2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

汽车发动机失火故障诊断方法研究综述

郑太雄 张瑜 李永福

郑太雄, 张瑜, 李永福. 汽车发动机失火故障诊断方法研究综述. 自动化学报, 2017, 43(4): 509-527. doi: 10.16383/j.aas.2017.c160276
引用本文: 郑太雄, 张瑜, 李永福. 汽车发动机失火故障诊断方法研究综述. 自动化学报, 2017, 43(4): 509-527. doi: 10.16383/j.aas.2017.c160276
ZHENG Tai-Xiong, ZHANG Yu, LI Yong-Fu. Misfire Fault Diagnosis of Automobile Engine: A Review. ACTA AUTOMATICA SINICA, 2017, 43(4): 509-527. doi: 10.16383/j.aas.2017.c160276
Citation: ZHENG Tai-Xiong, ZHANG Yu, LI Yong-Fu. Misfire Fault Diagnosis of Automobile Engine: A Review. ACTA AUTOMATICA SINICA, 2017, 43(4): 509-527. doi: 10.16383/j.aas.2017.c160276

汽车发动机失火故障诊断方法研究综述

doi: 10.16383/j.aas.2017.c160276
基金项目: 

重庆科技人才培养计划 CSTC2014KJRC-QNRC30002

国家自然科学基金 61304197

重庆市自然科学基金 CSTC2014JCYJA60003

重庆市第七届科慧杯研究生创新创业大赛 Chongqing Teaching Research [2015] No.13

国家重点研发计划项目 2016YFB0100906

详细信息
    作者简介:

    郑太雄 重庆邮电大学教授, 博士.主要研究方向为汽车电子.E-mail:zhengtx@cqupt.edu.cn

    张瑜 重庆邮电大学硕士研究生.主要研究方向为汽车发动机失火故障诊断.E-mail:zhangycqupt@163.com

    通讯作者:

    LI Yong-Fu Associate professor at Chongqing University of Posts and Telecommunications. Since 2014 to 2016, Dr. Li has been worked as a post-doctor at Purdue University, USA. His research interest covers connected and autonomous vehicles, intelligent transportation systems, automotive electronics and control theory and application. Corresponding author of this paper

Misfire Fault Diagnosis of Automobile Engine: A Review

Funds: 

Chongqing Scientific and Technical Talent Project CSTC2014KJRC-QNRC30002

National Natural Science Foundation of China 61304197

Natural Science Foundation of Chongqing CSTC2014JCYJA60003

The Seventh Kehui Cup Innovation & Entrepreneurship Competition for Postgraduate Chongqing Teaching Research [2015] No.13

National Key Research and Development Project 2016YFB0100906

More Information
    Author Bio:

    Ph. D., professor at Chongqing University of Posts and Telecommunications. His main research interest is automotive electronics

    Master student at Chongqing University of Posts and Telecommunications. His main research interest is misfire fault diagnosis of automobile engine

  • 摘要: 失火故障诊断是汽车车载诊断系统(On-board diagnostic,OBD)的重要组成部分,其直接关系到车辆行驶过程中的排放、燃油消耗和发动机损伤.本文对近年来国内外关于失火故障诊断方法的研究工作进行了系统性地总结和分析,重点介绍了汽车发动机失火故障诊断的判别依据、失火诊断方法分类、观测器设计等问题.最后对失火故障诊断的未来发展作了几点展望.
    1)  本文责任编委 钟麦英
  • 图  1  发动机失火故障诊断依据

    Fig.  1  Misfire fault diagnostic basis of automobile engine

    图  2  发动机失火故障诊断依据整体评价

    Fig.  2  Overall evaluation of engine misfire fault diagnostic basis

    图  3  失火故障诊断方法分类

    Fig.  3  Classification of misfire fault diagnosis methods

    图  4  故障数据预处理过程

    Fig.  4  Fault data pretreatment process

    图  5  残差生成过程

    Fig.  5  Residual generating process

    图  6  多传感数据融合失火故障诊断

    Fig.  6  Multiple sensor misfire fault diagnosis based on data fusion

    图  7  结合云平台的失火故障诊断

    Fig.  7  Misfire fault diagnosis combined with cloud platform

    表  1  基于数据的失火故障诊断方法评价

    Table  1  Evaluation of misfire fault diagnosis methods based on data

    特点 优点 缺点
    1) 核心在于数据获取与处理分析数据特征, 寻找失火时的变化规律;
    2) 信号处理有助于提高响应速度和故障诊断的精度;
    3) 多种算法结合增加了计算的复杂度, 但提高了故障诊断精度;
    4) 多缸失火难度较大, 精度难以保证, 有待进一步研究.
    1) 数据获取途径较多, 且较为可靠, 失火故障诊断精度较高;
    2) 此类方法具有很大的延展性, 可应用于发动机不同故障的诊断方案.
    1) 数据量的大小对响应速度影响较大, 且应尽量涵盖所有可能的工况和故障类型, 不利于在线失火故障诊断;
    2) 缺乏对数据本身物理意义的洞察, 且变工况情形使故障诊断精度降低, 实时性变差.
    下载: 导出CSV

    表  2  基于模型的失火故障诊断方法评价

    Table  2  Evaluation of misfire fault diagnosis methods based on model

    特点 优点 缺点
    1) 关键在于寻找具体的物理参数, 通过对参数的跟踪或估计, 以及对参数本身物理意义的理解, 达到失火诊断的目的;
    2) 其过程的实现需得到参数模型与观测器模型之间的残差向量.
    1) 实时性好, 故障诊断精度较高, 有利于在线失火故障诊断的实现;
    2) 提供了一个对参数本身物理意义认知的视野, 有利于对失火故障原因的分析.
    1) 发动机状态复杂性高, 模型本身存在不确定性, 导致系统状态监测难度加大;
    2) 多缸失火故障诊断仍难度较大, 不能准确识别失火故障的发生原因.
    下载: 导出CSV

    表  3  基于数据和模型结合的失火故障诊断方法评价

    Table  3  Evaluation of misfire fault diagnosis methods based on data and model

    特点 优点 缺点
    结合了基于数据和模型的失火诊断方法的优点. 提高了失火故障诊断精度, 增强了鲁棒性, 更加适用于变工况等情形的失火故障诊断方法实现. 增大了诊断方法的复杂度, 计算负荷较大.
    下载: 导出CSV
  • [1] Mohammadpour J, Franchek M, Grigoriadis K. A survey on diagnostics methods for automotive engines. In:Proceedings of the 2011 American Control Conference. San Francisco, CA, USA:IEEE, 2011. 985-990
    [2] Nimmo I. Adequately address abnormal situation operations. Chemical Engineering Progress, 1995, 91(9):36-45
    [3] Smith K S, Ran L, Penman J. Real-time detection of intermittent misfiring in a voltage-fed PWM inverter induction-motor drive. IEEE Transactions on Industrial Electronics, 1997, 44(4):468-476 doi: 10.1109/41.605620
    [4] Ding S X. Model-based Fault Diagnosis Techniques. Berlin Heidelberg:Springer, 2008. 1-11
    [5] 李秋玲. 基于优化型支持向量机的发动机失火故障诊断研究[硕士学位论文], 太原理工大学, 中国, 2015

    Li Qiu-Ling. Research based on the Optimization Model of Support Vector Machine for Car-engine Misfire Fault Diagnosis[Master dissertation], Taiyuan University of Technology, China, 2015
    [6] 刘升刚. 基于神经网络的电喷发动机故障诊断技术研究[硕士学位论文], 重庆理工大学, 中国, 2012

    Liu Sheng-Gang. A Study on EFI Engine Fault Diagnosis Technology based on Neural Networks[Master dissertation], Chongqing University of Technology, China, 2012
    [7] Merkisz J, Boguś P, Grzeszczyk R. Overview of engine misfire detection methods used in on board diagnostics. Journal of KONES, 2001, 8(1-2):326-341
    [8] Venkatasubramanian V, Rengaswamy R, Yin K W, Kavuri S N. A review of process fault detection and diagnosis:Part Ⅰ:quantitative model-based methods. Computers and Chemical Engineering, 2003, 27(3):293-311 doi: 10.1016/S0098-1354(02)00160-6
    [9] Venkatasubramanian V, Rengaswamy R, Kavuri S N. A review of process fault detection and diagnosis:Part Ⅱ:qualitative models and search strategies. Computers and Chemical Engineering, 2003, 27(3):313-326 doi: 10.1016/S0098-1354(02)00161-8
    [10] Venkatasubramanian V, Rengaswamy R, Kavuri S N, Yin K W. A review of process fault detection and diagnosis:Part Ⅲ:process history based methods. Computers and Chemical Engineering, 2003, 27(3):327-346 doi: 10.1016/S0098-1354(02)00162-X
    [11] Janakiraman V M, Nguyen X, Stemiak J, Assanis D. Identification of the dynamic operating envelope of HCCI engines using class imbalance learning. IEEE Transactions on Neural Networks And Learning Systems, 2015, 26(1):98-112 doi: 10.1109/TNNLS.2014.2311466
    [12] Mayhew C G, Knierim K L, Chaturvedi N A, Park S, Ahmed J, Kojic A. Reduced-order modeling for studying and controlling misfire in four-stroke HCCI engines. In:Proceedings of the 48th IEEE Conference on Decision and Control. Shanghai, China:IEEE, 2009. 5194-5199
    [13] Knierim K L, Park S, Ahmed J, Kojic A, Orlandini I, Kulzer A. Simulation of misfire and strategies for misfire recovery of gasoline HCCI. In:Proceedings of the 2008 American Control Conference. Seattle, WA, USA:IEEE, 2008. 3947-3952
    [14] Bahri B, Aziz A A, Shahbakhti M, Said M F M. Understanding and detecting misfire in an HCCI engine fuelled with ethanol. Applied Energy, 2013, 108:24-33 doi: 10.1016/j.apenergy.2013.03.004
    [15] Mohammadpour J, Franchek M, Grigoriadis K. A survey on diagnostic methods for automotive engines. International Journal of Engine Research, 2012, 13(1):41-64 doi: 10.1177/1468087411422851
    [16] Williams J. An Overview of Misfiring Cylinder Engine Diagnostic Techniques based on Crankshaft Angular Velocity Measurements. SAE Technical Paper 960039, 1996.
    [17] Chen J, Randall R, Peeters B, Desmet W, Van der Auweraer H. Artificial neural network based fault diagnosis of IC engines. Key Engineering Materials, 2012, 518:47-56 doi: 10.4028/www.scientific.net/KEM.518
    [18] Chen J, Randall R B, Peerers B, Van der Auweraer H, Desmet W. Automated misfire diagnosis in engines using torsional vibration and block rotation. Journal of Physics:Conference Series, 2012, 364(1):012020 http://adsabs.harvard.edu/abs/2012JPhCS.364a2020C
    [19] 徐晓齐. OBD车载诊断系统与维修案例解析.北京:化学工业出版社, 2015. 13-16

    Xu Xiao-Qi. On-Board Diagnosis System and Maintenance Case Analysis. Beijing:Chemical Industry Press, 2015. 13-16
    [20] Alkhateeb A, Das M. A model based data normalization technique for improving performance of engine misfire detection algorithms. In:Proceedings of the 2004 IEEE Electro/Information Technology Conference. Milwaukee, WI, USA:IEEE, 2004. 115-124
    [21] Gevecia M, Osburn A W, Franchek M A. An Investigation of Crankshaft Oscillations for Cylinder Health Diagnostics. Mechanical Systems and Signal Processing, 2005, 19(5):1107-1134 doi: 10.1016/j.ymssp.2004.06.009
    [22] Liu L Y, Yang H L, Plee S, Naber J. Windowed selected moving autocorrelation (WSMA), tri-correlation (TriC), and misfire detection. SAE Technical Paper 2005-01-0647, 2005.
    [23] 任卫军, 贺昱曜, 张卫钢.基于曲轴段加速度的内燃机失火故障在线诊断.汽车工程, 2010, 32(4):339-342 http://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201004012.htm

    Ren Wei-Jun, He Yu-Yao, Zhang Wei-Gang. On-line diagnosis on misfire fault of internal combustion engine based on crankshaft segment acceleration. Automotive Engineering, 2010, 32(4):339-342 http://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201004012.htm
    [24] Nishibe Y, Nonomura Y, Tsukada K, Takeuchi M, Miyashita M, Ito K. Determination of engine misfiring using magnetoelastic torque sensor. IEEE Transactions on Instrumentation and Measurement, 1998, 47(3):760-765 doi: 10.1109/19.744343
    [25] Sood A K, Fahs A A, Henein N A. Engine fault analysis:Part Ⅱ-parameter estimation approach. IEEE Transactions on Industrial Electronics, 1985, IE-32(4):301-307 doi: 10.1109/TIE.1985.350101
    [26] Haskara I, Mianzo L. Real-time cylinder pressure and indicated torque estimation via second order sliding modes. In:Proceedings of the 2001 American Control Conference. Arlington, VA, USA:IEEE, 2001. 3324-3328
    [27] Helm S, Kozek M, Jakubek S. Combustion torque estimation and misfire detection for calibration of combustion engines by parametric Kalman filtering. IEEE Transactions on Industrial Electronics, 2012, 59(11):4326-4337 doi: 10.1109/TIE.2012.2193855
    [28] Jung D, Eriksson L, Frisk E, Krysander M. Development of misfire detection algorithm using quantitative FDI performance analysis. Control Engineering Practice, 2015, 34:49-60 doi: 10.1016/j.conengprac.2014.10.001
    [29] Molinar-Monterrubio J, Castro-Linares R. Sliding mode observer for internal combustion engine misfire detection. In:Proceedings of the 2007 Electronics, Robotics and Automotive Mechanics Conference. Morelos, Mexico:IEEE, 2007. 620-624
    [30] Molinar-Monterrubio J, Castro-Linares R. Internal combustion engine parametric identification scheme for misfire fault detection:experimental results. In:Proceedings of the 2009 IEEE International Conference on Industrial Technology. Gippsland, VIC, UK:IEEE, 2009. 1-6
    [31] Tinaut F V, Melgar A, Laget H, Domínguez J I. Misfire and compression fault detection through the energy model. Mechanical Systems and Signal Processing, 2007, 21(3):1521-1535 doi: 10.1016/j.ymssp.2006.05.006
    [32] Liu J M, Shi Y P, Zhang X M, Xu S Y, Dong L J. Fuel injection system fault diagnosis based on cylinder head vibration signal. Procedia Engineering, 2011, 16:218-223 doi: 10.1016/j.proeng.2011.08.1075
    [33] 乔新勇, 刘建敏, 张小明.基于神经网络信息融合的发动机失火故障诊断.内燃机工程, 2009, 30(1):74-79 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJG200901018.htm

    Qiao Xin-Yong, Liu Jian-Min, Zhang Xiao-Ming. A method for diagnosing misfiring fault of engine based on neural network data fusion. Chinese Internal Combustion Engine Engineering, 2009, 30(1):74-79 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJG200901018.htm
    [34] Devasenapati S B, Sugumaran V, Ramachandran K I. Misfire identification in a four-stroke four-cylinder petrol engine using decision tree. Expert Systems with Applications, 2010, 37(3):2150-2160 doi: 10.1016/j.eswa.2009.07.061
    [35] Willimowski M, Isermann R. A Time Domain based Diagnostic System for Misfire Detection in Spark-ignition Engines by Exhaust-gas Pressure Analysis. SAE Technical Paper 2000-01-0366, 2000.
    [36] 范晓梅, 许勇, 李炎.基于EMD算法的发动机故障监测研究.内燃机学报, 2009, 27(3):282-287 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJX200903016.htm

    Fan Xiao-Mei, Xu Yong, Li Yan. Study on engine monitoring and fault diagnosis based on EMD algorithm. Transactions of CSICE, 2009, 27(3):282-287 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJX200903016.htm
    [37] Kim S, Minho C, Kooksang S. The misfire detection by the exhaust pressure ascent rate. Transactions of the Korean Society of Automotive Engineers, 2003, 11(2):1-7
    [38] 李增芳, 何勇.基于粗糙集与BP神经网络的发动机故障诊断模型.农业机械学报, 2005, 36(8):118-121 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-YQYB200812001053.htm

    Li Zeng-Fang, He Yong. Study on fault diagnosis model of misfire in engines based on rough set theory and neural network technology. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(8):118-121 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-YQYB200812001053.htm
    [39] Rodriguez C, Rementeria S, Martin J I, Lafuente A, Muguerza J, Perez J. A modular neural network approach to fault diagnosis. IEEE Transactions on Neural Networks, 1996, 7(2):326-340 doi: 10.1109/72.485636
    [40] 毕晓君, 柳长源, 卢迪.基于PSO-RVM算法的发动机故障诊断.哈尔滨工程大学学报, 2014, 35(2):245-249 http://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201402019.htm

    Bi Xiao-Jun, Liu Chang-Yuan, Lu Di. Engine fault diagnosis method based on PSO-RVM algorithm. Journal of Harbin Engineering University, 2014, 35(2):245-249 http://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201402019.htm
    [41] Tamura M, Saito H, Murata Y, Kokubu K, Morimoto S. Misfire detection on internal combustion engines using exhaust gas temperature with low sampling rate. Applied Thermal Engineering, 2011, 31(17-18):4125-4131 doi: 10.1016/j.applthermaleng.2011.08.026
    [42] 孙宜权, 张英堂, 李志宁, 程利军, 李志伟.运用Vold-Kalman阶比跟踪的发动机失火故障在线诊断.振动、测试与诊断, 2013, 33(6):1014-1018 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201306020.htm

    Sun Yi-Quan, Zhang Ying-Tang, Li Zhi-Ning, Cheng Li-Jun, Li Zhi-Wei. Online misfire fault diagnosis using Vold-Kalman order rracking. Journal of Vibration, Measurement & Diagnosis, 2013, 33(6):1014-1018 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201306020.htm
    [43] 樊新海, 姚炽伟, 曾兴祥, 王战军.基于排气噪声局域均值分解的失火故障诊断.内燃机工程, 2013, 34(4):38-41 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201304008.htm

    Fan Xin-Hai, Yao Chi-Wei, Zeng Xing-Xiang, Wang Zhan-Jun. Misfire fault diagnosis based on local mean decomposition of exhaust noise. Chinese Internal Combustion Engine Engineering, 2013, 34(4):38-41 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201304008.htm
    [44] Boguś P, Merkisz J. Misfire detection of locomotive diesel engine by non-linear analysis. Mechanical Systems and Signal Processing, 2005, 19(4):881-899 doi: 10.1016/j.ymssp.2004.06.004
    [45] Adaileh W M. Engine fault diagnosis using acoustic signals. Applied Mechanics and Materials, 2013, 295-298:2013-2020 doi: 10.4028/www.scientific.net/AMM.295-298
    [46] 王赟松.利用氧传感器诊断电控发动机故障.交通运输工程学报, 2002, 2(2):48-51 http://www.cnki.com.cn/Article/CJFDTOTAL-NTHY201103016.htm

    Wang Yun-Song. Diagnosing electron-controlled gasoline engine default by exhaust gas sensor. Journal of Traffic and Transportation Engineering, 2002, 2(2):48-51 http://www.cnki.com.cn/Article/CJFDTOTAL-NTHY201103016.htm
    [47] Ma Q H, Zhang C Y, Ren H J, Zheng X J. Fault diagnosis of electronic controlled engine by using oxygen sensor. In:Proceedings of the 3rd International Conference on Measuring Technology and Mechatronics Automation. Shanghai, China:IEEE, 2011. 194-197
    [48] Wang H L, Sun W, Liu Y. Study on misfire diagnostic strategy of on-board diagnostics system on LPG passenger car. In:Proceedings of the 2011 Asia-Pacific Power and Energy Engineering Conference. Wuhan, China:IEEE, 2011. 1-4
    [49] Naik S. Advanced misfire detection using adaptive signal processing. International Journal of Adaptive Control and Signal Processing, 2004, 18(2):181-198 doi: 10.1002/(ISSN)1099-1115
    [50] 王银辉, 黄开胜, 林志华, 王东亮.发动机多缸随机失火诊断算法研究.内燃机工程, 2012, 33(1):18-21 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201201005.htm

    Wang Yin-Hui, Huang Kai-Sheng, Lin Zhi-Hua, Wang Dong-Liang. Study of engine multi-cylinder random misfire detection. Chinese Internal Combustion Engine Engineering, 2012, 33(1):18-21 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201201005.htm
    [51] Cavina N, Cipolla G, Marcigliano F, Moro D, Poggio L. A methodology for increasing the signal to noise ratio for the misfire detection at high speed in a high performance engine. Control Engineering Practice, 2006, 14(3):243-250 doi: 10.1016/j.conengprac.2005.03.024
    [52] Ali A, Magnor O, Schultalbers M. Misfire detection using a neural network based pattern recognition technique. In:Proceedings of the 2007 International Conference on Electrical Engineering. Lahore, Pakistan:IEEE, 2007. 1-6
    [53] Dumele H, Horn M. Misfire detection by evaluating the small signal of a glow plug. In:Proceedings of the 2008 IEEE Sensors. Lecce, Italy:IEEE, 2008. 784-786
    [54] 张志永, 李从跃, 曹银波, 李理光.基于离子电流反馈的失火循环内补火控制试验.内燃机学报, 2012, 30(1):56-61 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJX201201010.htm

    Zhang Zhi-Yong, Li Cong-Yue, Cao Yin-Bo, Li Li-Guang. An experimental study of re-spark ignition control in misfired combustion cycle based on ion current feedback. Transactions of CSICE, 2012, 30(1):56-61 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJX201201010.htm
    [55] Fan Q W, Bian J, Lu H F, Tong S Y, Li L G. Misfire detection and re-ignition control by ion current signal feedback during cold start in two-stage direct-injection engines. International Journal of Engine Research, 2014, 15(1):37-47 doi: 10.1177/1468087412458099
    [56] 高忠权, 李春艳, 刘兵, 黄佐华, 富田荣二, 吉山定见.采用离子电流法的发动机非正常燃烧诊断.西安交通大学学报, 2015, 49(5):1-6 doi: 10.7652/xjtuxb201505001

    Gao Zhong-Quan, Li Chun-Yan, Liu Bing, Huang Zuo-Hua, Eiji T, Sadami Y. Detection of engine abnormal combustion with ion current method. Journal of Xi'an Jiaotong University, 2015, 49(5):1-6 doi: 10.7652/xjtuxb201505001
    [57] 高青, 刘成材, 金英爱, 马纯强, 张广军, 苏俊林.发动机起动动态过程富氧燃烧排放及其失火特性研究.内燃机工程, 2010, 31(3):7-10 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201003003.htm

    Gao Qing, Liu Cheng-Cai, Jin Ying-Ai, Ma Chun-Qiang, Zhang Guang-Jun, Su Jun-Lin. Investigation on start emission and misfire characteristics of spark ignition engine intaking oxygen-enriched air. Chinese Internal Combustion Engine Engineering, 2010, 31(3):7-10 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201003003.htm
    [58] Assanis D N, Poola R B, Sekar R, Cataldi G R. Study of using oxygen-enriched combustion air for locomotive diesel engines. Journal of Engineering for Gas Turbines and Power, 2000, 123(1):157-166
    [59] Liu L T, Liao H Y, Chen X L, Feng Y M, Xiao Y K. Diesel misfire fault diagnosis using vibration signal over cylinder head. Communication Systems and Information Technology, Berlin Heidelberg:Springer, 2011. 761-768
    [60] Chang J, Kim M, Min K. Detection of misfire and knock in spark ignition engines by wavelet transform of engine block vibration signals. Measurement Science and Technology, 2002, 13(7):1108-1114 doi: 10.1088/0957-0233/13/7/319
    [61] Lee M, Yoon M, Sunwoo M, Park S, Lee K. Development of a new misfire detection system using neural network. International Journal of Automotive Technology, 2006, 7(5):637-644
    [62] Zhu Z Q, Yang J, Zhang X M, Li X L. Misfire diagnosis of diesel engine based on short-time vibration characters. Applied Mechanics and Materials, 2010, 34-35:301-305 doi: 10.4028/www.scientific.net/AMM.34-35
    [63] Bohn C, Magnor O, Schultalbers M. State observer based analysis of crankshaft speed measurements with application to misfire detection. In:Proceedings of the 2005 International Conference on Control and Automation. Budapest, Hungary:IEEE, 2005. 239-244
    [64] 康葳, 乔新勇, 安钢.基于统计模拟的柴油机失火故障的诊断方法.内燃机工程, 2004, 25(5):66-68 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJG200405016.htm

    Kang Wei, Qiao Xin-Yong, An Gang. Method of diagnosis diesel engine misfire fault based on statistical simulation. Chinese Internal Combustion Engine Engineering, 2004, 25(5):66-68 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJG200405016.htm
    [65] Rizvi M A, Bhatti A I. Hybrid model for early detection of misfire fault in SI engines. In:Proceedings of the 13th IEEE International Multitopic Conference. Islamabad, Pakistan:IEEE, 2009. 1-6
    [66] Rizvi M A, Bhatti A I, Butt Q R. Fault detection in a class of hybrid system. In:Proceedings of International Conference on Emerging Technologies. Islamabad, Pakistan:IEEE, 2009. 130-135
    [67] Moro D, Azzoni P, Minelli G. Misfire Pattern Recognition in High Performance SI 12-cylinder Engine. SAE Technical Paper 980521, 1998.
    [68] Rizvi M A, Zaidi S S H, Akram M A, Bhatti A I. Misfire fault detection in SI engine using sliding mode observer. In:Proceedings of the 38th Annual Conference on IEEE Industrial Electronics Society. Montreal, QC, Canada:IEEE, 2012. 5114-5119
    [69] 张培林, 王怀光, 张磊, 王卫国, 李兵.非负矩阵分解在发动机故障特征提取中的应用.振动工程学报, 2013, 26(6):944-950 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201306018.htm

    Zhang Pei-Lin, Wang Huai-Guang, Zhang Lei, Wang Wei-Guo, Li Bing. Feature extraction for engine fault diagnosis by utilizing adaptive multi-scale morphological gradient and non-negative matrix factorization. Journal of Vibration Engineering, 2013, 26(6):944-950 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201306018.htm
    [70] Cavina N, Corti E, Minelli G, Serra G. Misfire Detection based on Engine Speed Time-frequency Analysis. SAE Technical Paper 2002-01-0480, 2002.
    [71] Ponti F. Instantaneous engine speed time-frequency analysis for onboard misfire detection and cylinder isolation in a V12 high-performance engine. Journal of Engineering for Gas Turbines and Power, 2008, 130(1):012805 doi: 10.1115/1.2436563
    [72] Ma X P, Xia Z C, Wu H T, Huang X. Combined Frequency Domain Analysis and Fuzzy Logic for Engine Misfire Diagnosis. SAE Technical Paper 2015-01-0207, 2015.
    [73] 李增芳, 何勇, 宋海燕.基于主成分分析和集成神经网络的发动机故障诊断模型研究.农业工程学报, 2006, 22(4):131-134 http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200604027.htm

    Li Zeng-Fang, He Yong, Song Hai-Yan. Fault diagnosis model for engines based on principal component analysis and integrated neural network. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(4):131-134 http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200604027.htm
    [74] 周瑞, 杨建国.基于粗糙集与支持向量机的发动机故障诊断研究.内燃机学报, 2006, 24(4):379-383 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJX200604016.htm

    Zhou Rui, Yang Jian-Guo. The research of engine fault diagnosis based on rough sets and support vector machine. Transactions of CSICE, 2006, 24(4):379-383 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJX200604016.htm
    [75] Liu J M, Li X L, Zhang X M, Xu S Y, Dong L J. Misfire diagnosis of diesel engine based on rough set and neural network. Procedia Engineering, 2011, 16:224-229 doi: 10.1016/j.proeng.2011.08.1076
    [76] 梁锋, 冯静, 肖文雍, 谭文春, 卓斌. BP神经网络在高压共轨式电控柴油机故障诊断中的应用.内燃机工程, 2004, 25(2):46-49 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJG200402013.htm

    Liang Feng, Feng Jing, Xiao Wen-Yong, Tan Wen-Chun, Zhuo Bin. Application of BP neural network to fault diagnosis of high-pressure common rail fuel system of electronic control diesel engines. Chinese Internal Combustion Engine Engineering, 2004, 25(2):46-49 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJG200402013.htm
    [77] 陆怀民, 郭秀荣, 杜丹丰, 于晓东. RBF网络在电喷发动机故障诊断中的应用.农业机械学报, 2005, 36(12):35-38 doi: 10.3969/j.issn.1000-1298.2005.12.010

    Lu Huai-Min, Guo Xiu-Rong, Du Dan-Feng, Yu Xiao-Dong. Application of radial basis function neural network to fault diagnosis of electronic ejection engine. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(12):35-38 doi: 10.3969/j.issn.1000-1298.2005.12.010
    [78] 宋崇智, 吴玉国, 王璐, 谢能刚.基于改进Elman网络的发动机点火系统故障诊断.农业机械学报, 2008, 39(3):203-206 http://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200803052.htm

    Song Chong-Zhi, Wu Yu-Guo, Wang Lu, Xie Neng-Gang. Fault diagnosis of engine ignition system based on modified Elman neural network. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(3):203-206 http://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200803052.htm
    [79] Murphey Y L, Chen Z H, Feldkamp L A. An incremental neural learning framework and its application to vehicle diagnostics. Applied Intelligence, 2008, 28(1):29-49 doi: 10.1007/s10489-007-0040-8
    [80] Chen J, Randall R B. Improved automated diagnosis of misfire in internal combustion engines based on simulation models. Mechanical Systems and Signal Processing, 2015, 64-65:58-83 doi: 10.1016/j.ymssp.2015.02.027
    [81] Ilkivová M R, Ilkiv B R, Neuschl T. Comparison of a linear and nonlinear approach to engine misfires detection. Control Engineering Practice, 2002, 10(10):1141-1146 doi: 10.1016/S0967-0661(02)00080-1
    [82] Yuan R D. Fault diagnosis for engine by support vector machine and improved particle swarm optimization algorithm. Journal of Information and Computational Science, 2014, 11(13):4827-4835 doi: 10.12733/issn.1548-7741
    [83] 徐玉秀, 杨文平, 吕轩, 马志卫, 马新华.基于支持向量机的汽车发动机故障诊断研究.振动与冲击, 2013, 32(8):143-146 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201308025.htm

    Xu Yu-Xiu, Yang Wen-Ping, Lv Xuan, Ma Zhi-Wei, Ma Xin-Hua. Fault diagnosis for a car engine based on support vector machine. Journal of Vibration & Shock, 2013, 32(8):143-146 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201308025.htm
    [84] Peng X Y, Chai Y Y, Xu L F, Man X J. Research on fault diagnosis of marine diesel engine based on grey relational analysis and kernel fuzzy c-means clustering. In:Proceedings of the 5th International Conference on Intelligent Computation Technology and Automation. Zhangjiajie, China:IEEE, 2012. 283-286
    [85] Azzoni P M, Moro D, Porceddu-Cilione C M, Rizzoni G. Misfire Detection in a High-performance Engine by the Principal Cmponent Analysis Approach. SAE Technical Paper 960622, 1996.
    [86] Hu C Q, Li A H, Zhao X Y. Multivariate statistical analysis strategy for multiple misfire detection in internal combustion engines. Mechanical Systems and Signal Processing, 2011, 25(2):694-703 doi: 10.1016/j.ymssp.2010.08.010
    [87] 胡杰, 颜伏伍.基于BP神经网络的汽油机失火故障诊断方法的研究.汽车工程, 2011, 33(2):101-105 http://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201102005.htm

    Hu Jie, Yan Fu-Wu. A research on the misfire diagnosis method of gasoline engine based on BP neural network. Automotive Engineering, 2011, 33(2):101-105 http://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201102005.htm
    [88] Lee H, Lee J, Sunwoo M. Fault diagnosis of exhaust gas recirculation and variable geometry turbocharger systems in a passenger car diesel engine based on a sliding mode observer for air system states estimation. Journal of Dynamic Systems, Measurement, and Control, 2014, 136(3):031016 doi: 10.1115/1.4026131
    [89] Jung D, Frisk E, Krysander M. A flywheel error compensation algorithm for engine misfire detection. Control Engineering Practice, 2016, 47:37-47 doi: 10.1016/j.conengprac.2015.12.009
    [90] Shamekhi A M, Shamekhi A H. A new approach in improvement of mean value models for spark ignition engines using neural networks. Expert Systems with Applications, 2015, 42(12):5192-5218 doi: 10.1016/j.eswa.2015.02.031
    [91] Rizvi M A, Bhatti A I, Butt Q R. Hybrid model of the gasoline engine for misfire detection. IEEE Transactions on Industrial Electronics, 2011, 58(8):3680-3692 doi: 10.1109/TIE.2010.2090834
    [92] Surenahalli H S, Parker G G, Johnson J H, Devarakonda M N. A Kalman filter estimator for a diesel oxidation catalyst during active regeneration of a CPF. In:Proceedings of the 2012 American Control Conference. Montreal, QC, Canada:IEEE, 2012. 4969-4974
    [93] Osburn A W, Kostek T M, Franchek M A. Residual generation and statistical pattern recognition for engine misfire diagnostics. Mechanical Systems and Signal Processing, 2006, 20(8):2232-2258 doi: 10.1016/j.ymssp.2005.06.002
    [94] Aono T, Fukuchi E. Misfire detection method robust against road noise and vehicle body jolting. In:Proceedings of the 2006 IEEE International Conference on Industrial Technology. Mumbai, India:IEEE, 2006. 2444-2449
    [95] Nohra C, Younes R. Complete-model diesel-engine diagnosis using gain schedule-mu analysis and non-linear estimator. In:Proceedings of the 7th IEEE Conference on Industrial Electronics and Applications. Singapore:IEEE, 2012. 912-918
    [96] Shiao Y, Moskwa J J. Cylinder pressure and combustion heat release estimation for SI engine diagnostics using nonlinear sliding observers. IEEE Transactions on Control Systems Technology, 1995, 3(1):70-78 doi: 10.1109/87.370712
    [97] Wang Y S, Chu F L. Real-time misfire detection via sliding mode observer. Mechanical Systems and Signal Processing, 2005, 19(4):900-912 doi: 10.1016/j.ymssp.2004.07.004
    [98] 王赟松, 褚福磊.基于滑模跟踪控制的汽车发动机在线监测与故障诊断.清华大学学报 (自然科学版), 2005, 45(2):182-185 http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200502010.htm

    Wang Yun-Song, Chu Fu-Lei. On-line performance supervision and fault diagnosis for automotive engines using sliding mode tracking control. Journal of Tsinghua University (Science and Technology), 2005, 45(2):182-185 http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200502010.htm
    [99] 郑太雄, 寇晓培, 李永福, 杨新琴.基于Luenberger滑模观测器的气缸压力估计.内燃机工程, 2016, 37(4):173-180 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201604031.htm

    Zheng Tai-Xiong, Kou Xiao-Pei, Li Yong-Fu, Yang Xin-Qin. Engine cylinder pressure estimation using Luenberger sliding mode observer. Chinese Internal Combustion Engine Engineering, 2016, 37(4):173-180 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201604031.htm
    [100] Guermouche M, Ali S A, Langlois N. Nonlinear reliable control based super-twisting sliding mode algorithm with the diesel engine air path. Control Engineering & Applied Informatics, 2014, 16(2):111-119
    [101] Zheng T X, Kou X P, Li Y F. Engine cylinder pressure estimation using second-order sliding mode observer based on super-twisting algorithm. In:Proceeding of the 11th World Congress on Intelligent Control and Automation (WCICA). Shenyang, China:IEEE, 2014. 3886-3891
    [102] 王华伟, 高军, 吴海桥.考虑模型不确定性的发动机系统状态监测研究.仪器仪表学报, 2014, 35(2):434-440 http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201402027.htm

    Wang Hua-Wei, Gao Jun, Wu Hai-Qiao. Study on engine system condition monitoring considering model uncertainty. Chinese Journal of Scientific Instrument, 2014, 35(2):434-440 http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201402027.htm
    [103] Dinca L, Aldemir T, Rizzoni G. A model-based probabilistic approach for fault detection and identification with application to the diagnosis of automotive engines. IEEE Transactions on Automatic Control, 1999, 44(11):2200-2205 doi: 10.1109/9.802945
    [104] Ponti F. Development of a torsional behavior powertrain model for multiple misfire detection. Journal of Engineering for Gas Turbines and Power, 2008, 130(2):022803 doi: 10.1115/1.2770486
    [105] 胡春明, 胡东宁, 刘娜.基于模型在环仿真的直喷汽油机空燃比辨识与控制研究.内燃机工程, 2016, 37(3):88-93 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201603016.htm

    Hu Chun-Ming, Hu Dong-Ning, Liu Na. Model-based identification and control of GDI air-fuel ratio. Chinese Internal Combustion Engine Engineering, 2016, 37(3):88-93 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201603016.htm
    [106] Liu B L, Zhao C L, Zhang F J, Cui T, Su J Y. Misfire detection of a turbocharged diesel engine by using artificial neural networks. Applied Thermal Engineering, 2013, 55(1-2):26-32 doi: 10.1016/j.applthermaleng.2013.02.032
    [107] Akram M A, Rizvi M A, Bhatti A I, Messai N. Mode identification for hybrid model of SI engine to detect misfire fault. Control Engineering and Applied Informatics, 2014, 16(3):65-74
    [108] Boudaghi M, Shahbakhti M, Jazayeri S A. Misfire detection of spark ignition engines using a new technique based on mean output power. Journal of Engineering for Gas Turbines and Power, 2015, 137(9):091509 doi: 10.1115/1.4029914
    [109] 胡杰, 颜伏伍, 邹斌, 方茂东.基于OBD系统故障模拟装置的开发与研究.内燃机工程, 2010, 31(2):6-10 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201002005.htm

    Hu Jie, Yan Fu-Wu, Zou Bin, Fang Mao-Dong. Development and research of malfunction simulation device based on OBD system. Chinese Internal Combustion Engine Engineering, 2010, 31(2):6-10 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201002005.htm
    [110] Eriksson D, Eriksson L, Frisk E, Krysander M. Flywheel angular velocity model for misfire and driveline disturbance simulation. IFAC Proceedings Volumes, 2013, 46(21):570-575 doi: 10.3182/20130904-4-JP-2042.00020
    [111] 胡川, 杭勇, 冯源, 施华传, 龚笑舞.柴油机失火故障在线诊断策略的开发.汽车工程, 2012, 34(1):76-79 http://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201201018.htm

    Hu Chuan, Hang Yong, Feng Yuan, Shi Hua-Chuan, Gong Xiao-Wu. Development of online diagnostics strategy for the misfire fault in diesel engines. Automotive Engineering, 2012, 34(1):76-79 http://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201201018.htm
    [112] 梁锋, 杨林, 赫强, 谭文春, 肖文雍, 卓斌.电控柴油机的在线失火诊断策略研究.内燃机学报, 2004, 22(4):332-336 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJX200404007.htm

    Liang Feng, Yang Lin, He Qiang, Tan Wen-Chun, Xiao Wen-Yong, Zhuo Bin. Study of on-board misfires diagnosing strategy of electronically controlled engine. Transactions of CSICE, 2004, 22(4):332-336 http://www.cnki.com.cn/Article/CJFDTOTAL-NRJX200404007.htm
    [113] Hwang J, Park Y, Bae C, Lee J, Pyo S. Fuel temperature influence on spray and combustion characteristics in a constant volume combustion chamber (CVCC) under simulated engine operating conditions. Fuel, 2015, 160:424-433 doi: 10.1016/j.fuel.2015.08.004
    [114] Ye J. Application of extension theory in misfire fault diagnosis of gasoline engines. Expert Systems with Applications, 2009, 36(2):1217-1221 doi: 10.1016/j.eswa.2007.11.012
    [115] Cesario N, Tagliatatela F, Lavorgna M. Methodology for misfire and partial burning diagnosis in SI engines. IFAC Proceedings Volumes, 2006, 39(16):1024-1028 doi: 10.3182/20060912-3-DE-2911.00176
    [116] Siegel J, Kumar S, Ehrenberg I, Sarma S. Engine misfire detection with pervasive mobile audio. In:Proceedings of the 2006 Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Berlin, Germany:ACM, 2016. 226-241
    [117] 李杰[著]邱伯华等[译]. 工业大数据: 工业4. 0时代的工业转型与价值创造. 北京: 机械工业出版社, 2015. 44-99

    Lee Jay[Author], Qiu Bo-Hua et al.[Translator]. Industrial Big Data:The Revolutionary Transformation and Value Creation in Industry 4.0 Era. Beijing:Mechanical Industry Press, 2015. 44-52
    [118] Viswanatha H C, Shanmugam R M, Kankariya N M, Anandaraman L. Effect of ignition induced misfire on emission and catalyst temperature——a comparative study in a 1.2L MPI engine with multiple fuels. Internal Combustion Engines:Improving Performance, Fuel Economy and Emission. UK:Woodhead Publishing, 2011. 261-273
    [119] Lacey J, Kameshwaran K, Filipi Z, Cannella W, Fuentes-Afflick P. Influence of ethanol addition in refinery stream fuels and the HCCI combustion. Fuel, 2014, 126:122-133 doi: 10.1016/j.fuel.2014.02.041
    [120] 马云, 曾鸣.读懂互联网+.北京:中信出版社, 2015. 101-106

    Ma Yun, Zeng Ming. Read the Internet+. Beijing:China CITIC Press, 2015. 101-106
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  2649
  • HTML全文浏览量:  843
  • PDF下载量:  1372
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-18
  • 录用日期:  2016-09-30
  • 刊出日期:  2017-04-20

目录

    /

    返回文章
    返回