2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于EEG和sEMG的假手控制策略

吴常铖 熊鹏文 曾洪 徐宝国 宋爱国

吴常铖, 熊鹏文, 曾洪, 徐宝国, 宋爱国. 一种基于EEG和sEMG的假手控制策略. 自动化学报, 2018, 44(4): 676-684. doi: 10.16383/j.aas.2017.c160218
引用本文: 吴常铖, 熊鹏文, 曾洪, 徐宝国, 宋爱国. 一种基于EEG和sEMG的假手控制策略. 自动化学报, 2018, 44(4): 676-684. doi: 10.16383/j.aas.2017.c160218
WU Chang-Cheng, XIONG Peng-Wen, ZENG Hong, XU Bao-Guo, SONG Ai-Guo. A Control Strategy for Prosthetic Hand Based on EEG and sEMG. ACTA AUTOMATICA SINICA, 2018, 44(4): 676-684. doi: 10.16383/j.aas.2017.c160218
Citation: WU Chang-Cheng, XIONG Peng-Wen, ZENG Hong, XU Bao-Guo, SONG Ai-Guo. A Control Strategy for Prosthetic Hand Based on EEG and sEMG. ACTA AUTOMATICA SINICA, 2018, 44(4): 676-684. doi: 10.16383/j.aas.2017.c160218

一种基于EEG和sEMG的假手控制策略

doi: 10.16383/j.aas.2017.c160218
基金项目: 

国家自然科学基金 61673105

国家自然科学基金 91648206

南京航空航天大学青年教师启动基金 56YAH17027

国家自然科学基金 61663027

江苏省自然科学基金 BK20170803

国家自然科学基金 61325018

详细信息
    作者简介:

    吴常铖, 南京航空航天大学自动化学院讲师.2016年获东南大学博士学位.主要研究方向为机器人传感与控制技术.E-mail:changchengwu@nuaa.edu.cn

    熊鹏文, 南昌大学信息工程学院讲师.2015年获东南大学博士学位.主要研究方向为机器人传感与控制和遥操作.E-mail:steven.xpw@ncu.edu.cn

    曾洪, 东南大学仪器科学与工程学院副教授.主要研究方向为机器人传感与控制技术.E-mail:hzeng@seu.edu.cn

    徐宝国, 东南大学仪器科学与工程学院副教授.主要研究方向为机器人传感与控制技术.E-mail:xubaoguo@seu.edu.cn

    通讯作者:

    宋爱国, 东南大学教授.主要研究方向为机器人传感与控制技术, 信号处理和遥操作技术.本文通信作者.E-mail:a.g.song@seu.edu.cn

A Control Strategy for Prosthetic Hand Based on EEG and sEMG

Funds: 

Supported by National Natural Science Foundation of China 61673105

Supported by National Natural Science Foundation of China 91648206

Young Teacher Startup Foundation of Nanjing University of Aeronautics and Astronautics 56YAH17027

Supported by National Natural Science Foundation of China 61663027

Jiangsu Natural Science Foundation BK20170803

Supported by National Natural Science Foundation of China 61325018

More Information
    Author Bio:

    Lecturer at the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics. He received his Ph. D. degree from Southeast University in 2016. His research interest covers robotic sensing and control

    Lecturer at the School of Information and Engineering, Nanchang University. He received his Ph. D. degree from Southeast University in 2015. His research interest covers robotic sensing and control and tele-operation

    Associate professor at the School of Instrument Science and Engineering, Southeast University. His research interest covers robotic sensing and control

    Associate professor at the School of Instrument Science and Engineering, Southeast University. His research interest covers robotic sensing and control

    Corresponding author: SONG Ai-Guo Professor at Southeast University. His research interest covers robotic sensing and control, signal processing, and tele-operation. Corresponding author of this paper
  • 摘要: 针对残臂较短或残臂上肌电信号测量点较少的残疾人使用多自由度假手的需求,提出一种基于脑电信号(Electroencephalogram,EEG)和表面肌电信号(Surface electromyogram signal,sEMG)协同处理的假手控制策略.该方法仅用1个肌电传感器和1个脑电传感器实现多自由度假手的控制.采用1个脑电传感器测量人体前额部位的EEG,从测量得到的EEG中提取出眨眼动作信息并将其用于假手动作的编码;采用1个肌电传感器测量手臂上的sEMG,并针对肌电信号存在个体差异和位置差异的问题,采用自适应方法实现手部动作强度的估计;采用振动触觉技术设计触觉编码用于将当前假手的控制指令反馈给佩戴者,从而实现EEG和sEMG对多自由度假手的协同控制.为验证该控制策略的有效性进行了实验研究,结果表明,提出的假手控制策略是有效的.
    1)  本文责任编委 程龙
  • 图  1  控制策略框图

    Fig.  1  Diagram of the control strategy

    图  2  动作编码环节

    Fig.  2  Process of the motion coding

    图  3  MindWave测量得到的EEG信号及其方差

    Fig.  3  EEG signal and its variance

    图  4  肌电传感器贴合位置示意图

    Fig.  4  Sketch of the measurement locations of the sEMG sensors

    图  5  同一块肌肉不同位置测量得到的两路肌电信号

    Fig.  5  Two channels of sEMG captured from different locations of the same muscle

    图  6  基于肌电信号的手部动作强度估计

    Fig.  6  Action strength estimation based on sEMG

    图  7  振动袖带

    Fig.  7  Vibration cuff

    图  8  振动器分布示意图

    Fig.  8  Distribution sketch of the vibrators

    图  9  触觉反馈提示编码

    Fig.  9  Coding of the tactile feedback

    图  10  EEG和sEMG协同控制流程图

    Fig.  10  Flow chart of the coordinated control based on EEG and sEMG

    图  11  实验场景

    Fig.  11  Experimental scene

    图  12  EEG测量设备

    Fig.  12  EEG measuring device

    图  13  表面肌电传感器

    Fig.  13  sEMG sensor

    图  14  两自由度假手

    Fig.  14  Two DOF Prosthetic hand

    图  15  对手爪闭合动作进行眨眼编码时测量得到的EEG

    Fig.  15  EEG captured in the process of blink coding of the hand closing

    图  16  物品抓取实验场景

    Fig.  16  Experimental scene of the grasping objects

    表  1  单位时间内眨眼次数与假手动作类型的关系

    Table  1  The relationship between the blink times and the motion type of the prosthetic hand

    第一环节眨眼次数 第二环节眨眼次数 动作类型
    2 2 手爪张开
    3 手爪闭合
    3 2 手腕顺时针转动
    3 手腕逆时针转动
    下载: 导出CSV

    表  2  手部动作识别结果

    Table  2  Results of the hand motion recognition experiments

    受试者编号 性别 动作编码正确率(%)
    手爪张开 手爪闭合 顺时针旋转 逆时针旋转 平均正确率
    1 96 100 100 96 98
    2 96 92 96 92 94
    3 92 96 96 96 95
    4 96 92 92 96 94
    5 92 100 96 100 97
    6 96 96 92 100 96
    7 92 96 96 96 95
    8 92 92 96 96 94
    9 96 100 92 92 95
    10 92 88 92 96 92
    下载: 导出CSV

    表  3  触觉感知实验结果

    Table  3  Results of the tactile perception experiments

    受试者编号 性别 动作编码正确率(%)
    手爪动作 手腕动作 手爪张开 手爪闭合 顺时针旋转 逆时针旋转 平均正确率
    1 100 100 100 100 100 100 100
    2 100 100 100 100 100 100 100
    3 100 100 100 100 95 95 98.33
    4 100 100 100 100 100 100 100
    5 100 100 100 100 95 100 99.17
    6 100 100 100 100 100 95 99.17
    7 100 100 100 100 100 95 99.17
    8 100 100 100 100 100 100 100
    9 100 100 100 95 95 100 98.33
    10 100 100 95 100 95 95 97.5
    下载: 导出CSV

    表  4  砝码抓取实验结果

    Table  4  Results of the grasping weights

    受试者编号 性别 成功率(%)
    1 95
    2 95
    3 90
    4 100
    5 95
    6 90
    7 100
    8 95
    9 95
    10 100
    下载: 导出CSV

    表  5  纸杯取实验结果

    Table  5  Results of the grasping paper cups

    受试者编号 性别 成功率(%)
    1 95
    2 95
    3 90
    4 100
    5 95
    6 90
    7 100
    8 95
    9 95
    10 100
    下载: 导出CSV
  • [1] Maat B, Smit G, Plettenburg D, Breedveld P. Passive prosthetic hands and tools:a literature review. Prosthetics and Orthotics International, 2018, 42(1):66-74 doi: 10.1177/0309364617691622
    [2] Clement R G E, Bugler K E, Oliver C W. Bionic prosthetic hands:a review of present technology and future aspirations. The Surgeon, 2011, 9(6):336-340 doi: 10.1016/j.surge.2011.06.001
    [3] Brunelli D, Tadesse A M, Vodermayer B, Nowak M, Castellini C. Low-cost wearable multichannel surface EMG acquisition for prosthetic hand control. In: Proceedings of the 6th IEEE International Workshop on Advances in Sensors and Interfaces. Gallipoli, Turkey: IEEE, 2015. 94-99
    [4] 佟丽娜, 侯增广, 彭亮, 王卫群, 陈翼雄, 谭民.基于多路sEMG时序分析的人体运动模式识别方法.自动化学报, 2014, 40(5):810-821 http://www.aas.net.cn/CN/abstract/abstract18349.shtml

    Tong Li-Na, Hou Zeng-Guang, Peng Liang, Wang Wei-Qun, Chen Yi-Xiong, Tan Min. Multi-channel sEMG time series analysis based human motion recognition method. Acta Automatica Sinica, 2014, 40(5):810-821 http://www.aas.net.cn/CN/abstract/abstract18349.shtml
    [5] Wu C, Song A, Ji P. A control strategy for prosthetic hand based on attention concentration and EMG. In: Proceedings of the 8th International Conference on Intelligent Robotics and Applications. Portsmouth, UK: Springer, 2015. 307-318
    [6] Losier Y G. Shoulder Complex Motion Based Input Strategies for Prosthetic Limb Control[Ph. D. dissertation], University of New Brunswick, Canada, 2009.
    [7] Tamura H, Gotoh T, Okumura D, Tanaka H, Tanno K. A study on the S-EMG pattern recognition using neural network. International Journal of Innovative Computing, Information and Control, 2009, 5(12):4877-4884 https://ieeexplore.ieee.org/document/7440146/?reload=true&arnumber=7440146&filter%3DAND%28p_IS_Number%3A7440135%29
    [8] Caesarendra W, Lekson S U, Mustaqim K A, Winoto A R, Widyotriatmo A. A classification method of hand EMG signals based on principal component analysis and artificial neural network. In: Proceedings of the 2016 International Conference on Instrumentation, Control, and Automation (ICA). Bandung, Indonesia: IEEE, 2016. 22-27
    [9] Yang S X, Yang G Y. Emotion recognition of EMG based on improved L-M BP neural network and SVM. Journal of Software, 2011, 6(8):1529-1536 http://www.jsoftware.us/vol6/jsw0608-19.pdf
    [10] Elhariri E, El-Bendary N, Hassanien A E. A hybrid classification model for emg signals using grey wolf optimizer and SVMs. In: Proceedings of the 1st International Conference on Advanced Intelligent System and Informatics (AISI2015). Cham, Germany: Springer International Publishing, 2016. 297-307
    [11] Alkan A, Günay M. Identification of EMG signals using discriminant analysis and SVM classifier. Expert Systems with Applications, 2012, 39(1):44-47 doi: 10.1016/j.eswa.2011.06.043
    [12] Li N, Yang D P, Jiang L, Liu H, Cai H G. Combined use of FSR sensor array and SVM classifier for finger motion recognition based on pressure distribution map. Journal of Bionic Engineering, 2012, 9(1):39-47 doi: 10.1016/S1672-6529(11)60095-4
    [13] Ziai A, Menon C. Comparison of regression models for estimation of isometric wrist joint torques using surface electromyography. Journal of Neuroengineering and Rehabilitation, 2011, 8:Article No.56 doi: 10.1186/1743-0003-8-56
    [14] Nielsen J L G, Holmgaard S, Jiang N, Englehart K, Farina D, Parker P. Enhanced EMG signal processing for simultaneous and proportional myoelectric control. In: Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis, MN, USA: IEEE, 2009. 4335-4338
    [15] Nielsen J L G, Holmgaard S, Jiang N, Englehart K B, Farina D, Parker P A. Simultaneous and proportional force estimation for multifunction myoelectric prostheses using mirrored bilateral training. IEEE Transactions on Biomedical Engineering, 2011, 58(3):681-688 doi: 10.1109/TBME.2010.2068298
    [16] Fougner A, Kyberd P J, Stavdahl Ø. EMG feature selection for simultaneous proportional control of multifunctional upper-limb prostheses. In: Proceedings of the 13th World Congress of the International Society for Prosthetics and Orthotics (ISPO). Leipzig, Germany: ISPO, 2010.
    [17] Pulliam C L, Lambrecht J M, Kirsch R F. Continuous and simultaneous EMG-based neural network control of transradial prostheses. In: Proceedings of the 2011 MEC'11 conference. Fredericton, Canada: University of New Brunswick, 2011.
    [18] Muceli S, Farina D. Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20(3):371-378 doi: 10.1109/TNSRE.2011.2178039
    [19] Jiang N, Englehart K B, Parker P A. Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal. IEEE Transactions on Biomedical Engineering, 2009, 56(4):1070-1080 doi: 10.1109/TBME.2008.2007967
    [20] Fougner A L. Proportional Myoelectric Control of a Multifunction Upper-Limb Prosthesis[Master dissertation], Institutt for Teknisk Kybernetikk, Norway, 2007.
    [21] Kyranou I, Krasoulis A, Erden M S, Nazarpour K, Vijayakumar S. Real-time classification of multi-modal sensory data for prosthetic hand control. In: Proceedings of the 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). Singapore, Singapore: IEEE, 2016. 536-541
    [22] Geethanjali P. A mechatronics platform to study prosthetic hand control using EMG signals. Australasian Physical and Engineering Sciences in Medicine, 2016, 39(3):765-771 doi: 10.1007/s13246-016-0458-6
    [23] Wu C C, Song A G, Ling Y, Wang N, Tian L. A control strategy with tactile perception feedback for emg prosthetic hand. Journal of Sensors, 2015, 2015:Article No.869175. https://www.hindawi.com/journals/js/2015/869175/
    [24] 吴常铖, 宋爱国, 章华涛.一种肌电假手的自适应模糊控制方法.仪器仪表学报, 2013, 34(6):1339-1345 http://d.wanfangdata.com.cn/Periodical_yqyb201306020.aspx

    Wu Chang-Cheng, Song Ai-Guo, Zhang Hua-Tao. Adaptive fuzzy control method for EMG prosthetic hand. Chinese Journal of Scientific Instrument, 2013, 34(6):1339-1345 http://d.wanfangdata.com.cn/Periodical_yqyb201306020.aspx
    [25] 吴常铖, 宋爱国, 章华涛, 冯超.基于刚度模糊观测的假手反演控制策略.机器人, 2013, 35(6):686-691 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_jqr201306007

    Wu Chang-Cheng, Song Ai-Guo, Zhang Hua-Tao, Feng Chao. A backstepping control strategy for prosthetic hand based on fuzzy observation of stiffness. Robot, 2013, 35(6):686-691 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_jqr201306007
    [26] Sherrick C E. A scale for rate of tactual vibration. Journal of the Acoustical Society of America, 1985, 78:78-83 doi: 10.1121/1.392457
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  2220
  • HTML全文浏览量:  428
  • PDF下载量:  743
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-01
  • 录用日期:  2017-03-02
  • 刊出日期:  2018-04-20

目录

    /

    返回文章
    返回