-
摘要: 主成分分析是信号处理和数据统计领域内非常重要的分析工具.针对现有多个主成分提取算法收敛速度慢的问题,提出了具有快速收敛速度的神经网络算法.该算法能够并行提取信号中的多个主成分,而不需要其他额外的操作.分别采用平稳点分析法和随机离散时间分析法对所提算法的收敛性和自稳定性进行了证明.仿真实验表明,相比现有算法,所提算法不仅具有较快的收敛速度,而且具有较高的收敛精度.Abstract: Principle component analysis is a powerful tool in signal processing and data analysis. Up to now, some existing algorithms for multiple principal components extraction have a slow convergence speed. In order to solve this problem, a faster convergence algorithm is proposed, which can extract multiple principal components from the input signal in parallel. The equilibrium point analysis method and stochastic discrete time method are adopted to analyze the convergence and self-stabilizing property of the proposed algorithm. Simulation results show that compared with some existing algorithms, the proposed algorithm not only has a faster convergence speed but also has a higher estimating accuracy.
-
表 1 不同重构维数下三种算法的重构误差
Table 1 Reconstitution errors of the three algorithms with different reconstitution dimensions
重构维数 1 4 7 FMPCE 0.094 0.0837 0.0813 MED-GOPAST 0.0959 0.0852 0.0846 MNIC 0.1283 0.1015 0.0933 -
[1] Kong X Y, Hu C H, Ma H G, Han C Z. A unified self-stabilizing neural network algorithm for principal and minor components extraction. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(2): 185-198 doi: 10.1109/TNNLS.2011.2178564 [2] 李伟, 焦松, 陆凌云, 杨明.基于特征差异的仿真模型验证及选择方法.自动化学报, 2014, 40(10): 2134-2144 http://www.aas.net.cn/CN/abstract/abstract18488.shtmlLi Wei, Jiao Song, Lu Ling-Yun, Yang Ming. Validation and selection of simulation model based on the feature differences. Acta Automatica Sinica, 2014, 40(10): 2134-2144 http://www.aas.net.cn/CN/abstract/abstract18488.shtml [3] 潘宗序, 禹晶, 肖创柏, 孙卫东.基于光谱相似性的高光谱图像超分辨率算法.自动化学报, 2014, 40(12): 2797-2807 http://www.aas.net.cn/CN/abstract/abstract18558.shtmlPan Zong-Xu, Yu Jing, Xiao Chuang-Bai, Sun Wei-Dong. Spectral similarity-based super resolution for hyperspectral images. Acta Automatica Sinica, 2014, 40(12): 2797-2807 http://www.aas.net.cn/CN/abstract/abstract18558.shtml [4] 樊继聪, 王友清, 秦泗钊.联合指标独立成分分析在多变量过程故障诊断中的应用.自动化学报, 2013, 39(5): 494-501 http://www.aas.net.cn/CN/abstract/abstract17927.shtmlFan Ji-Cong, Wang You-Qing, Qin S J. Combined indices for ICA and their applications to multivariate process fault diagnosis. Acta Automatica Sinica, 2013, 39(5): 494-501 http://www.aas.net.cn/CN/abstract/abstract17927.shtml [5] 高全学, 高菲菲, 郝秀娟, 程洁.基于图像欧氏距离的二维局部多样性保持投影.自动化学报, 2013, 39(7): 1062-1070 http://www.aas.net.cn/CN/abstract/abstract18134.shtmlGao Quan-Xue, Gao Fei-Fei, Hao Xiu-Juan, Cheng Jie. Image Euclidean distance-based two-dimensional local diversity preserving projection. Acta Automatica Sinica, 2013, 39(7): 1062-1070 http://www.aas.net.cn/CN/abstract/abstract18134.shtml [6] Oja E. A simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 1982, 15(3): 267-273 doi: 10.1007/BF00275687 [7] Miao Y F, Hua Y B. Fast subspace tracking and neural network learning by a novel information criterion. IEEE Transactions on Signal Processing, 1998, 46(7): 1967-1979 doi: 10.1109/78.700968 [8] Peng D Z, Yi Z, Xiang Y. A unified learning algorithm to extract principal and minor components. Digital Signal Processing, 2009, 19(4): 640-649 doi: 10.1016/j.dsp.2009.03.004 [9] Kong X Y, Hu C H, Han C Z. A dual purpose principal and minor subspace gradient flow. IEEE Transactions on Signal Processing, 2012, 60(1): 197-210 doi: 10.1109/TSP.2011.2169060 [10] Ouyang S, Bao Z. Fast principal component extraction by a weighted information criterion. IEEE Transactions on Signal Processing, 2002, 50(8): 1994-2002 doi: 10.1109/TSP.2002.800395 [11] Oja E, Ogawa H, Wangviwattana J. Principal component analysis by homogeneous neural networks, Part I: the weighted subspace criterion. IEICE Transactions on Information and Systems, 1992, E75-D(3): 366-375 [12] Tanaka T. Generalized weighted rules for principal components tracking. IEEE Transactions on Signal Processing, 2005, 53(4): 1243-1253 doi: 10.1109/TSP.2005.843698 [13] Bartelmaos S, Abed-Meraim K. Fast principal component extraction using Givens rotations. IEEE Signal Processing Letters, 2008, 15: 369-372 doi: 10.1109/LSP.2008.920006 [14] Li J W, Li C X. Information criterion based fast PCA adaptive algorithm. Journal of Systems Engineering and Electronics, 2007, 18(2): 377-384 doi: 10.1016/S1004-4132(07)60101-7 [15] Thameri M, Abed-Meraim K, Belouchrani A. Low complexity adaptive algorithms for principal and minor component analysis. Digital Signal Processing, 2013, 23(1): 19-29 doi: 10.1016/j.dsp.2012.09.007 [16] Thameri M, Kammoun A, Abed-Meraim K, Belouchrani A. Fast principal component analysis and data whitening algorithms. In: Proceedings of the 7th International Workshop on Systems, Signal Processing and their Applications. Tipaza, Algeria: IEEE, 2011. 139-142 [17] Chen T P, Amari S I, Lin Q. A unified algorithm for principal and minor components extraction. Neural Networks, 1998, 11(3): 385-390 doi: 10.1016/S0893-6080(98)00004-5 [18] Kong X Y, An Q S, Ma H G, Han C Z, Zhang Q. Convergence analysis of deterministic discrete time system of a unified self-stabilizing algorithm for PCA and MCA. Neural Networks, 2012, 36: 64-72 doi: 10.1016/j.neunet.2012.08.016 [19] Oja E. Principal components, minor components and linear neural networks. Neural Networks, 1992, 5(6): 927-935 doi: 10.1016/S0893-6080(05)80089-9 [20] Kung S Y, Diamantaras K I, Taur J S. Adaptive principal component extraction (APEX) and applications. IEEE Transactions on Signal Processing, 1994, 42(5): 1202-1217 doi: 10.1109/78.295198 [21] Möller R. A self-stabilizing learning rule for minor component analysis. International Journal of Neural Systems, 2004, 14(1): 1-8 doi: 10.1142/S0129065704001863 [22] 方蔚涛, 马鹏, 成正斌, 杨丹, 张小洪.二维投影非负矩阵分解算法及其在人脸识别中的应用.自动化学报, 2012, 38(9): 1503-1512 http://www.aas.net.cn/CN/abstract/abstract17761.shtmlFang Wei-Tao, Ma Peng, Cheng Zheng-Bin, Yang Dan, Zhang Xiao-Hong. 2-dimensional projective non-negative matrix factorization and its application to face recognition. Acta Automatica Sinica, 2012, 38(9): 1503-1512 http://www.aas.net.cn/CN/abstract/abstract17761.shtml