ru Shao-Feng, Zhou Ming-Quan, Geng Guo-Hua. A method of extracting feature contour from triangular mesh surface model of fractured solid. Journal of Computer-Aided Design & Computer Graphics, 2005, 17(9):2003-2009 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJF200509017.htm [4] Oxholm G, Nishino K. Reassembling thin artifacts of unknown geometry. In:Proceedings of the 12th International Conference on Virtual Reality, Archaeology and Cultural Heritage. Aire-la-Ville, Switzerland:Eurographics Association Press, 2011. 49-56 [5] 李姬俊男, 耿国华, 周明全, 康馨月.文物碎块虚拟拼接中的表面特征优化.计算机辅助设计与图形学学报, 2014, 26(12):2149-2154 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201412007.htmLi Ji-Jun-Nan, Geng Guo-Hua, Zhou Ming-Quan, Kang Xin-Yue. Surface feature optimization for virtual matching of relic fragments. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(12):2149-2154 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201412007.htm [6] Winkelbach S, Rilk M, Schönfelder C, Wahl F M. Fast random sample matching of 3D fragments. In:Proceedings of the 26th DAGM Symposium on Pattern Recognition, Lecture Notes in Computer Science. Tübingen, Germany:Springer, 2004. 129-136 [7] Huang Q X, Flöry S, Gelfand N, Hofer M, Pottmann H. Reassembling fractured objects by geometric matching. ACM Transactions on Graphics, 2006, 25(3):569-578 doi: 10.1145/1141911 [8] Chen H, Bhanu B. 3D free-form object recognition in range images using local surface patches. Pattern Recognition Letters, 2007, 28(10):1252-1262 doi: 10.1016/j.patrec.2007.02.009 [9] 王坚, 周来水.基于最大权团的曲面粗匹配算法.计算机辅助设计与图形学学报, 2008, 20(2):167-173 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJF200802006.htmWang Jian, Zhou Lai-Shui. Surface rough matching algorithm based on maximum weight clique. Journal of Computer-Aided Design & Computer Graphics, 2008, 20(2):167-173 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJF200802006.htm [10] Mellado N, Reuter P, Schlick C. Semi-automatic geometry-driven reassembly of fractured archeological objects. In:Proceedings of the 11th International Conference on Virtual Reality, Archaeology and Cultural Heritage. Aire-la-Ville, Switzerland:Eurographics Association Press, 2010. 33-38 [11] Palmas G, Pietroni N, Cignoni P, Scopigno R. A computer-assisted constraint-based system for assembling fragmented objects. In:Proceedings of the 2013 Digital Heritage International Congress. Marseille, France:IEEE, 2013. 529-536 [12] Zhang Y H, Geng G H, Wei X R, Zhang S L, Li S S. A statistical approach for extraction of feature lines from point clouds. Computers & Graphics, 2016, 56(5):31-45 http://www.sciencedirect.com/science/article/pii/S0097849316300097 [13] Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W. Surface reconstruction from unorganized points. ACM SIGGRAPH Computer Graphics, 1992, 26(2):71-78 doi: 10.1145/142920 [14] 樊少荣. 破碎刚体互补形状匹配与拼接方法研究[博士学位论文], 西北大学, 中国, 2005Fan Shao-Rong. Research on Fractured Objects Complementary Shape Matching and Aligning[Ph.D. dissertation], Northwest University, China, 2005 [15] Sebastian T B, Klein P N, Kimia B B. Recognition of shapes by editing their shock graphs. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2004, 26(5):550-571 https://www.researchgate.net/publication/295256647_A_Statistical_Approach_for_Extraction_of_Feature_Lines_from_Point_Clouds [16] Siddiqi K, Shokoufandeh A, Dickenson S J, Zucker S W. Shock graphs and shape matching. In:Proceedings of the 6th International Conference on Computer Vision. Bombay, India:IEEE, 1998. 222-229 [17] 魏潇然. 三维文物模型边界特征提取[硕士学位论文], 西北大学, 中国, 2011Wei Xiao-Ran. Extraction of Boundary from Relic Three-Dimensional Model[Master dissertation], Northwest University, China, 2011 [18] Bai X, Latecki L J, Liu W Y. Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2007, 29(3):449-462 https://www.researchgate.net/publication/6576882_Skeleton_Pruning_by_Contour_Partitioning_with_Discrete_Curve_Evolution [19] Arun K S, Huang T S, Blostein S D. Least-squares fitting of two 3-D point sets. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1987, PAMT-9(5):698-700 https://www.researchgate.net/publication/224378053_Least-squares_fitting_of_two_3-D_point_sets_IEEE_T_Pattern_Anal [20] Huang T S, Blostein S D, Margerum E A. Least-squares estimation of motion parameters from 3-D point correspondences. In:Proceedings of the 1986 IEEE Conference Computer Vision and Pattern Recognition. Miami Beach, USA:IEEE, 1986. 112-115 [21] Besl P J, McKay H D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1992, 14(2):239-256 https://www.researchgate.net/publication/220183320_A_Method_for_Registration_of_3-D_Shapes [22] 李群辉. 基于断裂面匹配的破碎刚体复原研究[博士学位论文], 西北大学, 中国, 2013Li Qun-Hui. Research on Fractured Slid Recovery Based on Bracture Surfaces Matching[Ph.D. dissertation], Northwest University, China, 2013