2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非均匀环境建模与三阶Bezier曲线的平滑路径规划

卜新苹 苏虎 邹伟 王鹏 周海

卜新苹, 苏虎, 邹伟, 王鹏, 周海. 基于非均匀环境建模与三阶Bezier曲线的平滑路径规划. 自动化学报, 2017, 43(5): 710-724. doi: 10.16383/j.aas.2017.c160262
引用本文: 卜新苹, 苏虎, 邹伟, 王鹏, 周海. 基于非均匀环境建模与三阶Bezier曲线的平滑路径规划. 自动化学报, 2017, 43(5): 710-724. doi: 10.16383/j.aas.2017.c160262
BU Xin-Ping, SU Hu, ZOU Wei, WANG Peng, ZHOU Hai. Smooth Path Planning Based on Non-uniformly Modeling and Cubic Bezier Curves. ACTA AUTOMATICA SINICA, 2017, 43(5): 710-724. doi: 10.16383/j.aas.2017.c160262
Citation: BU Xin-Ping, SU Hu, ZOU Wei, WANG Peng, ZHOU Hai. Smooth Path Planning Based on Non-uniformly Modeling and Cubic Bezier Curves. ACTA AUTOMATICA SINICA, 2017, 43(5): 710-724. doi: 10.16383/j.aas.2017.c160262

基于非均匀环境建模与三阶Bezier曲线的平滑路径规划

doi: 10.16383/j.aas.2017.c160262
基金项目: 

国家自然科学基金 61379097

国家自然科学基金 61573347

国家高技术研究发展计划(863计划) 2015AA042307

国家自然科学基金 61403382

详细信息
    作者简介:

    苏虎  中国科学院自动化研究所助理研究员. 2013年获得中国科学院自动化研究所博士学位.主要研究方向为机器人控制, 系统建模与仿真. E-mail: hu.su@ia.ac.cn

    邹伟  中国科学院自动化研究所研究员. 2003年获得中国科学院自动化研究所博士学位.主要研究方向为智能机器人, 视觉伺服, 机器视觉以及模式识别. E-mail: wei.zou@ia.ac.cn

    王鹏 中国科学院自动化研究所副研究员.2010年获得中国科学院自动化研究所博士学位.主要研究方向为机器视觉, 机器人系统及应用, 系统建模与仿真.E-mail:pengwang@ia.ac.cn

    周海 中国工程物理研究院激光聚变研究中心研究员.2004年获得四川大学机械工程硕士学位.主要研究方向为高功率激光技术研究.E-mail:a687097@163.com

    通讯作者:

    卜新苹  中国科学院自动化研究所硕士研究生.2013年获得中国海洋大学学士学位.主要研究方向为机器人运动优化与建模.E-mail:xinping9102@126.com

Smooth Path Planning Based on Non-uniformly Modeling and Cubic Bezier Curves

Funds: 

National Natural Science Foundation of China 61379097

National Natural Science Foundation of China 61573347

Supported by National High Technology Research and Development Program of China (863 Program) 2015AA042307

National Natural Science Foundation of China 61403382

More Information
    Author Bio:

     Assistant professor at the Institute of Automation, Chinese Academy of Sciences. He received his Ph. D. degree from the Institute of Automation, Chinese Academy of Sciences in 2013. His research interest covers robot control, system modeling and simulation

     Professor at the Institute of Automation, Chinese Academy of Sciences. He received his Ph. D. degree from the Institute of Automation, Chinese Academy of Sciences in 2003. His research interest covers intelligent robot, visual serving, machine vision, and pattern recognition

    Associate professor at the Institute of Automation, Chinese Academy of Sciences. He received his Ph. D. degree from the Institute of Automation, Chinese Academy of Sciences in 2010. His research interest covers machine vision, robot system and application, and system modeling and simulation

    Professor at the Research Center of Laser Fusion, Chinese Academy of Engineering Physics. He received his master degree in mechanical engineering from Sichuan University in 2004. His main research interest is high-power laser technology

    Corresponding author: BU Xin-Ping  Master student at the Institute of Automation, Chinese Academy of Sciences. She received her bachelor degree from the College of Information Science and Engineering, Ocean University of China in 2013. Her research interest covers optimization and modeling of motions of robots. Corresponding author of this paper
  • 摘要: 针对工作于复杂环境下的大型工装,本文提出了一种基于非均匀环境建模与三阶Bezier曲线的平滑路径规划算法,以指导工装的运动.在环境建模方面,利用四叉树建立环境的非均匀模型,能够有效压缩环境信息,提高搜索效率;在路径搜索方面,以非均匀环境模型为基础,提出一种距离启发搜索和信息素混合更新的蚁群算法,能够得到工装的安全可行路径点;在路径平滑方面,基于三阶Bezier曲线,提出能够连接任意位置和任意方向两点的转弯单元的设计方法,利用转弯单元连接路径搜索算法得到的路径点,能够获得满足工装非完整性约束的平滑路径.最后,以大型激光驱动器的靶场环境为对象,对本文算法的有效性和可靠性进行验证,并利用DELMIA平台进一步验证了规划路径的运动平滑性和安全性.
    1)  本文责任编委 王红卫
  • 图  1  算法流程图

    Fig.  1  Flowchart of the proposed algorithm

    图  2  应用场景

    Fig.  2  Background

    图  3  坐标系定义和障碍物包络示意图

    Fig.  3  The schematic of the envelopes of obstacles and coordinate system

    图  4  Bezier曲线

    Fig.  4  Bezier curves

    图  5  不规则障碍物的凸投影

    Fig.  5  The convex projection of irregular obstacle

    图  6  利用Minkowski和膨胀与直接边界拓展对比

    Fig.  6  Comparison of the extended result by using the Minkowski sum with that of extending the boundary directly

    图  7  非均匀环境建模

    Fig.  7  Non-uniform environmental model

    图  8  使用移动算子调整路径点

    Fig.  8  Adjustment of path points using the move operator

    图  9  特殊转弯单元

    Fig.  9  Special turns dealing with collinear conditions

    图  10  普通转弯单元

    Fig.  10  General Bezier turns dealing with non-collinear conditions

    图  11  转弯单元的对称

    Fig.  11  Symmetrical Bezier turns

    图  12  转弯单元算法流程图

    Fig.  12  Flowchart of the Bezier turns

    图  13  基于Bezier曲线的平滑路径

    Fig.  13  A Bezier path

    图  14  碰撞检测

    Fig.  14  Detection of collision

    图  15  两种算法适应度值随进化代数的变化

    Fig.  15  Plot of the fitness values obtained by the two algorithms versus iterations

    图  16  本文算法和基本MMAS算法的对比

    Fig.  16  Comparison of the proposed algorithm and the MMAS algorithm

    图  17  基于本文路径平滑算法获取平滑路径

    Fig.  17  Planned results of the proposed Bezier-based path smoothing algorithm

    图  18  第1组仿真实验结果

    Fig.  18  The first simulation experiment

    图  19  第2组仿真实验结果

    Fig.  19  The second simulation experiment

    表  1  两种建模方法对比

    Table  1  Comparison of the two modeling methods

    自由栅格 障碍栅格 总数
    四叉树法 1 219 1 377 2 596
    均匀栅格法 11 839 9 071 20 910
    下载: 导出CSV

    表  2(a)  本文算法与基本MMAS在不同环境模型下对比(a)

    Table  2(a)  Comparison of the proposed algorithm with the MMAS in different environmental models (a)

    序号 终点 改进算法+非均匀模型 改进算法+均匀栅格模型
    Fw Lw Ew Bw Tw Fw Lw Ew Bw Tw
    1 (−353, −7 548) 8.63 1 897 0.77 20.938.612 4440.833.31.01
    2 (4 572, −5 381) 8.6322 717 0.54 6 1.218.04 15 0821.0324.72.99
    3 (5 754, −259) 8.4625 634 0.639.7 1.717.91 21 7300.9936.74.51
    4 (5 557, 6 242) 8.15 41 289 1.00 16.8 4.327.5044 3391.2689.313.15
    5 (632, 10 182) 8.15 41 954 0.83 15.5 4.337.3650 9221.12105.815.31
    6 (2 602, 11 167) 8.26 43 852 0.82 16.7 4.707.3351 0681.26108.314.69
    7 (−3 899, 5 848) 8.26 53 701 0.79 18.4 5.346.9865 2841.241472 185
    8 (−6 066, 726) 8.18 65 815 0.78 24.8 6.536.7574 0281.12175.132.27
    9 (−10 203, −6 563) 8.21 70 886 0.77 22.8 7.736.3293 1571.27240.249.75
    10 (−5 278, −4 593) 8.14 71 386 0.80 27.1 7.726.4090 8301.44227.451.42
    下载: 导出CSV

    表  2(b)  本文算法与基本MMAS在不同环境模型下对比(b)

    Table  2(b)  Comparison of the proposed algorithm with the MMAS in different environmental models (b)

    序号 基本MMAS算法+非均匀模型 基本MMAS算法+均匀栅格模型
    Fw Lw Ew Bw Tw Fw Lw Ew Bw Tw
    18.631 8970.77 20.578.612 4110.902.30.31
    28.5620 3410.55 61.667.6512 7111.6727.52.09
    38.4625 3200.65 9.21.777.2323 0161.7061.23.93
    48.0438 9561.1518.46.626.1450 4062.09152.513.14
    58.1346 5880.98197.475.3685 4892.01266.820.03
    68.1744 8140.9317.86.535.6765 8772.21204.416.22
    77.7666 9831.263610.464.02200 8542.38672.738.22
    87.3683 1671.5856.112.963.821 151 9482.363 92551.51
    97.03116 1371.6383.0515.723.881 304 7702.494 45061.40
    106.95113 5841.7187.116.403.871 418 6172.614 835.960.16
    下载: 导出CSV

    表  3  次独立实验中本文算法和基本MMAS算法的对比

    Table  3  Comparison of the planned results of the proposed algorithm and the MMAS algorithm in several independent experiments

    本文算法 基本MMAS算法
    适应度8.217.33
    路径长度(mm)6345386501
    危险度0.771.65
    转弯次数(次)23.156.3
    耗时(s)6.5112.98
    下载: 导出CSV
  • [1] Elbanhawi M, Simic M. Sampling-based robot motion planning: a review. IEEE Access, 2014, 2: 56-77 doi: 10.1109/ACCESS.2014.2302442
    [2] Maekawa T, Noda T, Tamura S, Ozaki T, Machida K. Curvature continuous path generation for autonomous vehicle using B-spline curves. Computer-Aided Design, 2010, 42(4): 350-359 doi: 10.1016/j.cad.2009.12.007
    [3] Jung D, Tsiotras P. On-line path generation for unmanned aerial vehicles using B-spline path templates. Journal of Guidance, Control, and Dynamics, 2013, 36(6): 1642-1653 doi: 10.2514/1.60780
    [4] O'Rourke J. Computational Geometry in C. London: Cambridge University Press, 1997.
    [5] Neus M, Maouche S. Motion planning using the modified visibility graph. In: Proceedings of the 1999 IEEE International Conference on Systems, Man, and Cybernetics. Tokyo, Japan: IEEE, 1999. 651-655
    [6] Brooks R A. Solving the find-path problem by good representation of free space. IEEE Transactions on Systems, Man, and Cybernetics, 1983, SMC-13(2): 190-197
    [7] Alajlan M, Koubaa A, Chaari I, Bennaceur H, Ammar A. Global path planning for mobile robots in large-scale grid environments using genetic algorithms. In: Proceedings of the 2013 IEEE International Conference on Individual and Collective Behaviors in Robotics (ICBR). Sousse, Tunisia: IEEE, 2013. 1-8
    [8] Takahashi O, Schilling R J. Motion planning in a plane using generalized voronoi diagrams. IEEE Transactions on Robotics and Automation, 1989, 5(2): 143-150 doi: 10.1109/70.88035
    [9] Jan G E, Sun C C, Tsai W C, Lin T H. An O(n log n) shortest path algorithm based on Delaunay triangulation. IEEE/ASME Transactions on Mechatronics, 2014, 19(2): 660-666 doi: 10.1109/TMECH.2013.2252076
    [10] Stentz A. Optimal and efficient path planning for unknown and dynamic environments. International Journal of Robotics and Automation, 1995, 10(3): 89-100 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.3683
    [11] Alexopoulos C, Griffin P M. Path planning for a mobile robot. IEEE Transactions on Systems, Man, and Cybernetics, 1992, 22(2): 318-322 doi: 10.1109/21.148404
    [12] Fan D K, Shi P. Improvement of Dijkstra's algorithm and its application in route planning. In: Proceedings of the 7th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). Yantai, China: IEEE, 2010. 1901-1904
    [13] Hu Y R, Yang S X, Xu L Z, Meng M Q H. A knowledge based genetic algorithm for path planning in unstructured mobile robot environments. In: Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics (ROBIO). Shenyang, China: IEEE, 2004. 767-772
    [14] Dorigo M, Maniezzo V, Coloni A. Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1996, 26(1): 29-41 doi: 10.1109/3477.484436
    [15] Juang C F, Hsu C H. Reinforcement ant optimized fuzzy controller for mobile-robot wall-following control. IEEE Transactions on Industrial Electronics, 2009, 56(10): 3931-3940 doi: 10.1109/TIE.2009.2017557
    [16] Dorigo M, Gambardella L M. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66 doi: 10.1109/4235.585892
    [17] Stützle T, Hoos H H. MAX-MIN ant system. Future Generation Computer Systems, 2000, 16(8): 889-914 doi: 10.1016/S0167-739X(00)00043-1
    [18] Zeng D W, He Q, Leng B, Zheng W M, Xu H W, Wang Y Y, Guan G. An improved ant colony optimization algorithm based on dynamically adjusting ant number. In: Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO). Guangzhou, China: IEEE, 2012. 2039-2043
    [19] Dubins L E. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. American Journal of Mathematics, 1957, 79(3): 497-516 doi: 10.2307/2372560
    [20] Reeds J A, Shepp L A. Optimal paths for a car that goes both forwards and backwards. Pacific Journal of Mathematics, 1990, 145(2): 367-393 doi: 10.2140/pjm
    [21] Boissonnat J D, Cerezo A, Leblond J. Shortest paths of bounded curvature in the plane. In: Proceedings of the 1992 IEEE International Conference on Robotics and Automation. Nice, France: IEEE, 1992. 2315-2320
    [22] Scheuer A, Fraichard T. Collision-free and continuous-curvature path planning for car-like robots. In: Proceedings of the 1997 IEEE International Conference on Robotics and Automation. Albuquerque, New Mexico, USA: IEEE, 1997. 867-873
    [23] Scheuer A, Fraichard T. Planning continuous-curvature paths for car-like robots. In: Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Osaka, Japan: IEEE, 1996. 1304-1311
    [24] Scheuer A, Fraichard T. Continuous-curvature path planning for car-like vehicles. In: Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Grenoble, France: IEEE, 1997. 997-1003
    [25] Fraichard T, Scheuer A. From Reeds and Shepp's to continuous-curvature paths. IEEE Transactions on Robotics, 2004, 20(6): 1025-1035 doi: 10.1109/TRO.2004.833789
    [26] Yang K, Sukkarieh S. An analytical continuous-curvature path-smoothing algorithm. IEEE Transactions on Robotics, 2010, 26(3): 561-568 doi: 10.1109/TRO.2010.2042990
    [27] Walton D J, Meek D S, Ali J M. Planar G2 transition curves composed of cubic Bézier spiral segments. Journal of Computational and Applied Mathematics, 2003, 157(2): 453-476 doi: 10.1016/S0377-0427(03)00435-7
    [28] Škrjanc I, Klančar G. Optimal cooperative collision avoidance between multiple robots based on Bernstein-Bézier curves. Robotics and Autonomous Systems, 2010, 58(1): 1-9 doi: 10.1016/j.robot.2009.09.003
    [29] Lo Bianco C G, Piazzi A, Romano M. Smooth motion generation for unicycle mobile robots via dynamic path inversion. IEEE Transactions on Robotics, 2004, 20(5): 884-891 doi: 10.1109/TRO.2004.832827
    [30] Piazzi A, Lo Bianco C G, Romano M. η3-spline for the smooth path generation of wheeled mobile robots. IEEE Transactions on Robotics, 2007, 23(5): 1089-1095 doi: 10.1109/TRO.2007.903816
    [31] Lai X C, Al Mamun A, Ge S S. Polar polynomial curve for smooth, collision-free path generation between two arbitrary configurations for nonholonomic robots. In: Proceedings of the 22nd International Symposium on Intelligent Control. Singapore, Singapore: IEEE, 2007. 59-64
    [32] Sahni S. Data Structures, Algorithms, and Applications in C++. Boston: McGraw Hill, 1998.
    [33] Duan H B, Ma G J, Liu S Q. Experimental study of the adjustable parameters in basic ant colony optimization algorithm. In: Proceedings of the 2007 IEEE Congress on Evolutionary Computation. Singapore, Singapore: IEEE, 2007. 149-156
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  2707
  • HTML全文浏览量:  545
  • PDF下载量:  1378
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-11
  • 录用日期:  2016-08-23
  • 刊出日期:  2017-05-01

目录

    /

    返回文章
    返回