-
摘要: 互联系统的容错控制是近年来控制领域的研究热点,具有重要的理论价值和实际意义.本文阐述了互联系统容错控制的基本结构和主要思想,总结了带有机械互联、网络互联和模型虚拟互联的三类互联系统的容错控制最新研究成果,并对该研究方向进行了展望.Abstract: Fault tolerant control (FTC) of interconnected systems is a remarkable aspect of the control field in recent years, which has both important academic and engineering values. This paper introduces the basic structure and main idea of the FTC design for interconnected systems, and makes a comprehensive review of the recent theoretical results on the FTC of systems with mechanical interconnections, network interconnections, and model virtual interconnections. Some perspectives are also provided.
-
表 1 机械互联系统容错控制方法总结
Table 1 The summary of fault-tolerant control methods for systems with mechanical interconnections
互联系统特性 容错控制方法 实现方式 固定耦合 分布/分散式独立容错 调节故障子系统$i$的控制器$u_i$ 固定耦合 分布/分散式协同容错 综合调节故障子系统$i$和其他健康子系统 $j$的控制器$u_i$,$u_j$,$j\in M-\{i\}$ 耦合强度和
拓扑结构可变分布/分散式协同容错 综合调节故障子系统$i$和其他健康子系统 $j$的控制器$u_i$,$u_j$,$j\in M-\{i\}$
以及系统互联拓扑机构和耦合项组成可变 分布/分散式协同容错 重构子系统组成以及系统互联拓扑机构和耦合项 表 2 网络互联系统容错控制方法总结
Table 2 The summary of the fault-tolerant control methods for systems with network interconnections
互联系统特性 容错控制方法 实现方式 组成不变 分布/分散式独立容错 调节故障子系统$i$的控制器$u_i$以及子系统$i$获得信息的通信协议 组成不变 分布式协同容错 综合调节故障子系统$i$和其他健康子系统$j$的控制器${u_i},{u_j}$,$j\in M-\left\{ i \right\}$
以及这些子系统获得信息的通信协议组成可变 分布式协同容错 重构子系统组成以及系统网络拓扑机构和通信协议 -
[1] Antonelli G. Interconnected dynamic systems:an overview on distributed control. IEEE Control Systems, 2013, 33(1):76-88 doi: 10.1109/MCS.2012.2225929 [2] Patton R J, Kambhampati C, Casavola A, Zhang P, Ding S, Sauter D. A generic strategy for fault-tolerance in control systems distributed over a network. European Journal of Control, 2007, 13(2-3):280-296 doi: 10.3166/ejc.13.280-296 [3] Di Gennaro S. Output stabilization of flexible spacecraft with active vibration suppression. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3):747-759 doi: 10.1109/TAES.2003.1238733 [4] Vournas C D, Papadias B C. Power system stabilization via parameter optimization-application to the Hellenic interconnected system. IEEE Transactions on Power Systems, 1987, 2(3):615-622 doi: 10.1109/TPWRS.1987.4335180 [5] Ren W, Beard R W, Atkins E M. Information consensus in multivehicle cooperative control. IEEE Control Systems, 2007, 27(2):71-82 doi: 10.1109/MCS.2007.338264 [6] Blanke M, Kinnaert M, Lunze J, Staroswiecki M. Diagnosis and Fault-Tolerant Control. Berlin:Springer, 2006. [7] 周东华, 叶银忠. 现代故障诊断与容错控制. 北京:清华大学出版社, 2000.Zhou Dong-Hua, Ye Yin-Zhong. Modern Fault Diagnosis and Fault-Tolerant Control. Beijing:Tsinghua University Press, 2000. [8] 胡昌华, 许化龙. 控制系统故障诊断与容错控制的分析和设计. 北京:国防工业出版社, 2000.Hu Chang-Hua, Xu Hua-Long. Design and Analysis of Fault-Tolerant Control and Fault Diagnosis for Control System. Beijing:National Defence Industry Press, 2000. [9] 姜斌, 冒泽慧, 杨浩, 张友民. 控制系统的故障诊断与故障调节. 北京:国防工业出版社, 2009.Jiang Bin, Mao Ze-Hui, Yang Hao, Zhang You-Min. Fault Diagnosis and Fault Regulation for Control Systems. Beijing:National Defence Industry Press, 2009. [10] Liu L, Wang Z S, Zhang H G. Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters. IEEE Transactions on Automation Science and Engineering, DOI:10.1109/TASE.2016.2517155, to be published [11] Wang Z S, Liu L, Zhang H G, Xiao G Y. Fault-tolerant controller design for a class of nonlinear MIMO discrete-time systems via online reinforcement learning algorithm. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 46(5):611-622 doi: 10.1109/TSMC.2015.2478885 [12] Liu L, Wang Z S, Zhang H G. Adaptive NN fault-tolerant control for discrete-time systems in triangular forms with actuator fault. Neurocomputing, 2015, 152:209-221 doi: 10.1016/j.neucom.2014.10.076 [13] Khalil H K. Nonlinear Systems (3rd edition). Upper Saddle River, NJ:Prentice Hall, 2002. [14] Meskin N, Khorasani K. Actuator fault detection and isolation for a network of unmanned vehicles. IEEE Transactions on Automatic Control, 2009, 54(4):835-840 doi: 10.1109/TAC.2008.2009675 [15] Keliris C, Polycarpou M M, Parisini T. A distributed fault detection filtering approach for a class of interconnected continuous-time nonlinear systems. IEEE Transactions on Automatic Control, 2013, 58(8):2032-2047 doi: 10.1109/TAC.2013.2253231 [16] Zhang X D, Zhang Q. Distributed fault diagnosis in a class of interconnected nonlinear uncertain systems. International Journal of Control, 2012, 85(11):1644-1662 doi: 10.1080/00207179.2012.696146 [17] 郭志忠. 电网自愈控制方案. 电力系统自动化, 2005, 29(10):85-91 http://www.cnki.com.cn/Article/CJFDTOTAL-DLXT200510021.htmGuo Zhi-Zhong. Scheme of self-healing control frame of power grid. Automation of Electric Power Systems, 2005, 29(10):85-91 http://www.cnki.com.cn/Article/CJFDTOTAL-DLXT200510021.htm [18] 张颖伟, 刘建昌, 张嗣瀛. 一类复杂系统的容错控制. 控制与决策, 2005, 20(8):901-904, 908 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200508012.htmZhang Ying-Wei, Liu Jian-Chang, Zhang Si-Ying. Reliable control for a class of interconnected systems. Control and Decision, 2005, 20(8):901-904, 908 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200508012.htm [19] Panagi P, Polycarpou M M. Distributed fault accommodation for a class of interconnected nonlinear systems with partial communication. IEEE Transactions on Automatic Control, 2011, 56(12):2962-2967 doi: 10.1109/TAC.2011.2166313 [20] Panagi P, Polycarpou M M. A coordinated communication scheme for distributed fault tolerant control. IEEE Transactions on Industrial Informatics, 2013, 9(1):386-393 doi: 10.1109/TII.2012.2223220 [21] Jin X Z, Yang G H. Distributed adaptive robust tracking and model matching control with actuator faults and interconnection failures. International Journal of Control, Automation and Systems, 2009, 7(5):702-710 doi: 10.1007/s12555-009-0502-3 [22] Tong S C, Huo B Y, Li Y M. Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures. IEEE Transactions on Fuzzy Systems, 2014, 22(1):1-15 doi: 10.1109/TFUZZ.2013.2241770 [23] Xiao B, Hu Q L, Zhang Y M. Fault-tolerant attitude control for flexible spacecraft without angular velocity magnitude measurement. Journal of Guidance, Control, and Dynamics, 2011, 34(5):1556-1561 doi: 10.2514/1.51148 [24] Panagi P, Polycarpou M M. Decentralized fault tolerant control of a class of interconnected nonlinear systems. IEEE Transactions on Automatic Control, 2011, 56(1):178-184 doi: 10.1109/TAC.2010.2089650 [25] 娄文涛, 佟绍成. 一类模糊T-S模型互联系统的自适应容错跟踪控制. 模糊系统与数学, 2014, 28(5):111-119 http://www.cnki.com.cn/Article/CJFDTOTAL-MUTE201405017.htmLou Wen-Tao, Tong Shao-Cheng. Adaptive fault-tolerant tracking control of fuzzy interconnected systems using Takagi-Sugeno fuzzy models. Fuzzy Systems and Mathematics, 2014, 28(5):111-119 http://www.cnki.com.cn/Article/CJFDTOTAL-MUTE201405017.htm [26] Hua C C, Li Y F, Wang H B, Guan X P. Decentralised fault-tolerant finite-time control for a class of interconnected non-linear systems. IET Control Theory and Applications, 2015, 9(16):2331-2339 doi: 10.1049/iet-cta.2014.1264 [27] Wang Z S, Li T S, Zhang H G. Fault tolerant synchronization for a class of complex interconnected neural networks with delay. International Journal of Adaptive Control and Signal Processing, 2014, 28(10):859-881 doi: 10.1002/acs.v28.10 [28] Yang H, Jiang B, Staroswiecki M, Zhang Y M. Fault recoverability and fault tolerant control for a class of interconnected nonlinear systems. Automatica, 2015, 54:49-55 doi: 10.1016/j.automatica.2015.01.037 [29] Liu T F, Hill D J, Jiang Z P. Lyapunov formulation of ISS cyclic-small-gain in continuous-time dynamical networks. Automatica, 2011, 47(9):2088-2093 doi: 10.1016/j.automatica.2011.06.018 [30] Godard, Kumar K D, Tan B. Fault-tolerant stabilization of a tethered satellite system using offset control. Journal of Spacecraft and Rockets, 2008, 45(5):1070-1084 doi: 10.2514/1.35029 [31] Bendtsen J, Trangbaek K, Stoustrup J. Plug-and-play control-modifying control systems online. IEEE Transactions on Control Systems Technology, 2013, 21(1):79-93 doi: 10.1109/TCST.2011.2174060 [32] Riverso S, Boem F, Ferrari-Trecate G, Parisini T. Fault diagnosis and control-reconfiguration in large-scale systems:a plug-and-play approach. In:Proceedings of the 53rd IEEE Conference on Decision and Control. Los Angeles, CA, USA:IEEE, 2014. 4977-4982 [33] Kambhampati C, Patton R J, Uppal F J. Reconfiguration in networked control systems:fault tolerant control and plug-and-play. In:Proceedings of the 6th IFAC Symposium on Fault Detection, Supervision, and Safety of Technical Processes. Beijing, China:IFAC, 2006. 126-131 [34] Yang H, Jiang B, Staroswiecki M. Fault tolerant control for plug-and-play interconnected nonlinear systems. Journal of the Franklin Institute, 2016, 353(10):2199-2217 doi: 10.1016/j.jfranklin.2016.04.001 [35] 张玮亚, 李永丽, 孙广宇, 靳伟, 李小叶. 微电网安全防御体系下电压分层分区控制. 电力系统自动化, 2015, 39(13):1-7, 15 http://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201513001.htmZhang Wei-Ya, Li Yong-Li, Sun Guang-Yu, Jin Wei, Li Xiao-Ye. Hierarchical-partitioned voltage control under security safeguard system of microgrid. Automation of Electric Power Systems, 2015, 39(13):1-7, 15 http://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201513001.htm [36] Guerraoui R, Schiper A. Software-based replication for fault tolerance. Computer, 1997, 30(4):68-74 doi: 10.1109/2.585156 [37] Guessoum Z, Briot J P, Marin O, Hamel A, Sens P. Dynamic and adaptive replication for large-scale reliable multi-agent systems. Software Engineering for Large-Scale Multi-Agent Systems. Heidelberg, Berlin:Springer, 2003. 182-198 [38] Guessoum Z, Faci N, Briot J P. Adaptive replication of large-scale multi-agent systems-towards a fault-tolerant multi-agent platform. Software Engineering for Large-Scale Multi-Agent Systems IV. Heidelberg, Berlin:Springer, 2006. 238-253 [39] Mellouli S. A reorganization strategy to build fault-tolerant multi-agent systems. Advances in Artificial Intelligence. Heidelberg, Berlin:Springer, 2007. 61-72 [40] Karimadini M, Lin H. Fault-tolerant cooperative tasking for multi-agent systems. International Journal of Control, 2011, 84(12):2092-2107 doi: 10.1080/00207179.2011.631149 [41] Bataineh S M, Allosl B Y. Fault-tolerant multistage interconnection network. Telecommunication Systems, 2001, 17(4):455-472 doi: 10.1023/A:1016779316848 [42] Bermond J C, Homobono N, Peyrat C. Large fault-tolerant interconnection networks. Graphs and Combinatorics, 1989, 5(1):107-123 doi: 10.1007/BF01788663 [43] Zhou B, Wang W, Ye H. Cooperative control for consensus of multi-agent systems with actuator faults. Computers and Electrical Engineering, 2014, 40(7):2154-2166 doi: 10.1016/j.compeleceng.2014.04.015 [44] Wang X, Yang G H. Cooperative adaptive fault-tolerant tracking control for a class of multi-agent systems with actuator failures and mismatched parameter uncertainties. IET Control Theory and Applications, 2015, 9(8):1274-1284 doi: 10.1049/iet-cta.2014.0700 [45] Ma H J, Yang G H. Adaptive fault tolerant control of cooperative heterogeneous systems with actuator faults and unreliable interconnections. IEEE Transactions on Automatic Control, 2016, 61(11):3240-3255 doi: 10.1109/TAC.2015.2507864 [46] Chen G, Song Y D. Robust fault-tolerant cooperative control of multi-agent systems:a constructive design method. Journal of the Franklin Institute, 2015, 352(10):4045-4066 doi: 10.1016/j.jfranklin.2015.05.031 [47] Shen Q K, Jiang B, Shi P, Zhao J. Cooperative adaptive fuzzy tracking control for networked unknown nonlinear multiagent systems with time-varying actuator faults. IEEE Transactions on Fuzzy Systems, 2014, 22(3):494-504 doi: 10.1109/TFUZZ.2013.2260757 [48] Zuo Z Q, Zhang J, Wang Y J. Adaptive fault-tolerant tracking control for linear and Lipschitz nonlinear multi-agent systems. IEEE Transactions on Industrial Electronics, 2015, 62(6):3923-3931 http://cn.bing.com/academic/profile?id=1d98b82030550a853913e31422100c4e&encoded=0&v=paper_preview&mkt=zh-cn [49] 王巍, 王丹, 彭周华. 不确定非线性多智能体系统的分布式容错协同控制. 控制与决策, 2015, 30(7):1303-1308 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201507024.htmWang Wei, Wang Dan, Peng Zhou-Hua. Fault-tolerant control for synchronization of uncertain nonlinear multi-agent systems. Control and Decision, 2015, 30(7):1303-1308 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201507024.htm [50] Lewis M A, Tan K H. High precision formation control of mobile robots using virtual structures. Autonomous Robots, 1997, 4(4):387-403 doi: 10.1023/A:1008814708459 [51] Xu Q, Yang H, Jiang B, Zhou D H, Zhang Y M. Fault tolerant formations control of UAVs subject to permanent and intermittent faults. Journal of Intelligent and Robotic Systems, 2014, 73(1-4):589-602 doi: 10.1007/s10846-013-9951-2 [52] Liu Z X, Yu X, Yuan C, Zhang Y M. Leader-follower formation control of unmanned aerial vehicles with fault tolerant and collision avoidance capabilities. In:Proceedings of the 2015 International Conference on Unmanned Aircraft Systems. Denver, CO, USA:IEEE, 2015. 1025-1030 [53] Semsar-Kazerooni E, Khorasani K. Team consensus for a network of unmanned vehicles in presence of actuator faults. IEEE Transactions on Control Systems Technology, 2010, 18(5):1155-1161 doi: 10.1109/TCST.2009.2032921 [54] Semsar-Kazerooni E, Khorasani K. Optimal consensus algorithms for cooperative team of agents subject to partial information. Automatica, 2008, 44(11):2766-2777 doi: 10.1016/j.automatica.2008.04.016 [55] 史建涛, 何潇, 周东华. 多机编队系统的协同容错控制. 上海交通大学学报, 2015, 49(6):819-824 http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201506014.htmShi Jian-Tao, He Xiao, Zhou Dong-Hua. Cooperative fault tolerant control for multi-vehicle systems. Journal of Shanghai Jiaotong University, 2015, 49(6):819-824 http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201506014.htm [56] Azizi S M, Khorasani K. Cooperative actuator fault accommodation in formation flight of unmanned vehicles using relative measurements. International Journal of Control, 2011, 84(5):876-894 doi: 10.1080/00207179.2011.582157 [57] Azizi S M, Khorasani K. A hierarchical architecture for cooperative actuator fault estimation and accommodation of formation flying satellites in deep space. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2):1428-1450 doi: 10.1109/TAES.2012.6178071 [58] Tousi M M, Khorasani K. Optimal hybrid fault recovery in a team of unmanned aerial vehicles. Automatica, 2012, 48(2):410-418 doi: 10.1016/j.automatica.2011.07.006 [59] Saboori I, Khorasani K. Actuator fault accommodation strategy for a team of multi-agent systems subject to switching topology. Automatica, 2015, 62:200-207 doi: 10.1016/j.automatica.2015.09.025 [60] Yang H, Staroswiecki M, Jiang B, Liu J Y. Fault tolerant cooperative control for a class of nonlinear multi-agent systems. Systems and Control Letters, 2011, 60(4):271-277 doi: 10.1016/j.sysconle.2011.02.004 [61] Yu X, Liu Z X, Zhang Y M. Fault-tolerant formation control of multiple UAVs in the presence of actuator faults. International Journal of Robust and Nonlinear Control, 2015, 26(12):2668-2685 http://cn.bing.com/academic/profile?id=64b409ea807e9f89fc8eaa197e3c6ac8&encoded=0&v=paper_preview&mkt=zh-cn [62] Zhang Y M, Jiang J. Fault tolerant control system design with explicit consideration of performance degradation. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3):838-848 doi: 10.1109/TAES.2003.1238740 [63] Wang Y J, Song Y D, Gao H, Lewis F L. Distributed fault-tolerant control of virtually and physically interconnected systems with application to high-speed trains under traction/braking failures. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2):535-545 doi: 10.1109/TITS.2015.2479922 [64] Giulietti F, Pollini L, Innocenti M. Autonomous formation flight. IEEE Control Systems, 2000, 20(6):34-44 doi: 10.1109/37.887447 [65] 石桂芬, 方华京. 基于相邻矩阵的多机器人编队容错控制. 华中科技大学学报(自然科学版), 2005, 33(3):39-42 http://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200503015.htmShi Gui-Fen, Fang Hua-Jing. Fault tolerance of multi-robot formation based on adjacency matrix. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2005, 33(3):39-42 http://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200503015.htm [66] Zhang J H, Xu X M, Hong L, Yan Y Z. Consensus recovery of multi-agent systems subjected to failures. International Journal of Control, 2012, 85(3):280-286 doi: 10.1080/00207179.2011.646313 [67] Yang H, Jiang B, Cocquempot V, Chen M. Spacecraft formation stabilization and fault tolerance:a state-varying switched system approach. Systems and Control Letters, 2013, 62(9):715-722 doi: 10.1016/j.sysconle.2013.05.007 [68] Jiang B, Wang J L, Soh Y C. Robust fault diagnosis for a class of linear systems with uncertainty. Journal of Guidance, Control, and Dynamics, 1999, 22(5):736-740 doi: 10.2514/2.4448 [69] Jiang B, Staroswiecki M, Cocquempot V. Fault diagnosis based on adaptive observer for a class of non-linear systems with unknown parameters. International Journal of Control, 2004, 77(4):367-383 http://cn.bing.com/academic/profile?id=fc42a2c324b1e27c7d9233557988276d&encoded=0&v=paper_preview&mkt=zh-cn [70] Giridhar A, El-Farra N H. A unified framework for detection, isolation and compensation of actuator faults in uncertain particulate processes. Chemical Engineering Science, 2009, 64(12):2963-2977 doi: 10.1016/j.ces.2009.03.016 [71] Chamseddine A, Noura H. Sensor network design for complex systems. International Journal of Adaptive Control and Signal Processing, 2012, 26(6):496-515 doi: 10.1002/acs.1297 [72] Atassi A N, Khalil H K. A separation principle for the stabilization of a class of nonlinear systems. IEEE Transactions on Automatic Control, 1999, 44(9):1672-1687 doi: 10.1109/9.788534 [73] Du M, Mhaskar P. Isolation and handling of sensor faults in nonlinear systems. Automatica, 2014, 50(4):1066-1074 doi: 10.1016/j.automatica.2014.02.017 [74] Wang Y Q, Zhou D H, Gao F R. Robust fault-tolerant control of a class of non-minimum phase nonlinear processes. Journal of Process Control, 2007, 17(6):523-537 doi: 10.1016/j.jprocont.2006.12.002 [75] Yang H, Jiang B, Zhang H G. Stabilization of non-minimum phase switched nonlinear systems with application to multi-agent systems. Systems and Control Letters, 2012, 60(10):1023-1031 http://cn.bing.com/academic/profile?id=6cdb07571953c2e482569f840d7f35d8&encoded=0&v=paper_preview&mkt=zh-cn